WO2010074219A1 - Benzothiophen compound - Google Patents

Benzothiophen compound Download PDF

Info

Publication number
WO2010074219A1
WO2010074219A1 PCT/JP2009/071569 JP2009071569W WO2010074219A1 WO 2010074219 A1 WO2010074219 A1 WO 2010074219A1 JP 2009071569 W JP2009071569 W JP 2009071569W WO 2010074219 A1 WO2010074219 A1 WO 2010074219A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
sglt
salt
benzothien
ylmethyl
Prior art date
Application number
PCT/JP2009/071569
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 貴之
雅一 今村
史良 岩▲崎▼
寿夫 黒崎
紋子 森友
博行 森口
真典 横野
冨山 泰
淳 野田
Original Assignee
アステラス製薬株式会社
壽製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アステラス製薬株式会社, 壽製薬株式会社 filed Critical アステラス製薬株式会社
Publication of WO2010074219A1 publication Critical patent/WO2010074219A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a benzothiophene compound useful as an active ingredient of a pharmaceutical composition, particularly a pharmaceutical composition for treating diabetes.
  • Diabetes is due to a decrease in insulin secretion from pancreatic ⁇ -cells (insufficient amount of insulin) and a decrease in insulin sensitivity in peripheral tissues such as muscle and liver (insufficient qualities of insulin). It is one of the diseases with metabolic syndrome. Due to its pathophysiological characteristics, diabetes is basically divided into two categories, type 1 and type 2. Type 1 diabetes is mainly caused by a decrease in insulin secretion, and type 2 diabetes is considered to have both pathophysiologically important causes of both insulin secretion decrease and insulin sensitivity decrease.
  • chronic hyperglycemia is defined as a risk factor for complications including cardiovascular disease, nephropathy, neuropathy and retinopathy, and complications including cardiovascular disease, nephropathy, neuropathy and retinopathy (Annu. Rev. Med. 46, 257, 1995, Diabetes Care 18, 258, 1995, Ann. Intern. Med. 122, 561, 1995, Diabetes 44) , 968, 1995, Diabetes 47, 1703, 1995). Therefore, the treatment policy for diabetes is based on diet therapy and exercise therapy to control the increase in blood sugar.
  • Currently, several oral anti-diabetic drugs and insulin preparations have been developed (Joslin ’s Diabetes Mellitus. 13th ed., 508, 1994). Although each drug shows high effectiveness for a specific patient, it is difficult to control a good blood glucose state in many diabetic patients.
  • SGLT Na + -glucose cotransporter
  • Drugs Na + -glucose cotransporter inhibitors
  • SGLT has at least three types of isoforms, SGLT-1, SGLT-2 and SGLT-3. It is known that glucose in the small intestine is absorbed into the blood via SGLT-1, and the increase in blood glucose level can be suppressed by inhibiting SGLT-1 and inhibiting sugar absorption in the small intestine.
  • Na + -glucose cotransporter inhibitors are not only diabetics such as type 1 diabetes and type 2 diabetes, but also various insulin-related diseases including insulin resistance diseases and obesity, and non-alcoholic fats. It is expected as an excellent therapeutic agent and preventive agent for fatty liver diseases including non-alcoholic steatohepatis (NASH).
  • NASH non-alcoholic steatohepatis
  • glucose cotransporter inhibitors was known conventionally O- glycosides, in recent years, without using the oxygen of glucosidic linkages O- glycosides C- glycoside Na + - glucose cotransporter It has been developed as a transporter inhibitor.
  • a C-glycoside derivative represented by the following formula or a salt thereof is known to exhibit a hypoglycemic action as a Na + -glucose cotransporter inhibitor (see Patent Document 1, the symbols in the formula) See the publication.)
  • Patent Document 2 there is a document reporting that the compound described in Patent Document 1 can exist as a co-crystal with L-proline (Patent Document 2), but there is no specific disclosure or suggestion of the compound of the present invention.
  • 1-phenyl 1-thio-D-glucitol derivatives including the following compounds, inhibit both SGLT-1 and SGLT-2 activities, and have both glucose absorption suppression from the digestive tract and urinary glucose excretion promoting action. It has been reported that it can be an active ingredient of a therapeutic agent for diabetes (Patent Document 4). However, there is no specific disclosure or suggestion of the compound of the present invention in this document.
  • a compound useful as an active ingredient of a pharmaceutical composition particularly a pharmaceutical composition for treating diabetes.
  • the benzothiophene compound of the present invention has a double inhibitory action of SGLT-1 and SGLT-2. It has an excellent blood glucose lowering action not only for severe hyperglycemia but also for mild hyperglycemia, and has an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and normal Knowing that it has an excellent urinary glucose excretion effect in a blood glucose state, the present invention has been completed. Further, the benzothiophene compound of the present invention has been found to have an extremely strong blood glucose lowering effect on mild hyperglycemia compared to a compound that selectively inhibits SGLT-2, and has completed the present invention.
  • the present invention relates to a compound of formula (I) or a salt thereof (hereinafter sometimes referred to as the compound of the present invention), and a pharmaceutical composition containing a compound of formula (I) or a salt thereof, and an excipient. .
  • R 1 is lower alkyl optionally substituted by —OH, lower alkyl optionally substituted by —O-, or cycloalkyl optionally substituted
  • R 2 is , -H, optionally substituted lower alkyl, -O-optionally substituted lower alkyl, or -OH, or R 1 and R 2 together form a lower alkylene.
  • the present invention also relates to a pharmaceutical composition for the treatment of diabetes, obesity or fatty liver disease comprising a compound of formula (I) or a salt thereof.
  • This pharmaceutical composition includes a therapeutic agent for diabetes, obesity or fatty liver disease containing the compound of formula (I) or a salt thereof.
  • the present invention also relates to the use of a compound of formula (I) or a salt thereof for the manufacture of a pharmaceutical composition for the treatment of diabetes, obesity or fatty liver disease, and the effectiveness of a compound of formula (I) or a salt thereof. It relates to a method for treating diabetes, obesity or fatty liver disease comprising administering an amount to a patient.
