US2767119A - Process for decolorizing petroleum hydrocarbons with a pyrrolidone - Google Patents

Process for decolorizing petroleum hydrocarbons with a pyrrolidone Download PDF

Info

Publication number
US2767119A
US2767119A US500039A US50003955A US2767119A US 2767119 A US2767119 A US 2767119A US 500039 A US500039 A US 500039A US 50003955 A US50003955 A US 50003955A US 2767119 A US2767119 A US 2767119A
Authority
US
United States
Prior art keywords
pyrrolidone
kerosene
grams
colored
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US500039A
Inventor
Americo L Forchielli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAF Chemicals Corp
Original Assignee
General Aniline and Film Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Aniline and Film Corp filed Critical General Aniline and Film Corp
Priority to US500039A priority Critical patent/US2767119A/en
Application granted granted Critical
Publication of US2767119A publication Critical patent/US2767119A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • C10G29/24Aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G73/00Recovery or refining of mineral waxes, e.g. montan wax
    • C10G73/42Refining of petroleum waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the various fractions are treated with sulfuric acid, adsorbents, or with inorganic compounds such as for example, lime, magnesium hydroxide, sulfur dioxide, the so-called Edelanu process, or by treatment with aluminum chloride which acts as a polymerizing and saturating agent.
  • the color of liquid petroleum hydrocarbons is of significant importance, for example, in the field of insecticidal oils, wherein kerosene and light mineral oils are employed as the dispersing medium, it is essential that the kerosene or mineral oil be almost of water white quality.
  • mineral oils used for medicinal purposes and Vaseline oils which find considerable use in the field of cosmetics, especially in the preparation of hair tonics.
  • To supply a product which would be water white, or substantially water white is the goal of every petroleum refiner.
  • the currently employed refining processes while yielding products which meet this requirement, the products when stored or packaged in bottles or other containers have the tendency to become colored. This, as noted above, is due to oxidation of the unsaturated constituents which were not removed either during the distillation process or by any one of the refining or treating processes used.
  • Z-pyrrolidone N-methyl-Z-pyrrolidone N-ethyl-Z-pyrrolidone N-isopropyl-Z-pyrrolido'ne N-vinyl-Z-pyrrolidone Any petroleum hydrocarbon derived from crude. oil refining such as petroleum ether, kerosene, naphtha, lubricating oils having a boiling point of approximately 350 C. more or less, including medium and heavy mineral oils, paraffin oil, which are available to the trade under the names of liquid petroleum, Albolene,Stan olax, Nujol and the like, including Vaseline or petroleum jelly melting between 3850 C.
  • 2-pyrrolidone is the best and most for largescale decolorization because of its complete imrniscibility (or insolubility) in the hydrocarbon, thereby providing complete and simple removal of the colored'bodies without change in physical or chemical properties of the product.
  • the concentration of the 1-vinyl-2-pyrrolidone or its polymers, or of N-methyl-Z-pyrrolidone in the liquid hydrocarbon should be enough to saturate the hydro carbon at room temperature.
  • the unusual feature of the present invention is that by employing l-vinyl-2-pyrrolidone, N-methyl-2 pyrrolidone or 2-pyrrolidone as the decolorizing medium, these pyrrolidones may contain as much as 40% by weight of water without impairing the decolorizing effect. 7
  • the various petroleum hydrocarbons, particularly the kerosene and light mineral oil fractions are more effectively decolorized than by the distillation and currently employed refining techniques, thereby making available to the petroleum industry a cheap, readily usable method for maintaining water white quality of such products.
  • Storage tanks containing such liquid hydrocarbon products can be readily treated with 2-pyrrolidone for maintaining them and other petroleum liquid products colorless.
  • Such products especially the kerosene and light mineral fractions, are readily usable by manufacturers of disinfectants, insecticides, and as solvents for DDT aerosol sprays, without fear of contamination of household effects and other objects sprayed on, due to objectionable color as caused by the same hydrocarbons in acolored state.
