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systems. Different types of HVDC transmission systems, their configurations/ 
connections and control techniques are covered in detail. Power-Flow modelling 
of both LCC- and VSC-based HVDC systems is covered in this book. Both the 
unified and the sequential power-flow methods are addressed. DC grid power-
flow controllers and renewable energy resources like offshore wind farms (OWFs) 
are also incorporated into the power-flow models of VSC-HVDC systems. The 
effects of the different power-flow methods and HVDC control strategies on the 
power-flow convergence are detailed along with their implementation.

Features:

• Introduces the power-flow concept and develops the power-flow models 
of integrated AC/DC systems.

• Different types of converter control are modelled into the integrated  
AC/DC power-flow models developed.

• Both unified and the sequential power-flow methods are addressed.
• DC grid power-flow controllers like the IDCPFC and renewable energy 

resources like offshore wind farms (OWFs) are introduced and subse-
quently modelled into the power-flow algorithms.

• Integrated AC/DC power-flow models developed are validated by imple-
mentation in the IEEE 300-bus and European 1354-bus test networks 
incorporating different HVDC grids.
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Preface
Over the past few decades, the construction of generation facilities and new trans-
mission lines has been delayed in light of rising energy costs, environmental con-
cerns, rights-of-way (RoW) restrictions and other legislative and cost problems. In 
addition, system stability issues may render long-distance AC transmission infea-
sible. In this respect, high-voltage DC (HVDC) transmission requires a smaller 
RoW, simpler, lighter and cheaper transmission towers, reduced conductor and 
insulator costs, reduced losses and is not limited by stability considerations. A 
HVDC link can augment system reliability by interconnecting two asynchronous 
AC grids and can be used to integrate offshore wind farms with onshore AC grids.

The first commercial application of HVDC transmission took place between 
the Swedish mainland and the island of Gotland in 1954, using mercury arc valves. 
Subsequently, the first 320 MW thyristor-based HVDC system was commis-
sioned in 1972 between the Canadian provinces of New Brunswick and Quebec. 
Continuous development in conversion equipment led to reduced size and costs 
which resulted in more widespread use of HVDC transmission. The thyristor-
based line commutated converter (LCC)–high-voltage DC (LCC-HVDC) tech-
nology now constitutes the bulk of the installed HVDC transmission corridors 
over the world.

With LCC-HVDC, for controlling the active power, both the rectification and 
the inversion processes consume reactive power. This necessitates the use of reac-
tive power sources to match the reactive power demand at both ends. To reduce 
the effects of harmonic voltages and currents generated by the converters, har-
monic filters are used on both the AC and DC sides. Also, a minimum short 
circuit level is required to avoid voltage instability. However, despite its limita-
tions, LCC-HVDC possesses high reliability, good overload capability and lower 
converter losses. It requires low maintenance and capital costs, and is robust to 
DC fault currents due to its current-regulating nature.

Subsequently, the development of the Insulated Gate Bipolar Transistor 
(IGBT) paved the way for the Voltage-Sourced Converter (VSC)-based HVDC 
(VSC-HVDC) technology, which offered significant advantages over the LCC-
HVDC. VSC-HVDC facilitates independent active and reactive power control, 
along with reduction in filter size. VSC-HVDC also enables the integration of off-
shore wind farms with AC grids. Compact, modular designs of the VSCs enable 
rapid installation, commissioning and relocation. Unlike LCC-HVDC, fixed DC 
voltage polarity in the VSC-HVDC enables the use of stronger and lighter XLPE 
cables, suitable for under-sea environments and attractive for offshore transmis-
sion. In addition, VSC-HVDC systems can be integrated with AC systems having 
low short circuit ratios.

The first 3-MW, VSC-HVDC link was commissioned at Hellsjon in Sweden in 
1997. Subsequently, rapid development in the VSC technology has now resulted 
in the availability of higher rated (up to 2000 MW) VSC-HVDC links. This has 
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resulted in the installation and commissioning of a large number of VSC-HVDC 
systems worldwide. Present VSC-HVDC solutions use the modular multilevel 
converter (MMC) technology, which is more advantageous than two- or three-
level VSCs in terms of reduced converter losses, increased modularity and scal-
ability along with elimination of filter requirements.

Now, in both LCC-HVDC and VSC-HVDC systems, the converter stations 
can be connected in two ways—back-to-back (BTB) and point-to-point (PTP). 
Most of the MTDC systems installed worldwide are in PTP configurations, their 
DC sides being interconnected through DC links or cables.