  • the compound of formula (I) or a salt thereof is a double inhibitory action of SGLT-1 and SGLT-2, an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia And / or prevention and / or prevention of various diabetes-related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease and obesity, and nonalcoholic steatohepatitis (NASH) It can be used as an active ingredient of a therapeutic pharmaceutical composition.
  • NASH nonalcoholic steatohepatitis
  • the graph of a human small intestine glucuronic acid conjugation metabolism test result is shown.
  • the X axis is the elapsed time from the start of the reaction (reaction time)
  • the Y axis is the residual ratio of the test compound. Ex indicates an example number.
  • the present invention provides the following. [1] A compound of the formula (I) or a salt thereof.
  • R 1 is lower alkyl optionally substituted by —OH, lower alkyl optionally substituted by —O-, or cycloalkyl optionally substituted
  • R 2 is , -H, optionally substituted lower alkyl, -O-optionally substituted lower alkyl, or -OH, or R 1 and R 2 together form a lower alkylene.
  • [2] The compound of [1] or a salt thereof, wherein R 2 is —H, methyl, methoxy, or —OH.
  • R 3 The compound or a salt thereof according to [2], wherein R 2 is —H, methyl, or —OH.
  • [4] The compound of [3] or a salt thereof, wherein R 2 is —H.
  • R 1 is (a) lower alkyl optionally substituted with —OH, (b) —O-lower alkyl optionally substituted with 1 cyano or 1 to 3 fluoro, or (C) The compound or salt thereof according to any one of [1] to [4], which is cyclopropyl.
  • [6] The compound or a salt thereof according to [5], wherein R 1 is (a) lower alkyl optionally substituted with —OH, or (b) methoxy.
  • R 1 and R 2 are combined to form trimethylene or tetramethylene.
  • a pharmaceutical composition comprising the compound of [1] or a salt thereof, and a pharmaceutically acceptable excipient.
  • a pharmaceutical composition for preventing or treating diabetes, obesity or fatty liver disease comprising the compound of [1] or a salt thereof.
  • [14] A method for preventing or treating diabetes, obesity or fatty liver disease, comprising administering an effective amount of the compound or salt thereof according to [1] to a patient.
  • [15] A compound of formula 1a or a salt thereof in the first production method described later.
  • this compound is a very important production intermediate for producing the compound of the formula (I) or a salt thereof.
  • this compound is a very important production intermediate for producing the compound of the formula (I) or a salt thereof.
  • [17] A process for producing the compound of [15] or a salt thereof, comprising a step of protecting the hydroxyl group of the compound of [16] or a salt thereof with P 1 .
  • this manufacturing method is a manufacturing method which should be employ
  • lower alkyl means linear or branched alkyl having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, Pentyl, hexyl, etc .; in another embodiment, straight-chain or branched alkyl having 1 to 4 carbon atoms; and in another embodiment, straight-chain or branched carbon having 1 to 4 carbon atoms In still another embodiment, it is alkyl having 1 to 2 carbon atoms.
  • “Lower alkylene” means linear or branched alkylene having 3 to 5 carbon atoms, such as trimethylene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene; in another embodiment, trimethylene or tetramethylene; Another embodiment is trimethylene.
  • Cycloalkyl is a saturated hydrocarbon ring group having 3 to 10 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc .; another embodiment is cyclopropyl.
  • optionally substituted means unsubstituted or having 1 to 5 substituents.
  • those substituents may be the same, or may mutually differ.
  • R 1 An embodiment of “lower alkyl optionally substituted with —OH” in R 1 is lower alkyl; another embodiment is lower alkyl substituted with —OH.
  • lower alkyl optionally substituted with —O- in R 1, there is —O— (lower alkyl optionally substituted with cyano or halogen); -(Lower alkyl optionally substituted with cyano or fluoro); in yet another embodiment is -O-lower alkyl; in yet another embodiment, -O- (lower substituted with cyano Yet another embodiment is -O- (lower alkyl substituted with 1 to 3 fluoro).
  • R 1 One embodiment of “optionally substituted cycloalkyl” for R 1 is cycloalkyl.
  • One embodiment of “optionally substituted lower alkyl” for R 2 is lower alkyl.
  • lower alkyl optionally substituted with —O” in R 2 is —O-lower alkyl.
  • the compound wherein R 1 is methoxy, ethoxy, isopropoxy, cyanomethoxy, difluoromethoxy, 2-fluoroethoxy, or trifluoromethoxy.
  • the compound wherein R 2 is optionally substituted -O-lower alkyl. In another embodiment, the compound wherein R 2 is methoxy.
  • the compound wherein R 2 is —OH.
  • Examples of specific compounds included in the present invention include the following compounds.
  • tautomers and geometric isomers may exist depending on the type of substituent.
  • the compound of the formula (I) may be described in only one form of an isomer, but the present invention also includes other isomers, separated isomers, or those And mixtures thereof.
  • the compound of the formula (I) may have an asymmetric carbon atom or axial asymmetry, and optical isomers based on this may exist.
  • the present invention also includes separated optical isomers of the compound of formula (I) or a mixture thereof.
  • the present invention includes a pharmaceutically acceptable prodrug of the compound represented by the formula (I).
  • a pharmaceutically acceptable prodrug is a compound having a group that can be converted to an amino group, a hydroxyl group, a carboxyl group, or the like by solvolysis or under physiological conditions.
  • groups that form prodrugs include those described in Prog. Med., 5, 2157-2161 (1985), and “Development of Pharmaceuticals” (Yodogawa Shoten, 1990), Volume 7, Molecular Design 163-198. Is mentioned.
  • the salt of the compound of the formula (I) is a pharmaceutically acceptable salt of the compound of the formula (I), and may form an acid addition salt or a salt with a base depending on the type of substituent. is there.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid Acid addition with organic acids such as lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyl tartaric acid, ditoluoyl tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid Salts; inorganic bases such as sodium, potassium, magnesium, calcium and aluminum; salt
  • the present invention also includes various hydrates and solvates of the compound of formula (I) and salts thereof, and crystalline polymorphic substances.
