WO2005021535A2 - A method of removing the triphenylmethane protecting group - Google Patents

A method of removing the triphenylmethane protecting group Download PDF

Info

Publication number
WO2005021535A2
WO2005021535A2 PCT/CZ2004/000051 CZ2004000051W WO2005021535A2 WO 2005021535 A2 WO2005021535 A2 WO 2005021535A2 CZ 2004000051 W CZ2004000051 W CZ 2004000051W WO 2005021535 A2 WO2005021535 A2 WO 2005021535A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
trityl
biphenyl
methyl
tetrazol
Prior art date
Application number
PCT/CZ2004/000051
Other languages
French (fr)
Other versions
WO2005021535A3 (en
Inventor
Stanislav Radl
Jan Stach
Ondrej Klecan
Original Assignee
Zentiva, A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CZ20032319A external-priority patent/CZ297016B6/en
Priority claimed from CZ20040733A external-priority patent/CZ298329B6/en
Priority to PL379886A priority Critical patent/PL379886A1/en
Priority to YUP-2006/0125A priority patent/RS20060125A/en
Priority to SK5014-2006A priority patent/SK50142006A3/en
Priority to DE602004029373T priority patent/DE602004029373D1/en
Priority to EA200600079A priority patent/EA011507B1/en
Priority to CA002536781A priority patent/CA2536781A1/en
Application filed by Zentiva, A.S. filed Critical Zentiva, A.S.
Priority to PL04762303T priority patent/PL1658281T3/en
Priority to EP04762303A priority patent/EP1658281B1/en
Priority to US10/569,428 priority patent/US20060287537A1/en
Priority to AT04762303T priority patent/ATE482950T1/en
Publication of WO2005021535A2 publication Critical patent/WO2005021535A2/en
Publication of WO2005021535A3 publication Critical patent/WO2005021535A3/en
Priority to HR20060119A priority patent/HRP20060119A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to an improved method of removing the triphenylmethane (trityl) protecting group from l-triphenylmethyl-5-(4'-subst. aminomethyl-l,l '-biphenyl-2-yl)-lH- tetrazoles of general formula I
  • R are the following groups
  • R , R and R can be ⁇ , a halogen, an unbranched or branched C1-C5 alkyl, a CI- C5 hydroxyalkyl, C1-C5 alkoxy, C1-C5 alkoxymethyl, or benzyl, or wherein R and R can form together a C5-C7 saturated or unsaturated ring, optionally an unsubstituted or substituted aromatic ring, and a method of its use for the production of a drug for regulation of blood pressure from the group of antagonists of angiotensin II of general formula II
  • R can be the same as in general formula I and wherein M is either hydrogen or an alkali metal.
  • trityl losartan of formula IV was transformed by acid hydrolysis to 2-butyl-4-chloro-l-[[(2'-tetrazol-5-yl)-l, -biphenyl-4-yl]methyl]-5- hydroxymethyl-imidazole, hereinafter referred to as "losartan acid" of formula V
  • the trityl protecting group can also be removed by the action of strongly alkaline potassium hydroxide in primary alcohols.
  • the potassium salt of losartan of formula III can be prepared by this method and the subsequent crystallization is carried out by adding a solvent in which the potassium salt of losartan is insoluble.
  • some minor impurities are formed and it is difficult to remove them from the product.
  • Valsartan of formula VIII is obtained according to the published patent (US 5,399,578) in such a way that the benzyl ester of trityl valsartan of formula IX is detritylated by the action of hydrochloric acid in dioxane, thus giving the benzyl ester of valsartan of formula X
  • a second step the benzyl ester protecting group is removed by catalytic hydrogenation and valsartan of formula VIII is obtained.
  • a different method was used for isotope-labelled valsartan, wherein both protecting groups were removed by catalytic hydrogenation (J. Labelled. Cpd. Radiopharm. 2000, 43, 1245).
  • a disadvantage of the first process is the use of corrosive hydrochloric acid.
  • the use of a catalyst containing palladium increases costs.
  • triphenylmethanol or triphenylmethane which are formed during the reactions, have to be removed by complicated extractions.
  • the object of the invention is an improved method of removing the triphenylmethane (trityl) protecting group from l-triphenylmethyl-5-(4'-subst. aminomethyl-l,l '-biphenyl-2-yl)- lH-tetrazoles and a method of its use for the production of the potassium salt of 2-butyl-4- chloro-l-[[(2'-lH-tetrazol-5-yl)-l , -biphenyl-4-yl]methyl]-5-hydroxymethyl-imidazole (losartan) of formula III
  • the said drugs which are therapeutically important remedies used for regulation of blood pressure, belong to a medicine group called antagonists of angiotensin II receptor.
  • This whole method is based on the surprising discovery that the removal of the trityl protecting group from 1 -triphenylmethyl-5-(4'-subst. methyl- 1,1 ' -biphenyl-2-yl)- IH-tetrazoles of general formula I, specifically from the trityl derivatives of formulae IV, VII and IX and XI, can be carried out by solvolysis under reflux in an anhydrous CI to C5 alcohol, advantageously in anhydrous methanol, or in a mixture of methanol with a solvent miscible therewith, without the presence of any acidic or basic agents.
  • the "losartan acid" of formula V obtained in this way from trityl losartan of formula IV, is then transformed by the action of weak bases, for example potassium hydrogencarbonate or potassium carbonate, to the potassium salt of losartan of formula III.
  • weak bases for example potassium hydrogencarbonate or potassium carbonate
  • the transformation of trityl losartan of formula TV to the potassium salt of losartan of formula III can also be carried out by adding the said weak base at the beginning of the reaction.
  • irbesartan (VI) is directly formed by the method of this invention, which is sufficiently pure to be useful as a drug after a simple crystallization.
  • the benzyl ester of trityl valsartan of formula IX is, by the method of this invention, transformed to the benzyl ester of valsartan of formula X, which is easily deprived of the excess of the formed methyltriphenyl ether of formula XIII
  • Candesartan cilexetil formed by the described detritylation can be advantageously crystallized from solvents in which it is easily soluble or from solvents in which it is partially soluble. Crystallization from their mixtures is particularly advantageous.
  • Detritylation in methanol alone without adding any catalyst proceeds by stirring the respective tritylated intermediate with methanol at temperatures between 20 °C and the boiling point of methanol, advantageously under reflux, when the reaction is completed within several hours. If strictly anhydrous conditions are kept, methyltriphenylmethyl ether of formula XIII is formed during the reaction, which is, after completion of the reaction, easily removed by filtration after the methanolic solution is cooled.
  • Other primary alcohols for example ethanol, can also be used instead of methanol, but the reaction time is then substantially longer.
  • the reaction can be carried out also in a mixture of methanol with other solvents, for example with other alcohols, advantageously with ethanol, halogenated solvents, advantageously with dichloromethane and chloroform, aliphatic ketones, advantageously with acetone or 2-butanone, dialkyl ethers, advantageously with diisopropyl ether and methyl tert- butyl ether, and esters of carboxylic acids with aliphatic alcohols, advantageously with methyl acetate, ethyl acetate, isopropyl acetate or ethyl propionate.
  • other alcohols advantageously with ethanol, halogenated solvents, advantageously with dichloromethane and chloroform
  • aliphatic ketones advantageously with acetone or 2-butanone
  • dialkyl ethers advantageously with diisopropyl ether and methyl tert- butyl ether
  • esters of carboxylic acids with aliphatic alcohols advantageously with
  • trityl losartan of formula IV is the starting tritylated intermediate
  • a solution of free "losartan acid" of formula V is obtained by the said method and is then transformed to the potassium salt of losartan of formula III by the action potassium carbonate, potassium hydrogencarbonate or potassium hydroxide.
  • the crystallization itself can then be carried out from mixtures of an alcohol, advantageously isopropanol, and an antisolvent, in which the potassium salt of losartan of formula III is insoluble, or with the use of other solvents, for example acetone.
  • irbesartan can be obtained by further purification by crystallization from suitable solvents, for example ethanol or isopropanol.
  • suitable solvents for example ethanol or isopropanol.
  • the benzyl ester of trityl valsartan of formula LX is the starting tritylated intermediate, the same is, using the method of this invention, transformed to the benzyl ester of valsartan of formula X, which is easily deprived of the excess of the formed methyltriphenyl ether of formula XIII, and is then debenzylated to valsartan of formula VIII using one of the described methods.
  • trityl candesartan of formula XI is the starting intermediate
  • the filtrate obtained after sucking off of the methyltriphenylmethyl ether is evaporated to dryness and then candesartan cilexetil of formula XII is obtained by crystallization from a suitable solvent.
  • methyltriphenyl ether can be removed by crystallization of the product from a suitable solvent, advantageously from cyclohexane, or from a mixture of suitable solvents. Mixtures of solvents in which candesartan cilexetil easily dissolves with solvents in which this substance dissolves only partially turned out to be the best mixed solvents.
  • the solvents in which candesartan cilexetil easily dissolves and which can be used are C1-C4 alcohols, advantageously methanol, ethanol or 2-propanol, C1-C2 halogenated solvents, advantageously dichloromethane and chloroform, C1-C4 aliphatic ketones, advantageously acetone or 2-butanone, dialkyl ethers with C1-C4 alkyls, advantageously diisopropyl ether and methyl tert-butyl ether, and esters of C1-C5 carboxylic acids with C1-C4 aliphatic alcohols, advantageously methyl acetate, ethyl acetate, isopropyl acetate or ethyl propionate.
  • C1-C4 alcohols advantageously methanol, ethanol or 2-propanol
  • C1-C2 halogenated solvents advantageously dichloromethane and chloroform
  • the solvents in which candesartan cilexetil dissolves only partially and which can be used are cycloalkanes, for example cyclohexane, C5- C8 aliphatic hydrocarbons, for example pentane, hexane, heptane or isooctane.
  • cycloalkanes for example cyclohexane, C5- C8 aliphatic hydrocarbons, for example pentane, hexane, heptane or isooctane.
  • the evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of dichloromethane and after adding hexane 1.3 g (91 %) of the white powdery product precipitated.
  • the evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of acetone and after adding hexane 1.28 g (90 %) of the white powdery product precipitated.
  • the evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of 2-butanone and then isooctane was added in order to achieve thick turbidity. A clear solution was formed after heating, which after cooling and inoculation with a crystal obtained by the method in example 12 yielded 1.2 g (84 %) of the white crystalline product.