Unlike a 2-terminal HVDC interconnection, a multi-terminal HVDC (MTDC) 
system is more versatile and better capable of utilising the economic and technical 
advantages of HVDC technology. Moreover, sources of renewable energy can be 
easily integrated with a MTDC system, as and when the need arises.

For proper MTDC operation, DC voltage control is an essential requirement. 
In this respect, several control techniques have been envisaged. These include DC 
slack-bus control (also known as DC master-slave control), distributed DC volt-
age droop control, power synchronization control, hierarchical power control and 
transient management control.

However, among all the DC voltage control techniques, the DC slack-bus con-
trol and distributed DC voltage droop control have been the more popular and 
widely employed ones.

In DC slack-bus control, the voltage of one DC terminal, known as the DC 
slack bus, is maintained constant by the master converter. The main disadvantage 
of this control scheme is the DC grid instability following a failure of the master 
converter.

The above problem can be tackled by ensuring that individual converters con-
tribute to the DC voltage regulation scheme by adjusting their active power flow 
in response to changes in the DC voltage with the operating point, known as DC 
voltage droop control. For MTDC control, both linear and nonlinear types of DC 
voltage droop characteristics have been envisaged to ensure proper sharing based 
on the converter ratings. Voltage-Power (V-P), Voltage-Current (V-I), Voltage 
Margin (VM), V-P droop with power Dead-Band (DB) and V-P droop with volt-
age limits are some of the more widely used characteristics.

To manage power-flows within the DC grids, DC power-flow control devices 
have been conceptualized and developed. They include the use of DC transform-
ers, variable resistors, current flow controllers (CFCs), thyristor power-flow control-
lers (TPFCs), DC series voltage sources and Interline DC Power-Flow Controllers 
(IDCPFCs) for power-flow control in meshed DC grids. The IDCPFC is a DC 
power-flow controller without an external AC or DC source and is used for power-
flow management of DC grids, similar to its AC counterpart—the flexible AC 
transmission systems (FACTS)-based Interline Power-Flow Controller (IPFC).

Now, for proper planning, design and operation of AC power systems inte-
grated with multi-terminal DC grids, the development of suitable power-flow 
models of both LCC- and VSC-based integrated AC–DC systems is a fundamen-
tal requirement.
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The requirement of suitable power-flow models of both LCC and VSC-based 
hybrid AC–DC systems along with the adoption of the Newton-Raphson algo-
rithm as the de-facto standard for industrial power-flow solutions has resulted in a 
lot of interest in the development of Newton-Raphson power-flow models of such 
hybrid AC–DC systems.

Now, the development of Newton-Raphson power-flow models of both LCC- 
and VSC-based integrated AC–DC systems has resulted in two distinctly dif-
ferent approaches known as the unified and the sequential Newton algorithms, 
respectively. In the former, the AC and DC quantities are solved simultaneously, 
while in the latter, the AC and DC systems are solved separately in each itera-
tion. Unlike the unified method, the sequential method is easier to implement 
and poses lesser computational burden due to the smaller size of the Jacobian 
matrix.

Although a number of books on modelling, analysis, control and applications 
of HVDC systems do exist, very few books dwell on their power-flow model-
ling. This book intends to deal exclusively with the power-flow modelling of 
HVDC systems. The book starts by detailing the different types of HVDC sys-
tems, their configuration and connections and the control techniques adopted. 
Next, the power-flow modelling concept is gradually built up. At first, the power-
flow modelling of LCC-based HVDC systems is covered, followed by that of 
VSC-based HVDC systems. Subsequently, the introduction and incorporation of 
DC grid power-flow controllers like IDCPFC into the power flow modelling of 
VSC-HVDC systems is addressed. Finally, the power-flow modelling of HVDC 
systems integrated with renewable energy sources is covered. For each of these 
technologies (LCC / VSC), both the unified and the sequential power-flow models 
are developed. The different types of HVDC control strategies employed are also 
incorporated into the LCC and the VSC-based HVDC power-flow models. For 
realistic analysis, the losses in the converter transformer and the VSCs have been 
incorporated in all the power-flow models. The effect of the power-flow meth-
ods (unified or sequential) as well as the HVDC control strategies adopted on 
the convergence of the power-flow algorithm, is detailed clearly, along with their 
implementation in the IEEE 300-bus and the European 1354-bus test networks.

This book is intended for senior undergraduate and graduate students in elec-
trical power systems, design engineers and researchers in the area of integrated 
AC–DC systems. The reader is expected to have an undergraduate-level back-
ground in electric circuits, electric power systems, engineering mathematics and 
power electronics.