  • the present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
  • the compound of the formula (I) and a salt thereof can be produced by applying various known synthesis methods utilizing characteristics based on the basic structure or the type of substituent. At that time, depending on the type of functional group, it is effective in terms of production technology to replace the functional group with an appropriate protective group (a group that can be easily converted into the functional group) at the stage from the raw material to the intermediate. There is a case.
  • protecting groups include protecting groups described in “Greene's Protective Groups in Organic Synthesis (4th edition, 2006)” by PGM Wuts and TW Greene. These may be appropriately selected according to the reaction conditions. In such a method, after carrying out the reaction by introducing the protective group, the desired compound can be obtained by removing the protective group as necessary.
  • the prodrug of the compound of formula (I) introduces a specific group at the stage from the raw material to the intermediate as in the case of the protective group, or further reacts with the obtained compound of formula (I).
  • the reaction can be carried out by applying a method known to those skilled in the art, such as ordinary esterification, amidation, dehydration and the like.
  • the compound of the formula (I) can be produced by the method described in Patent Document 1 described above, a method analogous thereto, or a method obvious to those skilled in the art.
  • benzothiophene is added to halobenzaldehyde 1a substituted with an appropriate substituent to give 1c, the hydroxyl group is reduced to 1d, and glucose protected with a trimethylsilyl group is added, The trimethylsilyl group and the protecting group of the hydroxyl group that can be deprotected under the acidic condition shown by P 1 are removed to give 1f, the hydroxyl group is protected, methoxy or ethoxy at the anomeric position is reduced and removed, and the deprotection reaction is further performed. It is the method of manufacturing this invention compound by attaching
  • X is bromo
  • P 1 is methoxymethyl, ethoxyethyl, 1-methoxy-1-methylethyl, methoxyethoxymethyl, or tetrahydropyran-2-yl
  • R is methyl
  • Step 1-1 This step is a step of adding compound 1b to compound 1a.
  • the addition reaction is carried out by reacting compound 1b with a base in a solvent inert to the reaction at ⁇ 78 ° C. to room temperature, in one embodiment at ⁇ 78 ° C. to ⁇ 20 ° C., and then adding compound 1a. Stir for 5 hours.
  • the base used include n-butyllithium, sec-butyllithium, tert-butyllithium, lithium hexamethyldisilazide, potassium hexamethyldisilazide and the like.
  • solvent used here examples are not particularly limited, but ethers such as tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether, dimethoxyethane and diglyme; saturated hydrocarbons such as hexane, pentane and heptane; Aromatic hydrocarbons such as benzene, toluene and xylene; and mixtures thereof.
  • ethers such as tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether, dimethoxyethane and diglyme
  • saturated hydrocarbons such as hexane, pentane and heptane
  • Aromatic hydrocarbons such as benzene, toluene and xylene; and mixtures thereof.
  • Step 1-2 This step is a step of reducing compound 1c.
  • the reduction reaction is carried out by reacting compound 1c with a reducing agent in the presence of a Lewis acid in a solvent inert to the reaction at ⁇ 78 ° C. to room temperature, and in one embodiment at ⁇ 78 ° C. to ⁇ 40 ° C. Stir for hours.
  • a Lewis acid examples include triethylsilane
  • examples of the Lewis acid include boron trifluoride / diethyl ether complex and trimethylsilyl triflate.
  • solvent used here are not particularly limited, but halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane; ethers; saturated hydrocarbons; aromatic hydrocarbons Acetonitrile; and mixtures thereof.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane
  • ethers saturated hydrocarbons
  • aromatic hydrocarbons Acetonitrile and mixtures thereof.
  • Step 1-3 This process adds the Compound 1e to Compound 1d, a step of removing the hydroxyl-protecting group capable deprotection under acidic conditions represented by a trimethylsilyl group and P 1.
  • the addition reaction can be performed according to the first production method Step 1-1.
  • the reaction for removing the protecting group is carried out by allowing an acid to act on the product of the addition reaction in the previous step in methanol or ethanol under cooling to reflux, in one embodiment at 0 ° C. to room temperature, and usually stirring for 0.1 to 72 hours. Done.
  • the acid used include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as trifluoroacetic acid, p-toluenesulfonic acid, camphorsulfonic acid, and methanesulfonic acid.
  • Step 1-4 In this step, in order to remove anomeric methoxy or ethoxy of compound 1f, the hydroxyl group is protected, the anomeric methoxy or ethoxy is reduced and removed, and the protecting group is further removed to obtain the compound of the present invention. It is.
  • the introduction of the protecting group is carried out by stirring in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours.
  • the protecting group may be any group that cannot be removed by the following reduction reaction, and specifically includes an acetyl group.
  • P. G. M. Wutsut and Green (T. W. Greene), ⁇ Greene's Protective Groups in Organic Synthesis (4th edition, 2006) ” can be used.
  • the reduction reaction can be carried out according to the first production method Step 1-2. However, it may be preferable for the reaction to proceed by adding water.
  • the reaction for removing the protecting group is carried out by stirring in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours.
  • a solvent inert to the reaction under cooling to reflux
  • removing acetyl, alcohols; water; or a mixed solvent thereof such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium methoxide, etc. It can also be carried out by allowing a base to act and stirring at 0 ° C. to room temperature for 0.1 to 72 hours.
  • the compound 1a or a salt thereof in this production method is a very useful production intermediate in the production of the compound of the formula (I) or a salt thereof. Can efficiently produce the compound of formula (I) or a salt thereof.
  • compound 1a or a salt thereof can be produced by introducing a protecting group P 1 into a compound in which P 1 in the structural formula of compound 1a is —H, and the method is obvious to those skilled in the art. Or a similar method can be employed.
  • P 1 is methoxymethyl
  • compound 1a or a salt thereof can be produced by reacting in an appropriate solvent using a methoxymethylating agent such as methoxymethyl chloride and performing an appropriate treatment. .