  • the pyrrolidones are of particular advantage in decolorizing crude oil free from asphaltic constituents before processing, i. e. distillation and purification.
  • Example 11 50 grams of colored kerosene was poured into a separatory funnel along with 8 grams of N-vinyl2-pyrrolidone and shaken vigorously.
  • the separatory funnel was then placed in a vertical position and the solution allowed to stand. Within 1 minute a separation of 1 ml. of N-vinyl-2-pyrrolidone occured' which was brown in color and the kerosene layer containing 7 grams of N-vinyl 2-pyrrolidone wascolorless and clear.
  • Example IV 100 grams of a solution comprising 50% by weight colored kerosene, 30% N-vinyl-2-pyrrolidone and 20% water (50 grams kerosene and 50 grams of a 60/ 40 vinyl-. pyrrolidone/water solution) was poured .into a separatory funnel and shaken vigorously. Uponstanding for about 1 minute a separationinto 2 liquid layers occurred and 50 grams of vinylpyrrolidone/water solution was obtained as the bottom layer and contained the color of the kerosene used. 111 this instance the presence of water in the vinylpyrrolidone prevented the vinylpyrrolidoyne from dissolving in the kerosene. The kerosene obtained was free of color and clear.
  • Example V 50"grams of. colored kerosene and 50 grams of a 70/30 'solution of vinylpyrrolidone and water were poured into aseparatory' funnel'and shaken and let separatory fun'nel. and contents stand.” Within lminute 7 maining soluble in the kerosene.
  • Example VI 90 grams of colored kerosene and 10 grams of N vinyl-2-pyrrolidone were poured into a separatory funnel and shaken. A solution was obtained. The separatory funnel containing the solution was placed in an ice bath at 0'C.-5 C. and within 1 hour 5.5 grams of vinyl pyrrolidone containing the color of the kerosene separated as the bottom layer. The supernatant layer, kerosene'plus 4.5 grams of vinylpyrrolidone was clear and colorless. 7 a a Example VII 75 grams of colored kerosene and '25 grams of N- vinyl-2-pyrrolidone were poured into a separatory funnel and'shaken.
  • Example VIII 50 gramsof colored kerosene and 50 grams of N- methyl-Z-pyrrolidone were poured into a separatory funnel and shaken. Upon standing for a few'minutes'a 2- layer separation occurred with the bottom layer, N- methyl-Z-pyrrolidone being dark brown in color and the top layer kerosene plus some N-methyLZ-pyrrolidone being colorless and clear. Analysis of the kerosene layer for nitrogen showed it' to contain 0.56% N or about 4% N-methyl-2-pyrrolidone on a weightrbasis remained soluble in thekerosene. i 7
  • Example IX grams of colored kerosene and 30 grams of N- methyl-2-pyrrolidone were poured intoa separatory funf nel and shaken. Upon standing for a few minutes a 2- layer separation occurred, the bottom layer being N- methyl-Z-pyrrolidOne plus the color contained in the kerosene used. The kerosene layer was clear and colorless.
  • the decolorized kerosene obtained in each experiment above contained the same amount. of water. 0.1%) and same amounts of ash 0.01% They difieredonly in nitrogen content, with those samples in which 1 vinyl- 2-pyrrolidone or N-methyl-Z-pyrrolidone werellsed ⁇ i011- taining nitrogen due to their solubilityin kerosene (llvinyl-2-pyrrolidone 22% i V V V V lidone 8% soluble).
  • Example XII Example X was repeated with the exception that 25 grams of colored kerosene were replaced by 25 grams of.
  • Example XIII 150 grams of parafiin Wax having a melting point of 50-80 C. was dissolved in 500 cc. of ethylene dichloride by the application of gentle heat until complete solution was efiectuated. The solution was allowed to reach room temperature and 100 grams of 2-pyrrolidone added, and the mixture shaken vigorously for several minutes. Thereafter the mixture was placed in Dry Ice until a temperature of approximately -15 F. was attained. Within a few seconds the wax precipitated from the cold solution, was collected and pressed in a filter press to yield a pure white wax.
  • A represents a member selected from the group consisting of NH, N-vinyl and N-alkyl groups.
  • pyrrolidone is N-methyl-2-pyrrolidone.
  • pyrrolidone is 2-pyrrolidone.
  • pyrrolidone is N-ethyl-Z-pyrrolidone.
  • pyrrolidone is N-isopropyl-2-pyrrolidone.