The proposed book is organized into six chapters. Chapter 1 provides a brief 
introduction to the HVDC transmission systems, the power-flow problem and the 
Newton-Raphson method for solving power-flow problems.

Chapter 2 deals with the development of power-flow models of LCC-based 
integrated AC–DC systems, in light of different per-unit AC–DC system models 
and diverse DC link control strategies employed.

Chapter 3 addresses the development of power-flow models of VSC-based inte-
grated AC–DC systems for both the back-to-back (BTB) and the point-to-point 
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(PTP) VSC-HVDC configurations, employing DC slack-bus (master-slave) con-
trol for the MTDC grid.

Chapter 4 details the development of power-flow models of VSC-based inte-
grated AC–DC systems employing DC voltage droop control. The DC voltage 
droop control comprises both linear {voltage-power (V-P) and voltage-current 
(V-I)} as well as nonlinear {power dead-band and voltage limits} droop charac-
teristics. Based on the terminal end line active and reactive power specifications 
of the VSCs, two different droop control models are considered.

Chapter 5 addresses the development of power-flow models of VSC-based 
integrated AC–DC systems incorporating IDCPFC(s) for the power-flow manage-
ment of the DC grid. The IDCPFC(s) employs both DC link current and DC link 
power controls. 

Chapter 6 details the development of Newton power-flow models of VSC-based 
integrated AC–DC systems interfaced with offshore wind farms (OWFs). The 
VSCs employ both linear and nonlinear DC voltage droop controls. The effects of 
OWFs on the DC grid voltage profile and the power-flow convergence, vis-à-vis 
varying wind farm powers, are explained in detail.

Converter transformer and VSC losses are included in all the power-flow mod-
els. All the models developed in this book have been implemented in the IEEE 
300-bus and European 1354-bus test systems.

The appendix at the end of this book presents the derivations of all the difficult 
formulae used in the different chapters.

The authors would like to express sincere thanks to all the reviewers for their 
critical review and suggestions in the proposal of this book. We would also like 
to thank the publisher and our families for their efforts in pursuing us to take up 
the project of writing this book.

Shagufta Khan
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Galgotias University, Gr. Noida UP, India

Suman Bhowmick
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Delhi Technological University, Delhi, India
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Zsha  Leakage impedance of the ath converter transformer
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1 HVDC Transmission 
Systems

1.1  INTRODUCTION

In recent years, the global demand of electric power has increased exponentially. 
Therefore, the generation and transmission facilities have to be upgraded from 
time to time to match the peak demand. In this respect, HVDC transmission 
systems provide additional transmission capacity along with power-flow con-
trollability. Unlike AC transmission, for the same power, HVDC transmission 
requires less right-of-way (RoW), cheaper towers, smaller number of conduc-
tors and insulator costs along with reduced losses. In addition, the length of the 
HVDC transmission line is not limited by stability considerations. For transmis-
sion line lengths exceeding about 500 km, HVDC transmission is more economi-
cal as compared to AC [1–16]. In recent times, rapid, large-scale integration of 
renewable energy sources with the existing power network has been taking place 
globally to fulfil the requirement of increased electricity demand. In this respect, 
the integration of offshore wind farms (OWFs) with onshore AC grids is possible 
using HVDC links [4,12,15,16].

The first 10 MW HVDC transmission system using mercury arc valve was 
commissioned between the Swedish mainland and the island of Gotland in 1954. 
In due course, significant technical advancement with solid-state valves (thyris-
tors) paved the way for the first 320 MW thyristor-based HVDC system commis-
sioned between the Canadian provinces of New Brunswick and Quebec in 1972 
[2–4]. Subsequently, there has been rapid development of this HVDC technology 
with further reduced size and costs and popularly known as line commutated 
converter (LCC)-based HVDC (LCC-HVDC) technology. Based on this technol-
ogy, several LCC-HVDC links were installed worldwide, and some of these are 
listed in Table 1.1.