Abstract

A method of removing the triphenylmethane protecting group from 1-triphenylmethyl-5-(4'-subst. methyl-1,1‘-biphenyl-2-yl)-1H-tetrazoles of general formula I wherein R represents the groups of formulae and where R1, R2 and R3 can be H, a halogen, an unbranched or branched C1-C5 alkyl, C1-C5 hydroxyalkyl, Cl-C5 alkoxy, C1-C5 alkoxymethyl or benzyl, or wherein R2 and R3 can form together a saturated or unsaturated C5-C7 ring, optionally an unsubstituted or substituted aromatic ring, is carried out by solvolysis in a simple anhydrous Cl to C5 alcohol in a neutral or slightly basic medium. The method is suitable for the preparation of drugs, such as the potassium salts of losartan, irbesartan or valsartan or candesartan cilexetil.

Description

A method of removing the triphenylmethane protecting group
Technical Field This invention relates to an improved method of removing the triphenylmethane (trityl) protecting group from l-triphenylmethyl-5-(4'-subst. aminomethyl-l,l '-biphenyl-2-yl)-lH- tetrazoles of general formula I
Figure imgf000003_0001
wherein R are the following groups
Figure imgf000003_0002
Figure imgf000003_0003
and wherein R , R and R can be Η, a halogen, an unbranched or branched C1-C5 alkyl, a CI- C5 hydroxyalkyl, C1-C5 alkoxy, C1-C5 alkoxymethyl, or benzyl, or wherein R and R can form together a C5-C7 saturated or unsaturated ring, optionally an unsubstituted or substituted aromatic ring, and a method of its use for the production of a drug for regulation of blood pressure from the group of antagonists of angiotensin II of general formula II
Figure imgf000003_0004
wherein R can be the same as in general formula I and wherein M is either hydrogen or an alkali metal.
Background Art
The potassium salt of losartan of formula III
Figure imgf000004_0001
is produced according to published processes (WO 95/17396, EP 253310, US 5,859,258; J. Med. Chem. 1991, 34, 2525; J. Org. Chem. 1994, 59, 6391) by several methods which use trityl losartan of formula IV as a key intermediate.
Figure imgf000004_0002
According to the original patents, trityl losartan of formula IV was transformed by acid hydrolysis to 2-butyl-4-chloro-l-[[(2'-tetrazol-5-yl)-l, -biphenyl-4-yl]methyl]-5- hydroxymethyl-imidazole, hereinafter referred to as "losartan acid" of formula V
Figure imgf000005_0001
which was isolated and then transformed by potassium hydroxide to the potassium salt of losartan of formula III. When removing the trityl protective group, strongly corrosive acids are usually used. The need of isolation of the free acid of losartan and a complicated removal of excess mineral acids from the product are disadvantages of this method. The free acid prepared in this way is then transformed by aqueous potassium hydroxide to the potassium salt, which is then, according to the above-mentioned patents, dissolved in isopropanol and the product crystallizes after azeotropic distillation with cyclohexane. Especially the lengthy azeotropic distillation is a disadvantage here. On the basis of more recent patent applications (WO 01/61336; WO 02/094816), the trityl protecting group can also be removed by the action of strongly alkaline potassium hydroxide in primary alcohols. The potassium salt of losartan of formula III can be prepared by this method and the subsequent crystallization is carried out by adding a solvent in which the potassium salt of losartan is insoluble. However, during the said alkaline detritylation by a strong base, some minor impurities are formed and it is difficult to remove them from the product. One of the best possibilities how to synthesize irbesartan of formula VI
Figure imgf000005_0002
is synthesis via trityl irbesartan of formula VII
Figure imgf000006_0001
described in patent (US 5,559,233). By removing the trityl protecting group, directly irbesartan of formula VI is obtained. The above-mentioned patent also uses detritylation in an acid medium, which has the already- discussed disadvantages. The key intermediate of one of the most advantageous syntheses of valsartan of formula VIII
Figure imgf000006_0002
is the benzyl ester of trityl valsartan of formula IX
Figure imgf000006_0003
Valsartan of formula VIII is obtained according to the published patent (US 5,399,578) in such a way that the benzyl ester of trityl valsartan of formula IX is detritylated by the action of hydrochloric acid in dioxane, thus giving the benzyl ester of valsartan of formula X
Figure imgf000007_0001
In a second step, the benzyl ester protecting group is removed by catalytic hydrogenation and valsartan of formula VIII is obtained. A different method was used for isotope-labelled valsartan, wherein both protecting groups were removed by catalytic hydrogenation (J. Labelled. Cpd. Radiopharm. 2000, 43, 1245). A disadvantage of the first process is the use of corrosive hydrochloric acid. In the catalytic hydrogenation of both protecting groups, again, the use of a catalyst containing palladium increases costs. In both cases, triphenylmethanol or triphenylmethane, which are formed during the reactions, have to be removed by complicated extractions. Besides the above-mentioned methods of detritylation, also detritylation catalyzed by anhydrous acids in anhydrous alcohols, preferably in methanol, is described for similar substances of the sartan type (US 5,763,619). According to the information in the said patent, an advantage of this method is that no splitting off of other hydrolysable functions occurs. Candesartan cilexetil is produced according to published patents (US patent 5,196,444 and US patent 5,763,619) using the following method:
Figure imgf000007_0002
The synthesis starts with l-(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(N- triphenylmethyl-lH-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazol-7-carboxylate of formula XI, which is, in methanol by means of hydrochloric acid, transformed to candesartan cilexetil of formula XII. Synthesis of the starting substance XI is described in the original patent (US patent 5,196,444) and the compound is nowadays commercially available. The method of detritylation described in the original patent (US patent 5,196,444) has a very low yield and the product has to be purified chromatographically. The Takeda company improved this key step by using anhydrous hydrogen chloride in methanol (US patent 5,763,619), wherein the proportion of the decomposition products is lower and the yield higher. In US 5,763,619, this method is not used for detritylation of any intermediate useful for the production of losartan, irbesartan or valsartan. At least in the case of valsartan, partial reesterification and, probably, partial splitting off of the valeroyl residue would presumably occur. Similarly, cleavage of the dihydroimidazolone ring could also be expected in the case of irbesartan. Another disadvantages seem to be fluctuation of yields (in the examples they fluctuate from 42 % to 92 %), corrosiveness of the reaction medium, and the need to use water when removing the excess of the acid used, which partially eliminates the advantages of reaction in an anhydrous medium. Moreover, in the case of drugs used in the form of alkali salts (for example losartan), it is then necessary to transform the isolated "acid" to the respective salt. In view of the fact that the best used acid is a solution of anhydrous hydrogen chloride in an anhydrous alcohol, the need to prepare an anhydrous solution of the acid used in the respective alcohol is also an important disadvantage. Drawbacks of the above-mentioned methods include the use of strongly corrosive acids and also the need to process the reaction mixture by complex extractions. Such a production is then economically disadvantageous.