  • X is bromo and P 2 is benzyl or lower alkyl.
  • Step 2-1 This step is a step of adding compound 1b to compound 2a.
  • the addition reaction can be performed according to the first production method Step 1-1.
  • Step 2-2 This step is a step of reducing compound 2b.
  • the reduction reaction can be performed according to the first production method Step 1-2.
  • Step 2-3 This step is a step of adding compound 2d to compound 2c.
  • the addition reaction can be performed according to the first production method Step 1-1.
  • Step 2-4 This step is a step of obtaining the compound of the present invention by reducing and removing the anomeric hydroxyl group of compound 2e and further removing the benzyl group and the hydroxyl protecting group represented by P 2 .
  • the reduction reaction can be performed according to the first production method Step 1-2.
  • the reaction for removing the protecting group is carried out in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours with stirring.
  • the method can be selected from the methods described in “Greene's Protective Groups in Organic Synthesis (4th edition, 2006)” by PG M. Wuts and T. W. Greene.
  • P 2 is benzyl
  • a Lewis acid is allowed to act in a halogenated hydrocarbon solvent in the presence of pentamethylbenzene and stirred at -78 ° C to -20 ° C for 0.1 to 72 hours.
  • You can also Examples of the Lewis acid used here include boron trichloride, boron tribromide, boron trifluoride / dimethyl sulfide complex, and the like.
  • the raw material 1a of the first production method and the raw material 2a of the second production method are prepared by converting the hydroxyl group of 3b obtained by bromination of 3a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide to P 1 or P 2 It can be produced by lithiation of 3c protected with ⁇ , reacting N, N-dimethylformamide to introduce a formyl group, and then brominating the resulting 3d with, for example, tetrabutylammonium tribromide.
  • the raw material 1a of the first manufacturing method and the raw material 2a of the second manufacturing method were obtained by hydroxymethylating 3e obtained by bromination of 3a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide using formaldehyde Thereafter, the obtained 3f hydroxyl group can be protected by P 1 or P 2 according to a conventional method, and the obtained 3 g can be oxidized with a normal oxidizing agent.
  • the raw material 1a of the first production method and the raw material 2a of the second production method are prepared by converting the hydroxyl group of 4b obtained by bromination of 4a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide into P 1 or P 2 It can manufacture by protecting with.
  • an intermediate of raw material synthesis 2 is produced, for example, by bromating 4c obtained by reacting 4a with a reducing agent such as sodium borohydride using tetrabutylammonium tribromide or pyridinium bromide perbromide. You can also.
  • a reducing agent such as sodium borohydride using tetrabutylammonium tribromide or pyridinium bromide perbromide. You can also.
  • the compound of formula (I) is isolated and purified as a free compound, its salt, hydrate, solvate, or crystalline polymorphic substance.
  • the salt of the compound of the formula (I) can also be produced by subjecting it to a conventional salt formation reaction.
  • Isolation and purification are performed by applying ordinary chemical operations such as extraction, fractional crystallization, and various fractional chromatography.
  • optical isomers can be produced by selecting an appropriate raw material compound, or can be separated by utilizing a difference in physicochemical properties between isomers.
  • optical isomers can be obtained by general optical resolution of racemates (for example, fractional crystallization leading to diastereomeric salts with optically active bases or acids, chromatography using chiral columns, etc.). Further, it can also be produced from a suitable optically active raw material compound.
  • Test Example 1 SGLT-1 and SGLT-2 Inhibitory Activity Measurement Test
  • the amplified fragment was cloned into pCR2.1-Topo vector using TopoTopTA Cloning kit (Invitrogen), introduced into competent cells of E. coli strain JM109, and ampicillin resistant clones were ampicillin (100 mg / Grown in LB medium containing L).
  • TopoTopTA Cloning kit Invitrogen
  • a plasmid was purified from the grown Escherichia coli by the method of Hanahan (see Maniatis et al., Molecular Cloning), and this plasmid was digested with HindIII and EcoRI.
  • a DNA fragment encoding human SGLT-2 was obtained by expression vector pcDNA3.1 ( Invitrogen) was ligated to the same site using T4 DNA ligase (Roche Diagonostics) and cloned. The ligated clone was introduced into a competent cell of E. coli JM109 strain in the same manner as described above, grown in LB medium containing ampicillin, and human SGLT-1 and SGLT-2 expression vectors were obtained by the method of Hanahan.
  • Human SGLT-1 or SGLT-2 expression vectors were introduced into CHO-K1 cells using Lipofectamine 2000 (Gibco). After gene transfer, cells contain penicillin (50 IU / mL Dainippon Pharmaceutical), streptomycin (50 ⁇ g / mL Dainippon Pharmaceutical), Geneticin (40 ⁇ g / mL Gibco) and 10% fetal bovine serum A geneticin-resistant clone was obtained by culturing in Ham's F12 medium (manufactured by Nissui Pharmaceutical) in the presence of 5% CO 2 at 37 ° C. for about 2 weeks. From these clones, cells stably expressing human SGLT-2 were selected using the specific activity of sugar uptake in the presence of sodium relative to the steady level as an index (see the following section for details of the method for measuring sugar uptake). .
  • Uptake buffer containing test compound (140 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ mM sodium chloride, 2 mM potassium chloride, 1 mM calcium chloride, 1 mM magnesium chloride, 50 ⁇ M methyl- ⁇ -D-glucopyranoside, 2- [4- (2-hydroxyethyl) 1-piperazinyl] ethanesulfonic acid 10 mM, tris (hydroxymethyl) aminomethane 5 mM buffer pH 7.4) 1000 ⁇ L 11 ⁇ L methyl- ⁇ -D- (U-14C) glucopyranoside (Amersham Pharmacia Biotech) Product) and mixed to obtain a buffer for uptake.
  • An uptake buffer containing no test compound was prepared in the control group.
  • a basal uptake buffer solution containing 140 ⁇ M choline chloride instead of sodium chloride was prepared in the same manner for basal uptake measurement in the absence of the test compound and sodium.