In a LCC-based HVDC system, the commutation process is achieved using 
the source voltage and the leakage reactance of the converter transformer. Thus, 
for controlling the active power, both the rectification and inversion processes 
consume reactive power. Also, the reactive power consumption varies with load. 
This necessitates the use of reactive power sources to match the reactive power 
demand at both ends [1,6,7]. If nearby generators are not capable of accounting 
for the reactive power, additional shunt capacitors or other reactive power sources 
are needed to match the requirement of reactive power. Also, in LCC-HVDC sys-
tems, a minimum short circuit level is required to avoid voltage instability. Due 
to the switching operation of the thyristor, harmonics are introduced in the power 
system voltages and currents. This influences the use of filters at both AC and DC 
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2 Power-Flow Modelling of HVDC Transmission Systems

TABLE 1.1
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Length (km)

Rated 
Voltage 

Nominal 
Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

1 New Brunswick- - - - 80 × 2 320 1972 BTB
Eel River 
(Canada)

2 Skagerrak 113 127 240 ±250 500 1977
(Denmark-
Norway)

3 David A. Hamil - - - 50 100 1977 BTB
(United States 
of America)

4 Square Butte 749 0 749 ±250 500 1977
(Centre, North 
Dakota-
Arrowhead, 
Minnesota), 
US

5 Shin-Shinano - - - 125 × 2 300 1977 BTB 
(Japan) (50/60 Hz)

6 Nelson River 
Bipole 2 
(Sundane-
Rosser), 
Canada

930 0 930 ±250 900 1978

7 Cabora Bassa 
– Apollo 
(Songo, 
Mozambique-
Apollo, South 
Africa)

1414 0 1414 ±533 1920 1977/79

8 Vancouver Pole 
2 (Delta-North 
Cowichan), 
British 
Columbia

41 33 74 −280 370 1977/79

9 Cu (Underwood 
Minneapolis) 
(Coal Creek, 
North 
Dakota-
Dickinson, 
Minesota), US

710 0 910 ±400 1000 1979

(Continued)



3HVDC Transmission Systems

TABLE 1.1 (Continued)
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Length (km)

Rated 
Voltage 

Nominal 
Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

10 Hokkaido-
Honshu (Japan)

124 44 158 250 300 1979/80

11 Acaray 
(Paraguay-
Brazil)

- - - 26 50 1981 BTB 
(50/60 Hz)

12 EPRI Compact 
Station (USA)

- 0.6 0.6 100/400 100 1981

13 Vyborg 
(USSR-
Finland)

- - - ±85 × 3 170 1982 BTB

14 Inga Shaba 
(Kolwezi-
Inga), Zaire

1700 0 1700 ±500 560 1982

15 Dumrohr (Lower 
Austria)

- - - ±145 550 1983 BTB

16 Gotland 2 
Swedish 
Mainland 
(Vastervik-
Yigne), 
Sweden

7 91 98 150 130 1983

17 Eddy County 
(USA)

- - - 82 200 1983 BTB

18 Itaipu (Brazil) 783/806 0 783/806 ±300 1575 1984

19 Chateauguay - - - 140 1000 1984 BTB
(Canada)

20 Oklaunion (US) - - - 82 200 1984 BTB

21 Pacific intertie - - - ±500 400 1985
(US)

22 Madawaska - - - 144 350 1985 BTB
(Canada)

23 Miles City (US) - - - 82 200 1985 BTB

24 Walker Co. (US) 246 0 246 ±400 500–1500 1985

25 Black water - - - 56 200 1985 BTB
(US)

26 Highgate (US) - - - 56 200 1985 BTB

27 Cross-Channel 2 0 72 72 ±270 × 2 2000 1985/86
(Les Mandarins, 
France-
Sellindge, UK)

(Continued)



4 Power-Flow Modelling of HVDC Transmission Systems

TABLE 1.1 (Continued)
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Length (km)

Rated 
Voltage 

Nominal 
Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

28 Corsica Tap 
(France)

- - - 200 50 1986

29 Des Cantons 
Camerford 
(Canada-USA)

175 175 ±450 690 1986

30 Sidney (US) - - - 200 1986 BTB

31 Wien Sud Ost 
(Austria)

- - - 145 550 1987 BTB

32 Intermountain 
(intermountain, 
Utah-Adelanto, 
California), US

794 0 794 ±500 1600 1987

33 Gotland 
3-Swedish 
Mainland

- 98 98 150 130 1987

34 Itaipu (Foz do 
Iguacu, 
Parana-Sao 
Roque, Sao 
Paulo), Brazil

783/806 0 783/806 ±600 × 2 6300 1985–87

35 Uruguiana 
(Brazil-
Argentina)

50 1986/87 BTB

36 Ekibastus Centre
(USSR)

 2400 0 2400 ±250 6000 1985–88

37 Greece (Bulgaria) - - - NA 300 BTB

38 Virginia Smith 
(US-Sidney 
Nebraska)

150 200 1988 BTB

39 Vindhyachal 
(India)

- - - 70 250 × 2 1988 BTB

40 Kanti-Skan 2 
(Sweden-
Denmark)

95 85 160 250 270 1988/89

41 Skagerrak 2 
(Denmark-
Norway)

113 127 240 300 320 1988–89

(Continued)