Disclosure of the Invention
The object of the invention is an improved method of removing the triphenylmethane (trityl) protecting group from l-triphenylmethyl-5-(4'-subst. aminomethyl-l,l '-biphenyl-2-yl)- lH-tetrazoles and a method of its use for the production of the potassium salt of 2-butyl-4- chloro-l-[[(2'-lH-tetrazol-5-yl)-l , -biphenyl-4-yl]methyl]-5-hydroxymethyl-imidazole (losartan) of formula III
Figure imgf000008_0001
of 2-butyl-3-[[2'-(lH-tetrazol-5-yl)-l,l'-biphenyl-4-yl]methyl]-l,3- diazasρiro[4.4]non-l-en- 4-one (irbesartan) of formula VI
Figure imgf000009_0001
ofN-(l-oxopentyl)-N-[[2'-(lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]methyl]-L-valine (valsartan) of formula VIII
Figure imgf000009_0002
and of l-(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (candesartan cilexetil) of formula XII
Figure imgf000009_0003
The said drugs, which are therapeutically important remedies used for regulation of blood pressure, belong to a medicine group called antagonists of angiotensin II receptor.
This whole method is based on the surprising discovery that the removal of the trityl protecting group from 1 -triphenylmethyl-5-(4'-subst. methyl- 1,1 ' -biphenyl-2-yl)- IH-tetrazoles of general formula I, specifically from the trityl derivatives of formulae IV, VII and IX and XI, can be carried out by solvolysis under reflux in an anhydrous CI to C5 alcohol, advantageously in anhydrous methanol, or in a mixture of methanol with a solvent miscible therewith, without the presence of any acidic or basic agents. The "losartan acid" of formula V, obtained in this way from trityl losartan of formula IV, is then transformed by the action of weak bases, for example potassium hydrogencarbonate or potassium carbonate, to the potassium salt of losartan of formula III. The transformation of trityl losartan of formula TV to the potassium salt of losartan of formula III can also be carried out by adding the said weak base at the beginning of the reaction. From trityl irbesartan (VII), irbesartan (VI) is directly formed by the method of this invention, which is sufficiently pure to be useful as a drug after a simple crystallization. The benzyl ester of trityl valsartan of formula IX is, by the method of this invention, transformed to the benzyl ester of valsartan of formula X, which is easily deprived of the excess of the formed methyltriphenyl ether of formula XIII
Figure imgf000010_0001
and is then debenzylated by one of the described methods to valsartan of formula VIII. Candesartan cilexetil formed by the described detritylation can be advantageously crystallized from solvents in which it is easily soluble or from solvents in which it is partially soluble. Crystallization from their mixtures is particularly advantageous.
A detailed description of the invention follows: Detritylation in methanol alone without adding any catalyst proceeds by stirring the respective tritylated intermediate with methanol at temperatures between 20 °C and the boiling point of methanol, advantageously under reflux, when the reaction is completed within several hours. If strictly anhydrous conditions are kept, methyltriphenylmethyl ether of formula XIII is formed during the reaction, which is, after completion of the reaction, easily removed by filtration after the methanolic solution is cooled. Other primary alcohols, for example ethanol, can also be used instead of methanol, but the reaction time is then substantially longer. The reaction can be carried out also in a mixture of methanol with other solvents, for example with other alcohols, advantageously with ethanol, halogenated solvents, advantageously with dichloromethane and chloroform, aliphatic ketones, advantageously with acetone or 2-butanone, dialkyl ethers, advantageously with diisopropyl ether and methyl tert- butyl ether, and esters of carboxylic acids with aliphatic alcohols, advantageously with methyl acetate, ethyl acetate, isopropyl acetate or ethyl propionate. In such a case, after the reaction is finished, the mixture is evaporated to dryness, then dissolved at a high temperature in methanol and after the mixture is cooled it is processed as described above. If trityl losartan of formula IV is the starting tritylated intermediate, a solution of free "losartan acid" of formula V is obtained by the said method and is then transformed to the potassium salt of losartan of formula III by the action potassium carbonate, potassium hydrogencarbonate or potassium hydroxide. The crystallization itself can then be carried out from mixtures of an alcohol, advantageously isopropanol, and an antisolvent, in which the potassium salt of losartan of formula III is insoluble, or with the use of other solvents, for example acetone. When using this method, an enormously pure product can be obtained, not containing impurities which are usual for the acid method, or for the method using potassium hydroxide. Deprotection can be, without a substantial deterioration of the purity of the crude potassium salt of losartan of formula III, also carried out directly in the presence of a weak base, advantageously potassium carbonate or hydrogencarbonate, wherein directly the said potassium salt of losartan of formula III is the product. If trityl irbesartan of formula VII is the starting tritylated intermediate, a solution of irbesartan of formula VI is obtained by the said method; a greater part of the formed methyltriphenylmethyl ether of formula XIII is removed by concentrating and cooling the solution. Highly pure irbesartan can be obtained by further purification by crystallization from suitable solvents, for example ethanol or isopropanol. If the benzyl ester of trityl valsartan of formula LX is the starting tritylated intermediate, the same is, using the method of this invention, transformed to the benzyl ester of valsartan of formula X, which is easily deprived of the excess of the formed methyltriphenyl ether of formula XIII, and is then debenzylated to valsartan of formula VIII using one of the described methods. If trityl candesartan of formula XI is the starting intermediate, the filtrate obtained after sucking off of the methyltriphenylmethyl ether is evaporated to dryness and then candesartan cilexetil of formula XII is obtained by crystallization from a suitable solvent. Alternatively, methyltriphenyl ether can be removed by crystallization of the product from a suitable solvent, advantageously from cyclohexane, or from a mixture of suitable solvents. Mixtures of solvents in which candesartan cilexetil easily dissolves with solvents in which this substance dissolves only partially turned out to be the best mixed solvents. The solvents in which candesartan cilexetil easily dissolves and which can be used are C1-C4 alcohols, advantageously methanol, ethanol or 2-propanol, C1-C2 halogenated solvents, advantageously dichloromethane and chloroform, C1-C4 aliphatic ketones, advantageously acetone or 2-butanone, dialkyl ethers with C1-C4 alkyls, advantageously diisopropyl ether and methyl tert-butyl ether, and esters of C1-C5 carboxylic acids with C1-C4 aliphatic alcohols, advantageously methyl acetate, ethyl acetate, isopropyl acetate or ethyl propionate. The solvents in which candesartan cilexetil dissolves only partially and which can be used are cycloalkanes, for example cyclohexane, C5- C8 aliphatic hydrocarbons, for example pentane, hexane, heptane or isooctane. The invention is elucidated in greater detail in the following working examples. These examples, which illustrate improvement of the method of the invention, are of an illustrative nature only and do not limit the scope of the invention in any way.
