SAARC Perspective Workshop on Past, Present & Future of High Voltage DC (HVDC) Power Transmission

Indian Power Sector

By Ghanshyam Prasad Director, Ministry of Power Government of India

Lahore

September 30 – October 1, 2015

Players In The Indian Power Sector

Central Electricity Authority

Perspective Planning & National Electricity Plan

Generators

Central/State GENCOs, IPPs, Captive

CTU

Inter-State Trans. System, Open Access

STU

Intra-State Trans./Sub-Trans. System

DISCOMs

Consumers

Industries, Household, Agriculture

Generation

Installed Capacity in India over the years

Electricity Generation & Growth over the years

Fuelwise Generation Installed Capacity in India

(As on 31-August-2015)

Fuel	Installed Capacity (MW)	% Share in Total
THERMAL	192,535	69.6%
Coal	168,208	60.8%
Gas	23,333	8.4%
Diesel	994	0.4%
HYDRO	41,997	15.2%
NUCLEAR	5,780	2.1%
RES	36,471	13.2%
TOTAL	276,783	

Sector-wise Generation Installed Capacity in India

(As on 31-August-2015)

Sector	Installed Capacity (MW)	% Share in Total
Central Sector	74,171	26.8%
State Sector	96,015	34.7%
Private Sector	106,597	38.5%
TOTAL	276,783	

Electricity Generation : Fuelwise & Sectorwise during 2014 -15

Electricity Generation : Fuelwise & Sectorwise during 2015 -16 (Upto Aug'15)

Future Scenario

Capacity requirement to be doubled by next decade and quadrupled in next two(2) decades GW 2021-22 Year 2016-17 2026-27 2031-32 **Renewable Capacity Growth** Trends **↑** 165
 180

 160

 140

 120

 100

 80

 60

 40

 20
 Penetration in % Energy Penetration (%) Capacity Penetration (%) ■ Wind ■ Small Hydro ■ Biomass ■ Solar

Ambitious Plan to establish 100 GW Solar including 20 GW through Ultra Mega Solar Power Parks

Renewable Potential

- Solar Potential in India : about 20-30 MW/sq km, about 5000 trillion units annually (about 2800 GW)
 - > 12th Plan envisaged Solar Capacity addition:10 GW (As per data during GEC Study)
- Solar UMPP being envisaged to set up in deserts of Thar, Rann of Kutch, Lauhal & Spiti valley and Ladakh
 - Solar Generation Potential utilizing 5-15% of wasteland area in deserts about 300 GW
- Researchers Claim more than 1000GW Wind Generation Potential
 - 12th Plan envisaged Wind Capacity addition :20 GW (As per data during GEC Study)

Transmission

Total Transmission Lines (cKm) & Transformation Capacity (MVA) As on 31-August-2015

Voltage	Total Transmission Lines (cKm)	% Share in Total
765 kV	20,792	6.45
400 kV	1,40,083	43.43
220 kV	1,52,247	47.20
HVDC	9,432	2.92
Total	3,22,554	

Voltage	Total Transformation Capacity (MVA)	% Share in Total
765 kV	1,33,500	21.51
400 kV	1,96,362	31.64
220 kV	2,77,218	44.67
HVDC	13,500	2.18
Total	6,20,580	

Growth of Transmission System

Transmission Lines (400kV and above system) (values in ckm)				
	11th Plan	Existing as	12 th Plan	13 th Plan
	(2011-12)	on 30-04-15	(2016-17)	(2021-22)
HVDC Bipole lines	9432	9432	16872	27472
765 kV	5250	18650	32250	54450
400 kV	106819	136264	144819	174819
Total	121501	164346	193941	256741

Substations (AC & HVDC) (400kV and above) (values in MVA / MW)				
HVDC Terminals:				
HVDC back-to-back	3000	3000	3000	3000
HVDC Bipole terminals	6750	10500	19500	34500
Total- HVDC Terminal Capacity, MW	9750	13500	22500	37500
AC Substations				
765 kV	25000	121600	174000	253000
400 kV	151027	192997	196027	245027
Total- AC Substation capacity, MVA	176027	314597	370027	498027

Total Fund requirement would be about Rs 2,60,000 Crore (assuming about Rs. 100,000 crore for 220kV and below systems)

Transmission Planning - Consideration

- It is directional and to be known in advance.
- System to be planned for peak power transfer
- (N-1-1) reliability criteria
- Conservation of Right of Way
- To fit into long term perspective
- The transmission system should have enough 'controllability' features (in addition to wires)

Transmission System – As of Today

- Strong back bone of 400 kV Overlay of 765 kV & high capacity HVDC under Implementation
- All India synchronous grid One of the largest in the World
- Thriving Pan-India Single Market enabled
- Under new concept of planning, 10 nos. of high capacity corridors evolved to reduce the dependency on a particular generation
- These corridors shall facilitate about 40,000MW power transfer

Pursuing Higher Voltage Levels

HIGH CAPACITY CORRIDORS

Evolving Voltage Landscape

Green Energy Corridor : Integration of Renewables

- About 33GW capacity addition envisaged through wind & solar in next 4-5 years
- The Plan includes
 - Transmission strengthening(s)
 - Dynamic reactive compensation,
 - Energy Storage,
 - Smart grid applications,
 - Establishment of Renewable Energy Management Centre enabling forecasting of renewable generation, real time monitoring, etc.