  • the pretreatment buffer was removed, uptake buffer was added at 25 ⁇ L per well, and human SGLT-1 and SGLT-2 stably expressing cells were allowed to stand at 37 ° C. for 2 hours.
  • the uptake buffer was removed and the wash buffer (choline chloride 140 mM, potassium chloride 2 mM, calcium chloride 1 mM, magnesium chloride 1 mM, methyl- ⁇ -D-glucopyranoside 10 mM, 2- [4- (2 -Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid 10 mM and tris (hydroxymethyl) aminomethane 5 mM in buffer pH 7.4) were added at 200 ⁇ L per well and immediately removed.
  • the wash buffer (choline chloride 140 mM, potassium chloride 2 mM, calcium chloride 1 mM, magnesium chloride 1 mM, methyl- ⁇ -D-glucopyranoside 10 mM, 2- [4- (2 -Hydroxy
  • This washing operation was performed once more, and 0.5% sodium lauryl sulfate was added at 25 ⁇ L per well to solubilize the cells.
  • 75 ⁇ L of micro scintillation 40 (manufactured by Packard) was added thereto, and radioactivity was measured with a micro scintillation countertop count (manufactured by Packard).
  • the value obtained by subtracting the basal uptake from the uptake of the control group was taken as 100%, and the concentration at which 50% of the uptake was inhibited (IC 50 value) was calculated from the concentration-inhibition curve by the least square method.
  • IC 50 values of some compounds of the present invention and reference compounds are shown in Table 1. Ex indicates an example number.
  • Reference compounds 1 and 2 are the compounds of Examples 159 and 127 described in WO 2004/080990, respectively, and are shown here as examples of compounds that selectively inhibit SGLT-2.
  • KK-Ay mice (Claire Japan, male) in satiety and fasting (fasted for 16 hours) were used as experimental animals.
  • KK-Ay mice Male
  • KK-Ay mice Male
  • a fasting blood glucose level about 150 to 200 mg / dL.
  • the test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / lOmL.
  • the body weight of the mice was measured, the test compound suspension was forcibly administered orally at a dose of 10, 30 mg / kg (1, 3 mg / kg as the test compound), and the control group was administered only with a 0.5 wt% methylcellulose aqueous solution. .
  • the number of mice per group was 5 or 6, and fasting and water-fasting conditions were applied after test compound administration. Blood was collected from the tail vein immediately before drug administration and 1, 2, 4, and 8 hours after drug administration, and the blood glucose level was measured using Glucose CII Test Wako (Wako Pure Chemical Industries).
  • the strength of the hypoglycemic effect is calculated by calculating the blood glucose level-time curve area (AUC) using the trapezoidal method from the blood glucose level over time from 0 to 8 hours of each test compound administration group, and lowering the blood glucose level relative to that of the control group It was shown in rate (%).
  • AUC blood glucose level-time curve area
  • some of the compounds of the present invention show that the test animals are satiety and fasting, that is, a severe hyperglycemia state with a blood glucose level of about 400 to 500 mg / dL and a blood glucose level of 150 to 200 mg / dL.
  • a severe hyperglycemia state with a blood glucose level of about 400 to 500 mg / dL and a blood glucose level of 150 to 200 mg / dL.
  • the dose of 1 mg / kg has an excellent hypoglycemic effect.
  • Reference Compounds 1 and 2 which are compounds that selectively inhibit SGLT-2 showed an excellent blood glucose lowering effect at a dose of 1 mg / kg at the time of satiety, that is, in a severe hyperglycemic state.
  • Table 2 shows the blood glucose lowering rate of some compounds of the present invention and reference compounds. Ex indicates an example number. Reference compounds 1 and 2 represent the same compounds as those described in Test Example 1 above. NT also indicates that the test has not been performed on the compound.
  • Test Example 3 Hypoglycemic Action Confirmation Test in Mild Hyperglycemia State KK-Ay mice (Japan Claire, female) at the time of satiation were used as experimental animals.
  • the blood sugar level of KK-Ay mice (female) at the time of satiation is about 200 mg / dL, which is equivalent to the fasting blood sugar level of KK-Ay mice (male) in Test Example 2.
  • the test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / lOmL.
  • the body weight of the mice was measured, and the test compound suspension was forcibly orally administered at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group.
  • the number of mice per group was 5 or 6, and fasting and water-fasting conditions were applied after test compound administration.
  • Blood was collected from the tail vein immediately before drug administration and 1, 2, 4, and 8 hours after drug administration, and the blood glucose level was measured using Glucose CII Test Wako (Wako Pure Chemical Industries).
  • the strength of hypoglycemic action is calculated by calculating the blood glucose level-time curve area (AUC) using the trapezoidal method from the blood glucose level over time from 0 to 8 hours of each test compound administration group It was shown in rate (%).
  • some of the compounds of the present invention have a blood glucose lowering action of 25% or more at a dose of 1 mg / kg when the test animal is satiety, that is, in a mild hyperglycemia state where the blood glucose level is about 200 mg / dL.
  • a blood glucose lowering action of 25% or more at a dose of 1 mg / kg when the test animal is satiety, that is, in a mild hyperglycemia state where the blood glucose level is about 200 mg / dL.
  • the fasting of the KK-Ay mouse (male) of Test Example 2 there was a compound having an excellent effect.
  • the compounds of the present invention showed almost the same inhibitory activity against both SGLT-1 and SGLT-2. It became clear that it has heavy inhibitory activity. In addition, some compounds of the present invention showed strong inhibitory activity of about 10 nM or less as IC 50 values for both SGLT-1 and SGLT-2.
  • Reference Compounds 1 and 2 that selectively inhibit SGLT-2 have an excellent hypoglycemic effect on severe hyperglycemic conditions. It has been clarified that it does not have a sufficient hypoglycemic effect for mild hyperglycemia.