Description

PRGCESS FER DECQLUREZENG PETROLEUM HY- DRQCARBGNS WITH A PYRROLIDONE Americo L. Forchielii, Watertown, Mass, assignor to General Aniline & Fiim Corporation, New York, N. Y., a corporation of Delaware No Drawing. Application April 7, 1955, Serial No. 500,039
6 Ciaims. (Cl. 196-23) This invention relates to an improved process for decolorizing petroleum hydrocarbons.
In the customary refining, crude oil is first submitted to fractional distillation by means of which it is separated into four or more main fractions. The distillate coming over up to 156 C. consists of the lower hydrocarbons and is a mobile liquid. By further fractionation, it is separated into petroleum ether having a boiling range of 40-70 C., naphtha having a boiling range of 70-90 C. and ligroin having a boiling point of 90120 C. The fraction distilling between 150 and 300 C. consists of kerosene and light paraffin oil. After the distillation of the crude, the various fractions are treated with sulfuric acid, adsorbents, or with inorganic compounds such as for example, lime, magnesium hydroxide, sulfur dioxide, the so-called Edelanu process, or by treatment with aluminum chloride which acts as a polymerizing and saturating agent.
The color of the foregoing fractions, when well refined, varies in shade with the specific gravity of the petroleum hydrocarbon, being yellow for light gravity oils (0.77 0.789), amber for medium gravity oils (0.792O.820), and dark for oils of heavy specific gravity. All of these fractions are further purified by fractional distillation to yield substantially pure hydrocarbons which are colorless, but become colored upon oxidation, especially oxidation of the unsaturated members.
For some industrial applications, the color of liquid petroleum hydrocarbons is of significant importance, for example, in the field of insecticidal oils, wherein kerosene and light mineral oils are employed as the dispersing medium, it is essential that the kerosene or mineral oil be almost of water white quality. The same applies to mineral oils used for medicinal purposes, and Vaseline oils which find considerable use in the field of cosmetics, especially in the preparation of hair tonics. To supply a product which would be water white, or substantially water white, is the goal of every petroleum refiner. The currently employed refining processes while yielding products which meet this requirement, the products when stored or packaged in bottles or other containers have the tendency to become colored. This, as noted above, is due to oxidation of the unsaturated constituents which were not removed either during the distillation process or by any one of the refining or treating processes used.
To provide a simple and inexpensive process for de colorizing liquid and solid petroleum hydrocarbons constitutes the principal object of the present invention.
Other objects and advantages will become apparent from the following description.
I have discovered that various liquid and waxy (solid and semi-solid) petroleum hydrocarbons are readily decolorized by contacting them with a compound having the following formula:
2,767,119 Fatented Oct. 16, 1956 wherein A represents =NH, =NHCH:=CH2 or an :N-alkyl group, e. g., N-methyl, N-ethyl, N-propyl, N-butyl, etc.
As illustrative of specific compounds which may be used for this purpose, the following may be mentioned: Z-pyrrolidone N-methyl-Z-pyrrolidone N-ethyl-Z-pyrrolidone N-isopropyl-Z-pyrrolido'ne N-vinyl-Z-pyrrolidone Any petroleum hydrocarbon derived from crude. oil refining such as petroleum ether, kerosene, naphtha, lubricating oils having a boiling point of approximately 350 C. more or less, including medium and heavy mineral oils, paraffin oil, which are available to the trade under the names of liquid petroleum, Albolene,Stan olax, Nujol and the like, including Vaseline or petroleum jelly melting between 3850 C. and paraflin wax having melting points between 45-65 and 5080 C. are very readily decolorized by treating with any compound characterized by the foregoing general formula. In some instances, this treatment merely involves the presence of any one of the above-mentioned compounds in liquid colored petroleum hydrocarbon, and stirring or shaking the hydrocarbon mixture to establish contact and separating the immiscible portions by decantation and separation of the colored layer, which is always the bottom liquid layer, or by allowing it to drain off. The contact time required is very short with instantaneous decolorization and separation into two layers occurring.