Examples
Example 1
2-Butyl-4-chloro-l-[[(2'-tetrazol-5-yl)-l,l'-biphenyl-4-yl]methyl]-5-hydroxymethyl- imidazole
A suspension of 10 g (0.015 mol) of 2-butyl-4-chloro-l-[[(2'-l-trityl-lH-tetrazol-5-yl)-l,l- biphenyl-4-yl]methyl]-5-hydroxymethyl-imidazole (trityl losartan, IV) in 50 ml of anhydrous methanol was refluxed for 7 hours. The solution was then cooled to -10 °C and stirred at this temperature overnight, the precipitated crystals were sucked off and washed with a small amount of ice-cold methanol. 3.7 g (90 %) of methyltriphenylmethyl ether (XIII) were obtained. The combined mother liquors were evaporated and boiled with 50 ml of hexane, the mixture was cooled and the insoluble part was sucked off, stirred at room temperature with 50 ml of cyclohexane for 10 hr, the insoluble part was sucked off. 6.2 g of the product (98 %) were obtained with mp of 186-188 °C. Η NMR spectra (DMSO): 0.81 1, J= 7.24, 3H; 1.27 m, 2H; 1.47 m, 2H; 2.47 t, J= 7.57, 2H; 4.35 s, 2H; 5.26 s, 2H; 7.03-7.12 m, 4H; 7.49-7.73 m, 4H. Example 2
Potassium salt of 2-butyl-4-chloro- 1 -[(2 '-tetrazol-5-yl)- 1 , 1 '-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (losartan, III)
A suspension of 10 g (0.015 mol) of 2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-l,l- biphenyl-4-yl]-5-(hydroxymethyl)-imidazole (trityl losartan, IV) in 100 ml of anhydrous methanol was refluxed for 7 hr. The solution was then concentrated to ca 1/5 of its volume and the after-cooling-precipitated methyltriphenylmethyl ether (XIII) was sucked off and washed with a small amount of ice-cold methanol. 3.71 g (90 %) of methyltriphenylmethyl ether (XIII) were obtained. The filtrate was evaporated and the evaporation residue was dissolved in 100 ml of methanol. 1.50 g of KΗCO3 was added and the mixture was refluxed for 4 hr. Methanol was then evaporated and after acetone was added the evaporation residue crystallized. The crystals were sucked off and washed with a small amount of ice-cold acetone. 5.29 g (76.5 %) of the potassium salt of 2-butyl-4-chloro-l-[(2'- triphenylmethyltetrazol-5-yl)-l, -biphenyl-4-yl]-5-(hydroxymethyl)imidazole (III) were obtained. Mp (DSC) 229.7 °C (change of cryst. form) and 274.6 °C. 1H NMR spectra (DMSO): 0.83 t, J=7.27, 3H; 1.26 m, 2H; 1.48 m, 2H; 2.51 t, J=7.53 , 2H; 4.34 s, 2H; 5.23 s, 2H; 6.93 d, J=8,36, 2H; 7.13 d, J=8.34, 2H; 7.32-7.39 m, 3H; 7.55 m, 1H.
Example 3
Potassium salt of 2-butyl-4-chloro- 1 -[(2 '-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (losartan, II)
2.10 g of calcined potassium carbonate (0.0150 mol) was added to a suspension of 10 g (0.0150 mol) of 2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to the reflux. The mixture was, after 6 hr of reflux, stirred overnight without heating. The next day the solution was concentrated to 1/3 of its volume and the after- cooling-precipitated methyltriphenylmethyl ether (XIII) was sucked off. The filtrate was evaporated and the evaporation residue crystallized after adding acetone. The crystals were sucked off and washed with a small amount of ice-cold acetone. 4.98 g (72.0 %) of the potassium salt of 2-butyl-4-chloro-l-[(2'-triphenylmethyltetrazol-5-yl)-l,l '-biphenyl-4-yl]-5- (hydroxymethyl)imidazole (III) were obtained. Mp (DSC) 233.9 °C (change of cryst. form) and 273.5 °C.
Example 4
Potassium salt of 2-butyl-4-chloro-l-[(2'-tetrazol-5-yl)-l,l '-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (losartan, III)
2.10 g of calcined potassium carbonate (0.0150 mol) was added to a suspension of 10 g (0.0150 mol) of 2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to the reflux. The mixture was, after 5 hr of reflux, stirred overnight. The next day the solution was concentrated to 1/3 of its volume and cooled, the precipitated methyltriphenylmethyl ether (XIII) was sucked off. The filtrate was evaporated, the evaporation residue was dissolved in 30 ml of isopropylalcohol and 70 ml of cyclohexane was added to the resulting solution. The precipitated crystals were sucked off and washed with a small amount of ice-cold acetone. 5.50 g (79.5 %) of the potassium salt of 2-butyl-4-chloro-l- [(2'-triphenylmethyltetrazol-5-yl)-l,l'-biphenyl-4-yl]-5-(hydroxymethyl)imidazole (III) were obtained. Mp (DSC) 232.7 °C (change of cryst. form) and 272.9 °C.
Example 5
Potassium salt of 2-butyl-4-chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (losartan, III)
1.05 g of calcined potassium carbonate (0.0075 mol) was added to a suspension of 10 g (0.015 mol) of 2-butyl-4-chloro- 1 -[(2 '- 1 -trityl- lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to reflux in an oil bath. The heating was stopped after 8 hr and the mixture was stirred overnight. The next day the solution was concentrated to 1/3 of its volume and cooled, the precipitated methyltriphenylmethyl ether (Xlli) was sucked off. The filtrate was evaporated and the evaporation residue crystallized after adding acetone. The crystals were sucked off and washed with a small amount of ice-cold acetone. 4.98 g (72.0 %) of the potassium salt of 2-butyl-4- chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)-imidazole (III) were obtained. Mp (DSC) 234.1 °C (change of cryst. form) and 275.2 °C.
Example 6
Potassium salt of 2-butyl-4-chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (losartan, III)
1.05 g of calcined potassium carbonate (0.0075 mol) was added to a suspension of 10 g (0.015 mol) of 2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to reflux in an oil bath. The heating was stopped after 8 hr and the mixture was stirred overnight. The next day the solution was concentrated to 1/3 of its volume and cooled, the precipitated methyltriphenylmethyl ether (XIII) was sucked off. The filtrate was evaporated, the evaporation residue was dissolved in 30 ml of isopropylalcohol and 70 ml of cyclohexane was added. The precipitated crystals were sucked off and washed with a small amount of ice-cold acetone. 6.12 g (88.5 %) of the potassium salt of 2-butyl-4-chloro-l-[(2'- lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)-imidazole (III) were obtained. Mp (DSC) 229.1 °C (change of cryst. form) and 271.8 °C.
Example 7