National Grid

Energy Resources Map

Energy resources (Coal, Water etc.) unevenly distributed

Potential being harnessed to meet demand in next 7-8 years

- Coal In Central India
 - Chhattisgarh : 58,000 MW
 - Orissa : 30,000 MW
 - Jharkhand : 15,000 MW
 - Madhya Pradesh:16,000 MW
- Hydro In North Eastern & Northern Himalayan region
- Coastal based
 - Andhra Pradesh: 24,000 MW
 - Tamil Nadu : 10,000 MW
 - Gujarat : 11,000 MW

Transmission System Requirement

Evolution of National Grid

State → Region → Nation: A Paradigm Shift

Development of Synchronous National Grid

Strengthening of National Grid – A Continuous Process

(to match upcoming generation and increasing demand)

National Grid started through HVDC Inter-Regional links Regional grids synchronised progressively through EHVAC links Synchronous National Grid established in Dec., 2013

Electrical Grids demarcated into 5 Regional Grids

Development of Synchronous National Grid

Inter-Regional Transmission Links

Benefits of National Grid: Development of Vibrant Electricity Market

Optimal Utilization of Resources both Generation

- ✓ I-R Transfer has grown 83 times since 1992-93
- ✓ Substantial increase in STOA utilizing margins

✓ Reduction in per unit energy charges

Interconnection with

SAARC Countries

India & Bangladesh Interconnection

- Existing Interconnection :
 - Baharampur (India)- Bheramara(Bangladesh) 400kV D/c line (100 km) and 500MW HVDC back-to-back Station at Bheramara
- Ongoing :
 - Surjyamaninagar (Tripura) South Comilla D/C line (400kV upto North Comilla) via North Comilla (58km long) to be operated at 132kV voltage. [expected by Dec. 2015]
 - Upgradation of the existing Baharampur (India) Bheramara (Bangladesh) interconnection with additional 500 MW HVDC backto-back converter unit (2nd module) at Bheramara [June 2017]
- Future :
 - ±800 KV, 7000MW HVDC multi-terminal bipole line from Rangia(NER, India) to Muzaffarnagar (NR,India) through Bangladesh with 500/1000MW HVDC terminal in Bangladesh ³⁰

Benefits of Interconnection for Bangladesh

- In Bangladesh, low frequency operation below 48.9 Hz reduced by 60% post interconnection with India
- East to West transfers in Bangladesh reduced significantly leading to reduction in transmission losses
- Voltage profile in West zone of Bangladesh improved by 15-20 kV at 230 kV level
- Reduced dependence on expensive gas and oil resources

Benefits of Interconnection for Bangladesh

Reduced dependence on expensive oil and gas

India - Bhutan : Interconnections

• Existing Interconnection :

[For Import from Tala-1000 MW, Chukha-336MW & Kurichu-60MW]

- Tala Siliguri 400kV 2x D/c line
- Chukha Birpara 220kV 3 ckts
- Kuruchu Geylegphug(Bhutan) Salakati(NER) 132 kV
- On-going Interconnection :

[For Import from Punatsangchu-I:1200MW, Punatsangchu-II: 990MW and Mangdechu-720 MW]

- Punatsangchu-I Alipurduar 400kV D/c line (Bhutan portion 2xD/c and Indian portion D/c quad line]
- Jigmelling Alipurduar 400kV D/c line (quad)
- Future Interconnection :

[For Import from 14 HEP, 11,784 MW by 2020 and 75 HEP, 26,504 MW by 2030]

Total 5(five) no 800kV, 6000-7000MW HVDC high capacity corridors (2 nos. by 2020 & balance 3 nos by 2030) required for transfer of power to Indian Grid.