In other instances where it is desired to remove color from crude kerosene, crude naphtha, paraffin oil and the like, 2-pyrrolidone is the best and most eficient for largescale decolorization because of its complete imrniscibility (or insolubility) in the hydrocarbon, thereby providing complete and simple removal of the colored'bodies without change in physical or chemical properties of the product.
The concentration of the 1-vinyl-2-pyrrolidone or its polymers, or of N-methyl-Z-pyrrolidone in the liquid hydrocarbon should be enough to saturate the hydro carbon at room temperature.
The unusual feature of the present invention is that by employing l-vinyl-2-pyrrolidone, N-methyl-2 pyrrolidone or 2-pyrrolidone as the decolorizing medium, these pyrrolidones may contain as much as 40% by weight of water without impairing the decolorizing effect. 7
The various petroleum hydrocarbons, particularly the kerosene and light mineral oil fractions are more effectively decolorized than by the distillation and currently employed refining techniques, thereby making available to the petroleum industry a cheap, readily usable method for maintaining water white quality of such products.
Storage tanks containing such liquid hydrocarbon products can be readily treated with 2-pyrrolidone for maintaining them and other petroleum liquid products colorless. Such products, especially the kerosene and light mineral fractions, are readily usable by manufacturers of disinfectants, insecticides, and as solvents for DDT aerosol sprays, without fear of contamination of household effects and other objects sprayed on, due to objectionable color as caused by the same hydrocarbons in acolored state.
The pyrrolidones are of particular advantage in decolorizing crude oil free from asphaltic constituents before processing, i. e. distillation and purification.
Various mineral oils, lubricating oils, Vaseline, greases, and the like, containing from 10-22% by weight of 1-vinyl-2-pyrrolidone or from 5-8% of N-methyl-2-prw rolidone by weight appear to contribute to the depression of the freezing point of these various hydrocarbons. .In
. 2-pyrrolidone remaining other words, the various pyrrolidones appear to act as flask and contents heated .on a steam bath while stirring.
Within 5 minutes, the temperatureof the solution sharp- 1y rose to90 'C. and continued to rise until a maximum of. 110 C. was'reached. At this point the temperature 7 quickly dropped of its own accord to 95 C. and a mass of polyvinylpyrrolidone was obtained which settled to the bottom of the flask rendering the colored kerosene used, colorless. Analysis'of the supernatant kerosene showed it to be free of nitrogen, but colorless. Its odor was also more pleasant than the color-containing kerosene. Example 11 50 grams of colored kerosene was poured into a separatory funnel along with 8 grams of N-vinyl2-pyrrolidone and shaken vigorously. The separatory funnel was then placed in a vertical position and the solution allowed to stand. Within 1 minute a separation of 1 ml. of N-vinyl-2-pyrrolidone occured' which was brown in color and the kerosene layer containing 7 grams of N-vinyl 2-pyrrolidone wascolorless and clear.
I Example III 7 50 grams of colored kerosene was poured into a separatory funnel along with 47.5 grams of N-vinyl-Z-pyrrolidone and shaken vigorously; The separatory tunnel was then placed in a vertical position and the solution allowed to stand. Within 1 minute separation into 2 liquid layers occurred and 33.5 grams of N-vinyl-2-pyrrolidonewas recovered; 14 grams of N-vinyl-Z-pyrrolidone remained soluble in the kerosene which was also colorless and clear. Analysis ofthe kerosene layer for nitrogen gave 2.77% which corresponds to 22% N-vinylsoluble'in the kerosene at room temperature.
Example IV 100 grams of a solution comprising 50% by weight colored kerosene, 30% N-vinyl-2-pyrrolidone and 20% water (50 grams kerosene and 50 grams of a 60/ 40 vinyl-. pyrrolidone/water solution) was poured .into a separatory funnel and shaken vigorously. Uponstanding for about 1 minute a separationinto 2 liquid layers occurred and 50 grams of vinylpyrrolidone/water solution was obtained as the bottom layer and contained the color of the kerosene used. 111 this instance the presence of water in the vinylpyrrolidone prevented the vinylpyrrolidoyne from dissolving in the kerosene. The kerosene obtained was free of color and clear.
Example V 50"grams of. colored kerosene and 50 grams of a 70/30 'solution of vinylpyrrolidone and water were poured into aseparatory' funnel'and shaken and let separatory fun'nel. and contents stand." Within lminute 7 maining soluble in the kerosene.