  • some compounds of the present invention exert a powerful hypoglycemic action at a dose as low as 1 mg / kg not only for severe hyperglycemia but also for mild hyperglycemia. It became clear that the said effect
  • the compound of the present invention having a dual inhibitory action of SGLT-1 and SGLT-2 even for mild hyperglycemia where a compound that selectively inhibits SGLT-2 cannot achieve a sufficient effect, Because it exhibits an excellent blood glucose lowering effect and exhibits a blood glucose lowering effect regardless of the level of hyperglycemia, it can be applied to more patient groups regardless of the severity of the disease in diabetes and various diabetes-related diseases It is clear that it is useful as an active ingredient of a therapeutic agent for the disease.
  • Test Example 4 SGLT-1 and SGLT-2 Inhibitory Activity Measurement Test The following comparative compounds were tested in the same manner as Test Example 1.
  • Comparative Compounds 1 and 2 showed almost the same inhibitory activity against SGLT-1 and SGLT-2 as the compounds of the present invention.
  • Comparative Compounds 3 to 5 had almost the same inhibitory activity against SGLT-2 as that of the compound of the present invention, but the inhibitory activity against SGLT-1 was very weak compared with the compound of the present invention.
  • Table 3 shows the IC 50 values of Comparative Compounds 1 to 5.
  • Comparative compounds 1 to 5 are the compounds of Example 144, Table 37 (first row, third column), Examples 116, 142 and 143 described in International Publication No. 2004/080990, respectively. Is a compound in which R C in the following formula (II) is OH.
  • Test Example 5 Human Small Intestine Glucuronic Acid Conjugation Metabolism Test Reaction solution (50 mM Tris-HCl (pH 7.4), 50 ⁇ g / mg Alamethicin, 8 mM MgCl 2 , 0.1 mg / mL Human intestinal Microsome) containing 2 ⁇ M test compound Incubation was performed in a 37 ° C. water bath for 2 minutes, and 2 mM UDPGA was added to initiate the reaction. A part of the reaction solution was collected at 0, 10, 30, 60, 120 minutes after the start, and added to ice-cold acetonitrile to stop the reaction. The test compound in the solution where the reaction was stopped was analyzed by LC / MS / MS method, and the residual ratio of the test compound at each time point with respect to 0 minutes of reaction was calculated.
  • Comparative Compounds 1 and 2 showed almost the same inhibitory activity against SGLT-1 and SGLT-2 as some compounds of the present invention.
  • Compounds 3 to 5 have very weak inhibitory activity against SGLT-1 compared to some compounds of the present invention, and the IC 50 values of Comparative Compounds 3 to 5 with respect to SGLT-1 are shown in Table 1. Some compounds were found to be about 15-170 times the IC 50 values for SGLT-1 for some compounds.
  • glycemic control in diabetes is to prevent and prevent the development of macrovascular complications such as cardiovascular disease and correction of chronic hyperglycemia, and microvascular complications including nephropathy, neuropathy and retinopathy. is there.
  • HbA1c hemoglobin A1c
  • HbA1c primarily reflects fasting blood glucose or postprandial blood glucose, but strict management of both is important to improve HbA1c improvement in diabetics It is clear (Diabetes Care 26, 881, 2003) that correcting not only postprandial hyperglycemia but also fasting (pre-meal) and inter-meal hyperglycemia is a diabetic complication. It is thought to be important for prevention of onset and progress suppression. For example, in a patient who is severely hyperglycemic after meals, such as the KK-Ay mouse (male) used in Test Example 2, but who is mildly hyperglycemic on an empty stomach, It is very important to correct fasting hyperglycemia as well as hyperglycemia.
  • Comparative Compounds 1 and 2 are very susceptible to human small intestine glucuronidation metabolism.
  • some compounds of the present invention are not easily subjected to human small intestine glucuronidation metabolism. Since glucuronide conjugation metabolism is considered as one of the main metabolic pathways in vivo, some compounds of the present invention can exist stably and persistently as active substances in blood, It was suggested that it can be a long-lasting drug. It is well known that a long-lasting drug is useful as a medicine in that, for example, a single dose can be reduced or the number of administrations can be reduced.
  • Test Example 6 Confirmation of urinary glucose excretion in severe and mildly hyperglycemic conditions KK-Ay mice (CLEA Japan, male) in satiety and fasting (16-hour fast) were used as experimental animals.
  • the test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / 10 mL. After measuring the body weight of the mice, the test compound suspension was forcibly administered orally at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group. Moved to. The number of animals per group was 5 or 6. Thereafter, spontaneous urine up to 24 hours was collected and urine volume was measured. The urine sample is centrifuged (3,000 rpm, 10 minutes), and the urinary glucose concentration in the supernatant is measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The amount was calculated.
  • some of the compounds of the present invention have a dose of 1 mg / kg at a dose of 1 mg / kg or more (about 600-800 mg in the control group) in severe hyperglycemia, and 1 mg in mild hyperglycemia.
  • Test Example 7 Test for confirming urinary glucose excretion in normoglycemic state ICR mice (Japan SLC, male) at the time of satiation were used as experimental animals.
  • the test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / 10 mL. After measuring the body weight of the mice, the test compound suspension was forcibly administered orally at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group. Moved. The number of animals per group was 5 or 6. Thereafter, spontaneous urine up to 24 hours was collected and urine volume was measured. The urine sample is centrifuged (3,000 rpm, 10 minutes), and the urinary glucose concentration in the supernatant is measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The amount was calculated.
  • Test Example 8 Effect on non-alcoholic simple fatty liver model (KK-A y mouse) KK-A y mouse (female) was allowed to freely feed CMF (special breeding), and at 14 weeks of age, body weight and blood glucose Levels, plasma insulin levels, plasma triglyceride levels, and plasma alanine aminotransferase (ALT) are measured and grouped so that these items are uniform.
  • the test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 2 weeks. Only 0.5% methylcellulose solution is administered to the control group. The number of animals per group is 6-8. The day after the final administration, the liver is collected under ether anesthesia, frozen in liquid nitrogen and stored at -80 ° C.