5HVDC Transmission Systems

TABLE 1.1 (Continued)
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Length (km)

Rated Nominal 
Voltage Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

42 Fenno-Skan 
(Dannebo, 
Sweden-Rauma, 
Finland)

33 200 233 400 500 1989

43 HVDC 
Sileru-Barsoor 
(India)

196 - ±200 400 1989

44 Store Baelt 
(Denmark)

35 30 55 280 350 1989–90

45 Liberty Mead 
(US)

400 0 400 ±364/±500 1600/2200 1989–90

46 Chicoasen 
(Mexico)

720 0 720 ±500 900/1800 1985/90

47 Quebec New 
England

175/375 175/375 ±450 690/2070 1986/92

48 SACOI 2 
(Suvereto, 
Italia-ucciana, 
France; 
Codrongianos)

304 118 200 300 1992 MT

49 HVDC 
Inter-Island 2 
(Benmore 
Dam-
Haywards), 
New Zealand

570 40 350 640 1992

50 Pacific Intertie II 
(US)

±500 1100

51 South Finland 
Fast Sweden

35 185 220 350 420 1989/90

52 Cameford-Sandy 
Pond

200 1400 1990

53 Rihand-Dadri 
(India)

814 - 814 ±500 1500 1990

54 Gezhouba-Nan 
Qiao (China)

1080 - 1080 ±500 1200 1987–91

(Continued)



6 Power-Flow Modelling of HVDC Transmission Systems

TABLE 1.1 (Continued)
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Length (km)

Rated 
Voltage 

Nominal 
Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

55 Cross-Skagerrak 
3 Tjele, 
Denmark-
Kristiansand, 
Norway

100 130 350 500 1993

56 Etzenricht 
(Germany)

160 600 1993 BTB

57 Nelson River 
Bipole 3 
(Canada)

930 0 930 ±500 2000 1992/97

58 Chandrapur-
Pdghe (India)

900 ±500 1500 1997

59 Minami 
Fukumitsu 
(Japan)

125 300 1999 BTB

60 SwePol (Starno, 
Sweden-
Slupsk, Poland)

245 450 600 2000

61 (Galatina, 
Italy-Arachthos 
Greece)

110 200 400 500 2001

62 East South 2 
Talcher 
(Orissa)-Kolar 
(Karnataka), 
India

1450 ±500 2000 2002

63 HVDC Three 
Gorges-
Changzhou 
Longquan-
Zhengping 
(China)

890 - ±500 3000 2003

64 HVDC Three 
Gorges-
Guangdong

Station 1: 
Jingzhou, 
IIuizhou 
(China)

940 - - ±500 3000 2003

(Continued)
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TABLE 1.1 (Continued)
LCC-Based HVDC Systems Throughout the World

Transmission Line 
Rated 

Length (km)
Voltage 

Nominal 
Capacity Commissioning 

S.N. HVDC Link OHL Cable Total (kV) (MW) Date Remark

65 Basslink (Loy 
Yang-George 
Town), Australia

71.8 298.3 400 600 2005

66 Vizag-2
Eastern Grid and 
Southern grid, 
India

176 500 2005 BTB

67 Norned (Feda, 
Norway-
Eemshaven 
Netherlands)

- 580 ±450 700 2007

68 Sharyland 
(Texas, USA)

21 150 2007 BTB

69 Al Fdhili (Saudi 
Arabia)

1800 2008 BTB

70 SAPEI (Latina, 
Italy-Fiume 
Santo, Sardinia)

- 435 ±500 1000 2008/9

71 Xianjiba, 
Shanghai 
(China)

2071 - 800 6400 2010

72 Yannan–
Guangdong 
(China)

1400 - ±800 5000 2010

73 Ballia 
(UP)-Bhiwadi 
(Rajasthan) 
(India)

780 ±500 2500 2010

74 North East Agra 1775
(Biswanath 
Chariali) 
(Assam), Agra 
(UP), 
Alipurduar 
(West Bengal) 
(India)

±800 6000 2016 MT

75 Champa 
Kurukshetra 
(India)

1365 800 2 × 3000 2016

BTB, back-to-back; MT, multi-terminal; OHL, overhead line.