I in the kerosene.
r 4 Example VI 90 grams of colored kerosene and 10 grams of N vinyl-2-pyrrolidone were poured into a separatory funnel and shaken. A solution was obtained. The separatory funnel containing the solution was placed in an ice bath at 0'C.-5 C. and within 1 hour 5.5 grams of vinyl pyrrolidone containing the color of the kerosene separated as the bottom layer. The supernatant layer, kerosene'plus 4.5 grams of vinylpyrrolidone was clear and colorless. 7 a a Example VII 75 grams of colored kerosene and '25 grams of N- vinyl-2-pyrrolidone were poured into a separatory funnel and'shaken. Within 1 minute, 2.5 grams of vinylpyrrolidone was recovered as a dark brown bottom layer. Upon standing at room temperature for several hours no further separation occurred. The kerosene layer containing. 22.5 grams of vinylpyrrolidone was colorless and clear. a a
Example VIII 50 gramsof colored kerosene and 50 grams of N- methyl-Z-pyrrolidone were poured into a separatory funnel and shaken. Upon standing for a few'minutes'a 2- layer separation occurred with the bottom layer, N- methyl-Z-pyrrolidone being dark brown in color and the top layer kerosene plus some N-methyLZ-pyrrolidone being colorless and clear. Analysis of the kerosene layer for nitrogen showed it' to contain 0.56% N or about 4% N-methyl-2-pyrrolidone on a weightrbasis remained soluble in thekerosene. i 7
Example IX grams of colored kerosene and 30 grams of N- methyl-2-pyrrolidone were poured intoa separatory funf nel and shaken. Upon standing for a few minutes a 2- layer separation occurred, the bottom layer being N- methyl-Z-pyrrolidOne plus the color contained in the kerosene used. The kerosene layer was clear and colorless. Analysis for nitrogen gave 0.96% N which corresponds to about 8 N-methyl-Z-pyrrolidone dissolved V ExampleX 25 grams of colored kerosene and 25 7 grams of 2 pyrrolidone were poured into a separatory funnel and shaken; Upon standing, ,2 layers separated immediately with the decolorized kerosene being the top layer and the 2-pyrrolid0ne containing all the color of the colored kerosene as the bottom'layen' Analysis for nitrogen in the kerosene layer yielded a trace of nitrogen indicating The colored (yellow-brown) kerosene'used. iirthe above experimentshad the following analyses:
Percent nitrogentrace Percent H2O. 0.1 Percent ash or carbon residue 0.01
The decolorized kerosene obtained in each experiment above contained the same amount. of water. 0.1%) and same amounts of ash 0.01% They difieredonly in nitrogen content, with those samples in which 1 vinyl- 2-pyrrolidone or N-methyl-Z-pyrrolidone werellsed {i011- taining nitrogen due to their solubilityin kerosene (llvinyl-2-pyrrolidone 22% i V V V lidone 8% soluble).
Example XII Example X was repeated with the exception that 25 grams of colored kerosene were replaced by 25 grams of.
soluble, N -methyl-2-pyrro- V light lubricating oil having a yellow color and a boiling point over 300 C Upon standing, 2 layers separated immediately with th decolorized mineral oil being the top layer, and the 2-pyrro1idone containing all the color of the mineral oil as the bottom layer.
Example XIII 150 grams of parafiin Wax having a melting point of 50-80 C. was dissolved in 500 cc. of ethylene dichloride by the application of gentle heat until complete solution was efiectuated. The solution was allowed to reach room temperature and 100 grams of 2-pyrrolidone added, and the mixture shaken vigorously for several minutes. Thereafter the mixture was placed in Dry Ice until a temperature of approximately -15 F. was attained. Within a few seconds the wax precipitated from the cold solution, was collected and pressed in a filter press to yield a pure white wax.
I claim:
1. The process of decolorizing hydrocarbons which comprises contacting said hydrocarbon with a pyrrolidone having the following general formula:
wherein A represents a member selected from the group consisting of NH, N-vinyl and N-alkyl groups.
2. The process according to claim 1 wherein the pyrrolidone is 1-vinyl-2-pyrro1idone.
3. The process according to claim 1 pyrrolidone is N-methyl-2-pyrrolidone.
4. The process according to claim 1 pyrrolidone is 2-pyrrolidone.
5. The process according to claim 1 pyrrolidone is N-ethyl-Z-pyrrolidone.
6. The process according to claim 1 pyrrolidone is N-isopropyl-2-pyrrolidone.
wherein the wherein the wherein the wherein the References Cited in the file of this patent UNITED STATES PATENTS 1,772,921 Tausz Aug. 12, 1930 2,045,057 Schulze June 23, 1936 2,133,691 Francis Oct. 18, 1938 2,666,794 Talbert Ian. 19, 1954