  • the triglyceride content of the liver can be measured by the following procedure. 1. Part of the liver (50-150 mg) that has been stored frozen at -80 ° C is dispensed into an assist tube. 2. Add 2 mL of methanol and crush with POLYTRON (KINEMATICA). 3. Add 4 mL of chloroform and stir vigorously at room temperature for 10 minutes. 4). Add 1 mL of milliQ water and stir vigorously. 5). Centrifugation was performed with a low-speed centrifuge (2,500 rpm, 5 min, room temperature). 6). Transfer a portion of the lower layer (total volume 4.5 mL) to an Eppendorf tube, and remove the solvent using a centrifugal evaporator. 7).
  • Test Example 9 Effects on non-alcoholic steatohepatitis model (rats loaded with methionine / choline-deficient diet (MCD diet)) This study should be conducted with reference to the literature (J Hepatol., 2003, 39, 756-764) Can do. Wistar rats (male) are allowed to eat MCD diet (methionine / choline deficient diet) freely, and at 9 weeks of age, body weights are measured and divided into groups so as to be uniform (10 animals per group). ). The test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 16 weeks.
  • the liver is collected under ether anesthesia, and a part of the liver is fixed with 10% neutral buffered formalin.
  • Paraffin sections (3 ⁇ m) are prepared by a conventional method, and HE staining and van Gieson staining are performed. Inflamed lesions are assessed using HE-stained specimens, and fibrosis is assessed using Wangyson-stained specimens. The evaluation was based on the NASH activity score (NAS) for inflammatory lesions and the Brunt classification for fibrosis (edited by the Japan Liver Society, edited by NASH / NAFLD, 2006), 0, 1, 2, 3 respectively. 4 (see Table 5).
  • NAS NASH activity score
  • Test Example 10 Effect on non-alcoholic steatohepatitis model (choline-deficient amino acid substitution diet (CDAA diet) loaded rat) This study was based on literature (Biochem Biophys Res Commun., 2004, 315 (1), 187-195) A test can be performed. Wistar rats (male) are fed a CDAA diet (choline-deficient amino acid-substituted diet) freely, and at 9 weeks of age, body weights are measured and divided into groups so as to be uniform (10 animals in each group). ). The test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 5 weeks. Only 0.5% methylcellulose solution is administered to the control group. The liver is collected under ether anesthesia the day after the last dose.
  • CDAA diet choline-deficient amino acid substitution diet
  • a paraffin section (3 ⁇ m) is prepared by a conventional method, and then stained with van Gieson. Fibrosis can be evaluated based on the Brunt classification (edited by the Japan Liver Society, edited by NASH / NAFLD, 2006) on a scale of 0, 1, 2, 3, 4 (see Table 5). .
  • Test Example 11 Effect on Obesity Model Male ICR mice (5 weeks old) are bred with a high-fat diet from 8 weeks of age, and equally divided into groups based on body weight at the age of 10 weeks. The test compound suspension is administered by repeated oral gavage once a day for 3 weeks at a dose of 0.01 to 10 mg / kg. Only 0.5% methylcellulose solution is administered to the control group. The number of animals per group is 6-8. At 13 weeks of age, the body weight and the amount of body weight fluctuation from the start of administration are measured, and the data are shown as mean ⁇ standard error.
  • some compounds of the present invention can be administered at a dose of 1 mg / kg not only in severely hyperglycemic conditions but also in mildly hyperglycemic conditions. It was revealed that it exerts a sugar excretion action and exhibits an excellent action regardless of the degree of hyperglycemia.
  • the compound of the present invention is based on the excretion of urinary glucose in severe and mild hyperglycemic conditions and in normoglycemic conditions. And non-alcoholic steatohepatis (NASH), and is expected to have an excellent ameliorating effect on fatty liver diseases including non-alcoholic steatohepatis (NASH). These improvement effects can be confirmed in Test Examples 8 to 11.
  • the compound of the present invention has a double inhibitory action of SGLT-1 and SGLT-2, an excellent hypoglycemic action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia.
  • Prevention and / or treatment of various diabetes related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease, obesity, and fatty liver disease including non-alcoholic steatohepatis (NASH) It is clear that it is useful as an active ingredient of pharmaceutical compositions for medical use.
  • NASH non-alcoholic steatohepatis
  • a pharmaceutical composition containing one or more of the compounds of formula (I) or a salt thereof as an active ingredient is an excipient usually used in the art, that is, a pharmaceutical excipient or a pharmaceutical carrier. Can be prepared by a commonly used method.
  • Administration is orally by tablets, pills, capsules, granules, powders, solutions, etc., or injections such as intra-articular, intravenous, intramuscular, suppositories, eye drops, ophthalmic ointments, transdermal solutions, Any form of parenteral administration such as an ointment, a transdermal patch, a transmucosal liquid, a transmucosal patch, and an inhalant may be used.
  • Tablets, powders, granules, etc. are used as solid compositions for oral administration.
  • one or more active ingredients contain at least one inert excipient such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone. And / or mixed with magnesium aluminate metasilicate.
  • the composition may contain an inert additive, for example, a lubricant such as magnesium stearate, a disintegrant such as sodium carboxymethyl starch, a stabilizer, or a solubilizing agent according to a conventional method. . If necessary, tablets or pills may be coated with a sugar coating or a film of a gastric or enteric substance.
  • Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs and the like, and commonly used inert diluents such as purified water. Or it contains ethanol.
  • the liquid composition may contain solubilizers, wetting agents, auxiliaries such as suspending agents, sweeteners, flavors, fragrances and preservatives in addition to the inert diluent.
  • the injection for parenteral administration contains a sterile aqueous or non-aqueous solution, suspension or emulsion.
  • aqueous solvent include distilled water for injection or physiological saline.
  • non-aqueous solvents include propylene glycol, polyethylene glycol or vegetable oil such as olive oil, alcohols such as ethanol, or polysorbate 80 (a pharmacopeia name).
  • Such compositions may further contain isotonic agents, preservatives, wetting agents, emulsifiers, dispersants, stabilizers, or solubilizing agents. These are sterilized by, for example, filtration through a bacteria-retaining filter, blending with a bactericide or irradiation. These can also be used by producing a sterile solid composition and dissolving or suspending it in sterile water or a sterile solvent for injection before use.