Potassium salt of 2-butyl-4-chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (losartan, III)
1.52 g of potassium hydrogencarbonate (0.0150 mol) was added to a suspension of 10 g (0.015 mol) of2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to the reflux. The heating was stopped after 6 hr of the reflux and the mixture was stirred overnight. The next day the solution was concentrated to 1/3 of its volume and the after-cooling-precipitated methyltriphenylmethyl ether (XIII) was sucked off. The filtrate was evaporated and the evaporation residue crystallized after adding acetone. The crystals were sucked off and washed with a small amount of ice-cold acetone. 6.31 g (91.2 %) of the potassium salt of 2-butyl-4-chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (III) were obtained. Mp (DSC) 229.9 °C (change of cryst. form) and 274.2 °C.
Example 8
Potassium salt of 2-butyl-4-chloro-l -[(2'- lH-tetrazol-5-yl)-biphenyl-4-yl]-5-(hydroxymethyl)- imidazole (losartan, III)
1.52 g of potassium hydrogencarbonate (0.0150 mol) was added to a suspension of 10 g (0.015 mol) of 2-butyl-4-chloro-l-[(2'-l-trityl-lH-tetrazol-5-yl)-l,r-biphenyl-4-yl]-5- (hydroxymethyl)-imidazole (trityl losartan, IV) in 65 ml of anhydrous methanol and the mixture was brought to the reflux. The heating was stopped after 6 hr of the reflux and the mixture was stirred overnight. The next day the solution was concentrated to 1/3 of its volume and the after-cooling-precipitated methyltriphenylmethyl ether (XIII) was sucked off. The filtrate was evaporated and the evaporation residue crystallized after adding acetone. The crystals were sucked off and washed with a small amount of ice-cold acetone. 6.36 g (91.9 %) of the potassium salt of 2-butyl-4-chloro-l-[(2'-lH-tetrazol-5-yl)-biphenyl-4-yl]-5-
(hydroxymethyl)-imidazole (III) were obtained. Mp (DSC) 232.9 °C (change of cryst. form) and 274.5 °C.
Example 9
2-Butyl-3-[[2'-(lH-tetrazol-5-yl)[l,l '-biphenyl]-4-yl]methyl-l,3- diazaspiro[4.4]non-l-ene (irbesartan, VI)
A suspension of 1 g (0.0015 mol) of 2-butyl-3-[2'-(l-trityl-lH-tetrazol-5-yl)-l,l'-biphenyl-4- ylmethyl]-l,3-diaza-spiro[4.4]non-l-en-4-one (trityl irbesartan, VII) in 10 ml of anhydrous methanol was refluxed for 10 hr. The solution was then cooled to -10 °C and stirred at this temperature overnight; the precipitated crystals were sucked off and washed with a small amount of ice-cold methanol. 0.30 g (73 %) of methyltriphenylmethyl ether (XIII) were obtained. The combined mother liquors were evaporated. The resulting raw irbesartan (VI) was crystallized from isopropanol and washed with hexane. 0.45 g (71 %) of irbesartan (VI) were obtained. Mp = 180 °C-181 °C.
Example 10
N-(l-Oxopentyl)-N-[[2'-(lH-tetrazol-5-yl)[l,r-biphenyl]-4-yl]methyl]-L-valine (valsartan, VIII)
A suspension of 10 g (0.013 mol) of the benzyl ester of N-( l-oxopentyl)-N-[ [2 '-(1 -trityl- 1H- tetrazol-5-yl)[l,l '-biphenyl]-4-yl]methyl]-L-valine (benzyl ester of trityl valsartan, IX) in 75 ml of anhydrous methanol was refluxed for 10 hr. The solution was then cooled to -10 °C and stirred at this temperature overnight; the precipitated crystals were sucked off and washed with a small amount of ice-cold methanol. 3 g (84 %) of methyltriphenylmethyl ether (XIII) were obtained. The crude benzyl ester of valsartan (X) was then dissolved in 20 ml of methanol and hydrogenated on 3% Pd/C. The mother liquor was, after the catalyst was removed, evaporated to dryness and 3g (53 %) of valsartan (VIII) crystallized after crystallization from the mixture ethyl acetate/cyclohexane. Mp = 109 °C-113 °C.
Example 11
N-(l-Oxopentyl)-N-[[2'-(lH-tetrazol-5-yl)[l, -biphenyl]-4-yl]methyl]-L-valine (valsartan, VIII)
A suspension of 10 g (0.013 mol) of the benzyl ester of N-(l-oxopentyl)-N-[[2'-(l-trityl-lH- tetrazol-5-yl)[l,l '-biphenyl]-4-yl]methyl]-L-valine (benzyl ester of trityl valsartan, IX) in 75 ml of anhydrous methanol was refluxed for 10 hr. The solution was then cooled to -10 °C and stirred at this temperature overnight; the precipitated crystals were sucked off and washed with a small amount of ice-cold methanol. Thus formed methanolic solution was, after adding potassium hydroxide (0.6 g), refluxed for 4 hr. Methanol was evaporated in vacuo, the mixture was diluted with 10 ml of water, and, after acidification with hydrochloric acid, valsartan was extracted using ethyl acetate (3 x 40 ml). The organic layer was washed with water (2 x 25 ml), concentrated to 30 ml and the product crystallized after adding cyclohexane (50 ml). 3.5 g (62 %) of valsartan (VIII) were obtained after sucking off and drying in vacuo. Mp = 109-113 °C.
Example 12
l-(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
A mixture of l-(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(N-triphenylmethyl-lH- tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazol-7-carboxylate (XI) (2 g) and methanol (40 ml) is stirred and refluxed for 24 hours. The resulting solution was concentrated to 'Λ of its volume and the after-cooling-precipitated crystals were sucked off and washed with a small amount (0.5 g) of methanol cooled to 0 °C. The mother liquor was evaporated (1.5 g) and by its crystallization from cyclohexane 1.1 g (76 %) of the product in the form of white crystals were obtained.
Η ΝMR (250 MHz, CDC13) δ: 1,13 - l,50(12H,m); l,64(2H,m); l,79(2H,m); 4,10- 4,50(3H,m); 5,62(2h,d); 6,65-6,93(7H,m); 7,27-7,28(lH,m); 7,46-7,48(lH,m); 7,56- 7,59(2H,m); 7,98-8,02(lH,m).
Example 13
1 -(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l -[[2 '-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
The evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of 2-propanol and after adding hexane 1.25 g (87 %) of the white powdery product precipitated. Example 14
1 -(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy- 1 -[[2 '-( lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
The evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of dichloromethane and after adding hexane 1.3 g (91 %) of the white powdery product precipitated.
Example 15
l-(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
The evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of acetone and after adding hexane 1.28 g (90 %) of the white powdery product precipitated.
Example 16
l-(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
The evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of methyl tert-butyl ether and then heptane was added in order to achieve thick turbidity. A clear solution was formed after heating, which then after cooling and inoculation with a crystal obtained by the method in example 12 yielded 1.2 g (84 %) of the white crystalline product. Example 17
l-(Cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-l-[[2'-(lH-tetrazol-5-yl)biphenyl-4- yl]methyl]benzimidazol-7-carboxylate (XII)
The evaporation residue (1.5 g) obtained by the method described in example 12 was dissolved in a small amount of 2-butanone and then isooctane was added in order to achieve thick turbidity. A clear solution was formed after heating, which after cooling and inoculation with a crystal obtained by the method in example 12 yielded 1.2 g (84 %) of the white crystalline product.