Claims (1)

1. THE PROCESS OF DECOLORIZING HYDROCARBONS WHICH COMPRISES CONTACTING SAID HYDROCARBON WITH A PYRROLIDONE HAVING THE FOLLOWING GENERAL FORMULA:
US500039A 1955-04-07 1955-04-07 Process for decolorizing petroleum hydrocarbons with a pyrrolidone Expired - Lifetime US2767119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US500039A US2767119A (en) 1955-04-07 1955-04-07 Process for decolorizing petroleum hydrocarbons with a pyrrolidone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US500039A US2767119A (en) 1955-04-07 1955-04-07 Process for decolorizing petroleum hydrocarbons with a pyrrolidone

Publications (1)

Publication Number Publication Date
US2767119A true US2767119A (en) 1956-10-16

Family

ID=23987784

Family Applications (1)

Application Number Title Priority Date Filing Date
US500039A Expired - Lifetime US2767119A (en) 1955-04-07 1955-04-07 Process for decolorizing petroleum hydrocarbons with a pyrrolidone

Country Status (1)

Country Link
US (1) US2767119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956014A (en) * 1959-06-15 1960-10-11 Pure Oil Co Method for improving odorless naphthas
US2966455A (en) * 1957-08-14 1960-12-27 Sun Oil Co Refining hydrocarbons with hydrazines and hydrogenation catalysts
US3458431A (en) * 1967-09-07 1969-07-29 Nixon Roberta L Mineral oil solvent dewaxing
US3472757A (en) * 1968-10-22 1969-10-14 Nixon Roberta L Solvent refining lubricating oils with n-methyl-2-pyrrolidone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1772921A (en) * 1923-07-16 1930-08-12 Tausz Jeno Process for purifying hydrocarbon oils
US2045057A (en) * 1934-09-06 1936-06-23 Phillips Petroleum Co Treatment of hydrocarbon oils
US2133691A (en) * 1936-06-27 1938-10-18 Socony Vacuum Oil Co Inc Refining of oils
US2666794A (en) * 1951-06-08 1954-01-19 Phillips Petroleum Co Desulfurization of hydrocarbons by extraction with phenylacetonitrile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1772921A (en) * 1923-07-16 1930-08-12 Tausz Jeno Process for purifying hydrocarbon oils
US2045057A (en) * 1934-09-06 1936-06-23 Phillips Petroleum Co Treatment of hydrocarbon oils
US2133691A (en) * 1936-06-27 1938-10-18 Socony Vacuum Oil Co Inc Refining of oils
US2666794A (en) * 1951-06-08 1954-01-19 Phillips Petroleum Co Desulfurization of hydrocarbons by extraction with phenylacetonitrile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966455A (en) * 1957-08-14 1960-12-27 Sun Oil Co Refining hydrocarbons with hydrazines and hydrogenation catalysts
US2956014A (en) * 1959-06-15 1960-10-11 Pure Oil Co Method for improving odorless naphthas
US3458431A (en) * 1967-09-07 1969-07-29 Nixon Roberta L Mineral oil solvent dewaxing
US3472757A (en) * 1968-10-22 1969-10-14 Nixon Roberta L Solvent refining lubricating oils with n-methyl-2-pyrrolidone

Similar Documents

Publication Publication Date Title
US2588602A (en) Fractionation of organic compounds
US2383521A (en) Process of separating hydrocarbons and waxes and the products so produced
US2767119A (en) Process for decolorizing petroleum hydrocarbons with a pyrrolidone
US2560193A (en) Dehazing hydrocarbon oils
US1865235A (en) Treating process for hydrocarbon oils
US2127668A (en) High tensile strength wax
US2495851A (en) Desulfurization of organic substances
JPS63215730A (en) Process oil of insoluble sulfur for rubber
US2273104A (en) Refining mineral oils
US3121678A (en) Production of specialty oil
US2329785A (en) Refining wax
US2335347A (en) Method of removing weakly acidic sulphur compounds from hydrocarbon oil
US2882220A (en) Process for producing highly refined petroleum oils
CA1103601A (en) Process for the production of a transformer oil
US1938116A (en) Process of removing odors from petroleum distillates
US722158A (en) Process of purifying sugar and solutions thereof.
US1694461A (en) Fatty acid and soap derived from mineral oil and process of making same
JPH0573127B2 (en)
US2875029A (en) Stabilized liquid fuel
US783150A (en) Sugar-cleansing composition and process of making same.
US700099A (en) Process of treating sugar-crystals.
US2914471A (en) Use of polyethylene to increase phase separation rate in solvent extraction process
US699933A (en) Process of purifying fluid sugar-bearing material.
DE630384C (en) Process for removing solid and asphalt-like contaminants from liquid fuels to be hydrogenated
US3110664A (en) White oil stabilizing treatment