India - Nepal : Interconnections

- Existing Interconnection :
 - There are about 12 cross border interconnections at 11kV, 33kV and 132 kV level through which Nepal draws power upto 200MW.
- On-going Interconnection :
 - Muzaffarpur(India) Dhalkhebar(Nepal) 400kV D/c line (to be operated at 220kV) [Dec. 2015]
- Future Interconnection :
 - Planning for cross border interconnection under progress for import of power from various hydro power projects to be developed in Nepal

India - Nepal : Interconnections

India - Nepal : Future Plan

East-West High capacity transmission Corridor to be planned in Nepal

This is to be connected with hydro projects in Nepal and Load centres in India

India – Sri Lanka : Interconnections

- Feasibility study carried out for the following interconnection
 - 2x500MW HVDC bipole line from Madurai(India) to Anuradhapura-New (Sri Lanka): 360km
 - Overhead Line (India) : Madurai to Panaikulam : 130km
 - <u>Submarine Cable</u>: Panaikulam (India) to Thirukketiswaram (Sri Lanka):120km
 - <u>Overhead Line (Sri Lanka)</u> : Thirukketiswaram to Anuradhapura(New) : 110km
 - 2x500MW HVDC terminal stations each at India(Madurai) to Sri Lanka (Anuradhapura-New): 360km

India – Sri Lanka Interconnection

Suitability of HVDC

for interconnections

Benefits of HVDC

- Greater power density in a given corridor
- Higher efficiency
- Environmental advantages (lesser RoW requirement)
- Improved real time power flow control – Power flows where you want it to
- Increased power system reliability and security
- Improved power system transient and dynamic stability
- Only possible solution for interconnecting AC networks of different frequencies

Distance Break-even points- AC vs DC

Distance break-even point (HVDC versus HVAC)

- Underground or submarine cables > 50 km
- Transmission lines > 700 km

HVDC Configurations

- <u>Bipole HVDC</u> for Bulk Power transmission to Long distances
 - Inverter & Rectifier placed at two different locations
 - Interconnection by DC overhead line

<u>Back to Back HVDC</u> for coupling of electricity grids of different frequencies.

- No DC Line
- Rectifier & Inverter at the same station

Back To Back HVDC

Applications of HVDC in inter-connection

- In initial stages of interconnection, it is desirable to wholly isolate/insulate the interconnected grids from AC induced grid disturbances by DC back to back interconnection and to gain operational experience of interconnected operation
- For under sea (submarine) connection
- If the volume of power to be transacted is very large and meant for a long distance transfer
- Integration of Renewable energy sources in the Grid
- To re-distribute power in congested load centres

HVDC SYSTEMS IN INDIA

- 4 back to back HVDCs
- 5 bipole HVDC links
- 2 bipoles under construction
- 1 MTDC under construction

With Neighbouring Countries

 Back-to-back with Bangladesh

Existing HVDC interconnections in India

- 1 Rihand-Dadri (1500MW) Bipole
- 2 Vindyachal (500MW) B-t-B
- 3 Chandrapur-Padghe (1500 MW) (MSEB) Bipole
- 4 Chandrapur-Ramagundam (1000MW) B-t-B
- 5 Barsoor-Lower Sileru (100MW)
- 6 Gajuwaka 1 & 2(500MW each) B-t-B
- 7 Sasaram (500MW) B-t-B
- 8 Talcher-Kolar (2500MW) Bipole
- 9 Balia Bhiwadi (2500 MW) Bipole
- 10- Mundra-Mahendragarh (2500 MW) (Adani Power) Bipole

HVDC interconnections in India – Under Implementation

Multi-Terminal HVDC interconnection in India

- POWERGRID is installing +/-800 kV, 6000 MW HVDC multi-terminal system of approx length of 1750 km
 - One Rectifier station in Biswanath Chariali (in North Eastern Region), second one in Alipurduar (in Eastern Region) and Inverter station at Agra (in Northern Region)
 - First ±800 KV Multi-Terminal HVDC project in the world.

HVDC Worldwide - 2015

Evolution of HVDC Transmission Voltage

HVDC using Transistors – VSC Technology

- Recently introduced (first commercial scheme commissioned in 1999)
- Uses IGBT, IGCT or similar device
- Ratings
 ➤ Typically <u>+</u> 320 kV dc at 1000MW
 ➤ <u>+</u> 500 kV dc at 1400 MW
- Reduced overall site footprint
- Easier construction
- Simultaneous control of MW and Mvars
- Faster response to events
- Can "black start" a network
- Enables use of lower cost XLPE cable

HVDC to re-distribute Renewable Energy

- Renewable energy is not evenly distributed
 - Solar power in N Africa and S Europe
 - ➤ Wind power in NW Europe
 - Hydro power (can be used for storage) in mountainous areas
- HVDC is the most efficient way of transporting energy over such long distances
- HVDC also gives great benefits of controllability, "firewall" functionality etc

Offshore HVDC

- LOCATION: German North Sea, 83 km North of Germany
- Offshore ±320 kV, 900 MW HVDC VSC converter

Thank You

g.prasad67@nic.in ghanshyamprasad29@gmail.com