Claims

C L A I M S
1. A method of removing the triphenylmethane protecting group from l-triphenylmethyl-5- (4'-subst. methyl-1 ,1 '-biphenyl-2-yl)-lH-tetrazols of general formula I
Figure imgf000021_0001
wherein R represents the following groups of formulae
Figure imgf000021_0002
Figure imgf000021_0003
and wherein R .1 , n R2 and R can be Η, a halogen, an unbranched or branched C1-C5 alkyl, a C1-C5 hydroxyalkyl, C1-C5 alkoxy, C1-C5 alkoxymethyl or benzyl, or wherein R2 and R3 can form together a saturated or unsaturated C5-C7 ring, optionally an unsubstituted or substituted aromatic ring, characterized in that it is carried out by solvolysis in a simple anhydrous C1-C5 alcohol in a neutral or slightly basic medium.
2. The method according to claim 1 characterized in that the tritylated intermediate of formula I is trityl losartan of formula IV
Figure imgf000022_0001
3. The method according to claim 1 characterized in that the tritylated intermediate of formula I is trityl irbesartan of formula VII
Figure imgf000022_0002
4. The method according to claim 1 characterized in that the tritylated intermediate of formula I is the benzyl ester of trityl valsartan of formula IX
Figure imgf000022_0003
5. The method according to claim 1 characterized in that the tritylated intermediate of formula I is trityl candesartan cilexetil of formula XI
Figure imgf000023_0001
6. A method for the production of a drug of general formula II
Figure imgf000023_0002
wherein R represents the groups of the following formulae
Figure imgf000023_0003
and wherein M is either hydrogen or an alkali metal, characterized in carrying out the solvolysis of the compound of general formula I according to claim 1 and, optionally, if M is an alkali metal, a reaction with a substance of formula MnB where n takes values of 1 to 3, B is either the hydroxyl group or an anion of a weak acid, preferably CO3 2-", HCO
7. A method for the production of the potassium salt of 2-butyl-4-chloro-l-[[(2'-lH-tetrazol- 5-yl)-l,l '-biphenyl-4-yl]methyl]-5-hydroxymethyl-imidazole of formula III
Figure imgf000024_0001
known under the non-proprietary name losartan, according to claim 2, characterized in that 2-butyl-4-chloro-l-[[2'-(l-trityl-lH-tetrazol-5-yl)-l,l'-biphenyl-4-yl]methyl]-5- hydroxymethyl-imidazole of formula IV
Figure imgf000024_0002
is, by reaction in anhydrous methanol or ethanol, transformed to the free "losartan acid" of formula V
Figure imgf000024_0003
which is then, using potassium carbonate, potassium hydrogencarbonate or potassium hydroxide, transformed to the potassium salt of losartan of formula III and, after the alcohol is evaporated, the product is crystallized from a mixture of isopropanol and a solvent in which the potassium salt of losartan is insoluble, or from acetone.
8. The method according to claim 6 characterized in that the reaction is carried out in anhydrous methanol with an equivalent of potassium carbonate or hydrogencarbonate. The method according to claim 3 characterized in that the starting 2-butyl-3-[[2'-(l-trityl- lH-tetrazol-5-yl)-l, -biphenyl-4-yl]methyl]-l,3-diaza-spiro[4.4]non-l-en-4-one, designated as trityl irbesartan of formula VII
Figure imgf000025_0001
is, by reaction in anhydrous methanol or ethanol, transformed to irbesartan of formula VI
Figure imgf000025_0002
and methyltriphenylmethyl ether of formula XIII
Figure imgf000025_0003
which is then removed, and highly pure irbesartan of formula VI is obtained by crystallization.
10. The method according to claim 4 characterized in that the benzyl ester of N-(l-oxopentyl)- N-[[2'-(l-trityl-lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]methyl]-L-valine, designated as the benzyl ester of trityl valsartan of formula IX
Figure imgf000026_0001
is, by reaction in anhydrous methanol or ethanol, transformed to the benzyl ester of N-(l- oxopentyl)-N-[[2'-(lH-tetrazol-5-yl)-l,l '-biphenyl-4-yl]methyl]-L-valine, designated as the benzyl ester of valsartan of formula X
Figure imgf000026_0002
which is then debenzylated and valsartan of formula VIII
Figure imgf000026_0003
is obtained.
11. The method according to claim 5 characterized in that the reaction of the starting 1 -(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy- 1 -[[2 '-(N-triphenylmethyl- lH-tetrazol-5- yl)biphenyl-4-yl]methyl]benzimidazol-7-carboxylate, designated as trityl candesartan cilexetil of formula XI
Figure imgf000027_0001
to give candesartan cilexetil of formula XII
Figure imgf000027_0002
is carried out in anhydrous methanol.
12. The method according to claim 11 characteri zed in that the majority of the resulting methyltrityl ether is, after the concentrated methanol solution is cooled, removed by filtration, the mother liquor is evaporated and the product of formula XII crystallizes from an organic solvent.
13. The method according to claim 12 characteri z ed in that a solvent in which the product of formula XII fairly dissolves is used for crystallization of the product of formula XII.
14. The method according to claim 13 characterized in that the solvent is selected from the series of CI to C4 alcohols, advantageously methanol, ethanol or 2-propanol, CI to C2 halogenated solvents, advantageously dichloromethane or chloroform, CI to C4 aliphatic ketones, advantageously acetone or 2-butanone, CI to C4 dialkyl ethers, advantageously diisopropyl ether or methyl tert-butyl ether, esters of CI to C5 carboxylic acids with CI to C4 aliphatic alcohols, advantageously methyl acetate, ethyl acetate or isopropyl acetate, or their mixtures.
15. The method according to claim 12 characterized in that a solvent in which the product of formula XII dissolves only partially is used for crystallization of the product of formula XII.
16. The method according to claim 15 characteriz ed i n th at the solvent is selected from the series of C5 to C8 aliphatic hydrocarbons or C5 to C12 cyclic hydrocarbons, advantageously cyclohexane or their mixtures.
17. The method according to claim lό characterized in that cyclohexane is used for the crystallization.
18. The method according to claim 12 characterized in that a mixture of solvents in which the product of formula XII fairly dissolves with solvents in which the product dissolves only partially is used for the crystallization.
19. The method according to claim 18 characteriz ed in that a mixture of a CI to C4 alcohol and C5 to C8 aliphatic hydrocarbons or C5 to C12 cyclic hydrocarbons is used for the crystallization of the product.
20. The method according to claim 18 characterized in that a mixture of a CI to C2 halogenated solvent and C5 to C8 aliphatic hydrocarbons or C5 to C12 cyclic hydrocarbons is used for the crystallization.
21. The method according to claim 18 characterized in that a mixture of acetone or 2- butanone and C5 to C8 aliphatic hydrocarbons or C5 to C12 cyclic hydrocarbons is used for the crystallization.
22. The method according to claim 18 characterized in that a mixture of esters of C 1 to C5 carboxylic acids with CI to C4 aliphatic alcohols together with C5 to C8 aliphatic hydrocarbons or C5 to C12 cyclic hydrocarbons is used for the crystallization.
3. The method according to claim lδ characteri zed in that a mixture of hexane with solvents chosen from the series of acetone, dichloromethane, 2-propanone or methyl tert- butyl ether is used for the crystallization.
PCT/CZ2004/000051 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group WO2005021535A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/569,428 US20060287537A1 (en) 2003-08-27 2004-08-26 Method of removing the triphenylmethane protecting group
AT04762303T ATE482950T1 (en) 2003-08-27 2004-08-26 METHOD FOR REMOVAL OF TRIPHENYLMETHANE PROTECTING GROUP
PL04762303T PL1658281T3 (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group
SK5014-2006A SK50142006A3 (en) 2003-08-27 2004-08-26 Method of removing the triphenylmethane protecting group
DE602004029373T DE602004029373D1 (en) 2003-08-27 2004-08-26 METHOD FOR REMOVING THE TRIPHENYLMETHANE GRIP
EA200600079A EA011507B1 (en) 2003-08-27 2004-08-26 A method for the preparation potassium salts of losartan
CA002536781A CA2536781A1 (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group
PL379886A PL379886A1 (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group
YUP-2006/0125A RS20060125A (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group
EP04762303A EP1658281B1 (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group
HR20060119A HRP20060119A2 (en) 2003-08-27 2006-03-24 A method of removing the triphenylmethane protecting group

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CZPV2003-2319 2003-08-27
CZ20032319A CZ297016B6 (en) 2003-08-27 2003-08-27 Method for removing triphenylmethane protecting group from 1-trityl-5-(4'-substituted aminomethyl-1,1' -biphenyl-2-yl)-1H-tetrazoles and process for preparing losartan, irbesartan and valsartan potassium salt by making use thereof
CZPV2004-733 2004-06-16
CZ20040733A CZ298329B6 (en) 2004-06-16 2004-06-16 Process for preparing 1-(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-1-[[2??-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate (candesartan cilexetil)

Publications (2)

Publication Number Publication Date
WO2005021535A2 true WO2005021535A2 (en) 2005-03-10
WO2005021535A3 WO2005021535A3 (en) 2005-06-09

Family

ID=34276338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CZ2004/000051 WO2005021535A2 (en) 2003-08-27 2004-08-26 A method of removing the triphenylmethane protecting group

Country Status (13)

Country Link
US (1) US20060287537A1 (en)
EP (1) EP1658281B1 (en)
AT (1) ATE482950T1 (en)
CA (1) CA2536781A1 (en)
DE (1) DE602004029373D1 (en)
EA (1) EA011507B1 (en)
ES (1) ES2348300T3 (en)
HR (1) HRP20060119A2 (en)
PL (2) PL1658281T3 (en)
PT (1) PT1658281E (en)
RS (1) RS20060125A (en)
SK (1) SK50142006A3 (en)
WO (1) WO2005021535A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050922A1 (en) * 2004-11-11 2006-05-18 Lek Pharmaceuticals D.D. Process for the synthesis of tetrazoles
EP1661891A1 (en) * 2004-11-30 2006-05-31 KRKA, D.D., Novo Mesto A process for the synthesis of valsartan
WO2007048361A1 (en) * 2005-10-27 2007-05-03 Zentiva, A.S. A method of removing the triphenylmethane protecting group from precursors of antihypertensive drugs
WO2008018843A1 (en) * 2006-08-08 2008-02-14 Ulkar Kimya Sanayi Ve Ticaret As Process for producing useful salts form of biphenyl-tetrazole compounds
WO2009125416A2 (en) 2008-04-07 2009-10-15 Hetero Research Foundation Process for preparation of valsartan intermediate
US7692023B2 (en) 2004-02-11 2010-04-06 Teva Pharmaceutical Industries Ltd. Candesartan cilexetil polymorphs
WO2010046804A2 (en) * 2008-10-21 2010-04-29 Alembic Limited A process for preparation of losartan potassium form i
WO2010134052A1 (en) 2009-05-20 2010-11-25 Ranbaxy Laboratories Limited Process for the preparation of olmesartan medoxomil
US7884212B2 (en) 2005-10-07 2011-02-08 Silvo Zupancic Process for the preparation of candesartan cilexetil
WO2011080684A1 (en) 2009-12-31 2011-07-07 Ranbaxy Laboratories Limited Process for the preparation of candesartan cilexetil
WO2011092666A1 (en) 2010-01-29 2011-08-04 Ranbaxy Laboratories Limited An improved process for the preparation of candesartan cilexetil, polymorphic forms of n-trityl candesartan and their uses thereof
CN103012382A (en) * 2012-12-05 2013-04-03 威海迪之雅医药化工开发有限公司 Method for preparing olmesartan medoxomil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2962922C (en) * 2014-09-29 2021-10-26 The Scripps Research Institute Sphingosine-1-phosphate receptor modulators for treatment of cardiopulmonary disorders
US11327065B1 (en) * 2021-08-27 2022-05-10 Jubilant Generics Limited Preparation of angiotensin receptor blockers or pharmaceutically acceptable salts thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497121A1 (en) * 1991-01-31 1992-08-05 Chemisch Pharmazeutische Forschungsgesellschaft m.b.H. Tetrazole derivatives, process for their production and their application
US5196444A (en) * 1990-04-27 1993-03-23 Takeda Chemical Industries, Ltd. 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate and compositions and methods of pharmaceutical use thereof
US5281604A (en) * 1993-04-23 1994-01-25 American Cyanamid Company Angiotensin II receptor blocking 2,3,6-substituted quinazolinones
US5399578A (en) * 1990-02-19 1995-03-21 Ciba-Geigy Corp Acyl compounds
US5559233A (en) * 1990-03-20 1996-09-24 Sanofi Methods for preparing n-substituted heterocyclic derivatives
WO2002094816A1 (en) * 2001-05-18 2002-11-28 Aurobindo Pharma Limited Process for the crystallization of losartan potassium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399578A (en) * 1990-02-19 1995-03-21 Ciba-Geigy Corp Acyl compounds
US5559233A (en) * 1990-03-20 1996-09-24 Sanofi Methods for preparing n-substituted heterocyclic derivatives
US5196444A (en) * 1990-04-27 1993-03-23 Takeda Chemical Industries, Ltd. 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate and compositions and methods of pharmaceutical use thereof
EP0497121A1 (en) * 1991-01-31 1992-08-05 Chemisch Pharmazeutische Forschungsgesellschaft m.b.H. Tetrazole derivatives, process for their production and their application
US5281604A (en) * 1993-04-23 1994-01-25 American Cyanamid Company Angiotensin II receptor blocking 2,3,6-substituted quinazolinones
WO2002094816A1 (en) * 2001-05-18 2002-11-28 Aurobindo Pharma Limited Process for the crystallization of losartan potassium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATTANASI O. A. ET AL.: "Synthesis of biphenyltetrazole derivatives of 1-aminopyrroles as angiotensin II antagonists" FARMACO, vol. 54, 1999, pages 64-76, XP002319793 *
CARINI D J ET AL: "NONPEPTIDE ANGIOTENSIN II RECEPTOR ANTAGONISTS: THE DISCOVERY OF A SERIES OF N-(BIPHENYLYLMETHYL)IMIDAZOLES AS POTENT, ORALLY ACTIVE ANTIHYPERTENSIVES" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 34, no. 8, 1 August 1991 (1991-08-01), pages 2525-2547, XP000674205 ISSN: 0022-2623 *
NICHOLAS, J. S. HARMAT ET AL: "4-Diazinyl- and 4-Pyridinylimidazoles: Potent Angiotensin II Antagonists. A Study of Their Activity and Computational Characterization" JOURNAL OF MEDICINAL CHEMISTRY, vol. 38, no. 15, 1995, pages 2925-2937, XP002313313 *
USIFOH, CYRIL O.: "Anticonvulsant activity of reaction products of 5,5-diphenylhydantoin with substituted methylene bromides" ARCH. PHARM. PHARM. MED. CHEM., vol. 334, no. 11, 2001, pages 366-368, XP002319792 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692023B2 (en) 2004-02-11 2010-04-06 Teva Pharmaceutical Industries Ltd. Candesartan cilexetil polymorphs
WO2006050922A1 (en) * 2004-11-11 2006-05-18 Lek Pharmaceuticals D.D. Process for the synthesis of tetrazoles
EP1661891A1 (en) * 2004-11-30 2006-05-31 KRKA, D.D., Novo Mesto A process for the synthesis of valsartan
US7884212B2 (en) 2005-10-07 2011-02-08 Silvo Zupancic Process for the preparation of candesartan cilexetil
WO2007048361A1 (en) * 2005-10-27 2007-05-03 Zentiva, A.S. A method of removing the triphenylmethane protecting group from precursors of antihypertensive drugs
WO2008018843A1 (en) * 2006-08-08 2008-02-14 Ulkar Kimya Sanayi Ve Ticaret As Process for producing useful salts form of biphenyl-tetrazole compounds
WO2009125416A2 (en) 2008-04-07 2009-10-15 Hetero Research Foundation Process for preparation of valsartan intermediate
US8492577B2 (en) 2008-04-07 2013-07-23 Hetero Research Foundation Process for preparation of valsartan intermediate
WO2010046804A2 (en) * 2008-10-21 2010-04-29 Alembic Limited A process for preparation of losartan potassium form i
WO2010046804A3 (en) * 2008-10-21 2010-11-04 Alembic Limited A process for preparation of losartan potassium form i
WO2010134052A1 (en) 2009-05-20 2010-11-25 Ranbaxy Laboratories Limited Process for the preparation of olmesartan medoxomil
WO2011080684A1 (en) 2009-12-31 2011-07-07 Ranbaxy Laboratories Limited Process for the preparation of candesartan cilexetil
WO2011092666A1 (en) 2010-01-29 2011-08-04 Ranbaxy Laboratories Limited An improved process for the preparation of candesartan cilexetil, polymorphic forms of n-trityl candesartan and their uses thereof
CN103012382A (en) * 2012-12-05 2013-04-03 威海迪之雅医药化工开发有限公司 Method for preparing olmesartan medoxomil

Also Published As

Publication number Publication date
US20060287537A1 (en) 2006-12-21
CA2536781A1 (en) 2005-03-10
WO2005021535A3 (en) 2005-06-09
DE602004029373D1 (en) 2010-11-11
SK50142006A3 (en) 2006-05-04
PL379886A1 (en) 2006-11-27
RS20060125A (en) 2008-06-05
EP1658281A2 (en) 2006-05-24
PT1658281E (en) 2010-10-12
ES2348300T3 (en) 2010-12-02
ATE482950T1 (en) 2010-10-15
EA011507B1 (en) 2009-04-28
EA200600079A1 (en) 2006-08-25
PL1658281T3 (en) 2010-12-31
HRP20060119A2 (en) 2006-05-31
EP1658281B1 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
HRP20060119A2 (en) A method of removing the triphenylmethane protecting group
JP5685082B2 (en) Process for the preparation or purification of olmesartan medoxomil
CZ2005679A3 (en) Method of removing triphenylmethane protecting group in anti-hypertension medicament precursors
EP1556363A2 (en) Process for the preparation of valsartan and intermediates thereof
JP2007112800A (en) Method for producing angiotensin ii antagonistic compound
BG107478A (en) Process for the crystallization of losartan potassium
BG65699B1 (en) Process for the synthesis of a tetrazol derivative
EP1474417B1 (en) Processes for preparing losartan and losartan potassium
CA2515138A1 (en) Synthesis of 2-butyl-3-(2'-(1-trityl-1h-tetrazol-5-yl)biphenyl-4-yl)-1,3-diazaspirol[4,4]-non-ene-4-one
EA007323B1 (en) A method of preparation of n-(1-oxopentyl)-n[[2'-(1h-tetrazol-5-yl) [1,1'-biphenyl]-4-yl]-l-valine (valsaptan)
KR101184433B1 (en) Method for manufacturing olmesartan cilexetil having crystal form
CZ297016B6 (en) Method for removing triphenylmethane protecting group from 1-trityl-5-(4'-substituted aminomethyl-1,1' -biphenyl-2-yl)-1H-tetrazoles and process for preparing losartan, irbesartan and valsartan potassium salt by making use thereof
CN104230909B (en) A kind of preparation method of Azilsartan
KR101009404B1 (en) Preparation of high purity S-N-1-carboxy-2-methyl-pro-1-phyl-N-pentanoyl-N-[2?-1H-tetrazol-5-ylbiphenyl-4-yl-methyl]amine
KR101628758B1 (en) Method for manufacturing olmesartan cilexetil
EA016832B1 (en) Process for the preparation of 5-(2-ethyl-2,3-dihydro-1h-inden-2-yl)-1h-imidazole and salts thereof
CZ2005664A3 (en) Process for preparing 1-(cyclohexyloxy carbonyloxy)ethyl-2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]-methyl]benzimidazole-7-carboxylate (candesartan cilexetil)
CZ298329B6 (en) Process for preparing 1-(cyclohexyloxycarbonyloxy)ethyl-2-ethoxy-1-[[2??-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate (candesartan cilexetil)
KR101266224B1 (en) An improved process for the preparation of trityl olmesartan medoxomil
CZ302240B6 (en) Method for removing triphenylmethane-protecting group from precursors of antihypertensive medicaments having labile metabolically degradable group
EP1634880A2 (en) Processes for preparing losartan and losartan potassium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200600079

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2004762303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 50142006

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 2006200600108

Country of ref document: RO

WWE Wipo information: entry into national phase

Ref document number: P-2006/0125

Country of ref document: YU

WWE Wipo information: entry into national phase

Ref document number: 2006287537

Country of ref document: US

Ref document number: 2536781

Country of ref document: CA

Ref document number: 10569428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: P20060119A

Country of ref document: HR

WWP Wipo information: published in national office

Ref document number: 2004762303

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569428

Country of ref document: US