  • the daily dose is about 0.001 to 100 mg / kg, preferably 0.05 to 30 mg / kg, more preferably 0.1 to 10 mg / kg per body weight. Or in 2 to 4 divided doses.
  • the appropriate daily dose is about 0.0001 to 10 mg / kg per body weight, and is administered once to several times a day.
  • a transmucosal agent about 0.001 to 100 mg / kg per body weight is administered once to several times a day. The dose is appropriately determined according to individual cases in consideration of symptoms, age, sex, and the like.
  • the compound of the formula (I) can be used in combination with various therapeutic agents or preventive agents for diseases for which the compound of the formula (I) is considered to be effective.
  • the combination may be administered simultaneously, separately separately, or at desired time intervals.
  • the simultaneous administration preparation may be a compounding agent or may be separately formulated.
  • the manufacturing method of the compound of Formula (I) is demonstrated in detail.
  • this invention is not limited to the compound as described in the following Example.
  • the manufacturing method of a raw material compound is shown in a manufacture example, respectively.
  • the production method of the compound of the formula (I) is not limited to the production methods of the specific examples shown below, and the compound of the formula (I) may be a combination of these production methods or a person skilled in the art. It can also be produced by methods that are self-evident.
  • reaction mixture was warmed to 0 ° C., saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate and washed with saturated brine.
  • the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (hexane-ethyl acetate), and 1-benzothien-2-yl [4- (benzyloxy) -5-bromo-2-ethylphenyl] methanol ( 4.26 g) was obtained as a light brown amorphous.
  • Tables 6 and 7 show the chemical structures of the compounds produced in the above production examples. Further, in the same manner as in the above production examples, the production example compounds shown in Tables 8 to 11 were produced using the corresponding raw materials. In addition, production methods and instrumental analysis data of these production example compounds are shown in Tables 12 to 23.
  • Example 3 Ice-cooled (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-carboxy-2-hydroxyphenyl] -D-glucitol (72 mg) in a nitrogen stream Borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (1.0 mL) was added dropwise to a tetrahydrofuran (1 mL) solution, and the mixture was warmed to room temperature and stirred for 3 hours.
  • Borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (1.0 mL) was added dropwise to a tetrahydrofuran (1 mL) solution, and the mixture was warmed to room temperature and stirred for 3 hours.
  • Tetrahydrofuran (5 mL) and borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (0.67 mL) were added to the reaction mixture, and the mixture was stirred at room temperature for 3 days.
  • borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (1.67 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 3 days.
  • the reaction mixture was ice-cooled, water and 1 M hydrochloric acid (0.5 mL) were added, and the solvent was evaporated under reduced pressure.
  • the colorless amorphous solid obtained by purifying the residue by ODS column chromatography was pulverized with diethyl ether-hexane, and the powder was collected by filtration, dried by heating under reduced pressure, and (1S) -1,5 -Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4- (hydroxymethyl) phenyl] -D-glucitol (28 mg) was obtained as a white solid.
  • Example 4 1,2 of (1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-3-methoxy-4-methylphenyl] -D-glucitol (187 mg) Boron trifluoride-dimethyl sulfide complex (383 mg) was added to a solution of -dichloroethane (4 mL), and the mixture was stirred at room temperature for 4 hours. Methanol was added to the reaction mixture, and the solvent was distilled off under reduced pressure.
  • the brown amorphous solid obtained by purifying the residue by silica gel column chromatography (chloroform-methanol) and ODS column chromatography (water-acetonitrile) was pulverized with hexane, dried by heating under reduced pressure, and (1S) -1 , 5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2,3-dihydroxy-4-methylphenyl] -D-glucitol (22.6 mg) was obtained as a light brown solid.
  • the pale yellow amorphous solid obtained by purifying the residue by ODS column chromatography (water-acetonitrile) was pulverized with diethyl ether, dried by heating under reduced pressure, and (1S) -1,5-anhydro-1- [5 -(1-Benzothien-2-ylmethyl) -2-hydroxy-4- (1-hydroxy-1-methylethyl) phenyl] -D-glucitol (32 mg) was obtained as a pale orange solid.
  • Table 24 shows the chemical structures of the compounds produced in the above examples. Moreover, it carried out similarly to the method of the said Example, and manufactured the Example compound shown in Table 25 and Table 26, respectively using the corresponding raw material. In addition, Tables 27 to 30 show the production methods and instrumental analysis data of these Example compounds.
  • the compound of formula (I) or a salt thereof is a double inhibitory action of SGLT-1 and SGLT-2, an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia
  • Various diabetes related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease and obesity, and fatty liver disease including nonalcoholic steatohepatitis (NASH) and / or It can be used as an active ingredient of a therapeutic pharmaceutical composition.
  • NASH nonalcoholic steatohepatitis

Abstract

Disclosed is a compound useful as an active ingredient of a pharmaceutical composition for treating diabetes. Extensive studies have been made on compounds having an SGLT-1/SGLT-2 dual inhibitory activity, and it is found that a benzothiophen compound of the invention has an SGLT-1/SGLT-2 dual inhibitory activity, exhibits an excellent hypoglycemic activity on a mild hyperglycemic condition as well as a severe hyperglycemic condition and therefore has an excellent hypoglycemic activity regardless of the severity of the hyperglycemic condition, and also has an excellent urinary glucose excretion activity on a condition having a normal blood glucose level.  It is also found that the benzothiophen compound has an extremely high hypoglycemic activity on a mild hyperglycemic condition compared to those of compounds that can inhibit SGLT-2 selectively.  The compound has an SGLT-1/SGLT-2 dual inhibitory activity, an excellent hypoglycemic activity regardless of the severity of the hyperglycemic condition and an excellent urinary glucose excretion activity on a condition having a normal blood glucose level, and therefore can be used as an active ingredient of a pharmaceutical composition for preventing and/or treating diabetes-related diseases including type-1 diabetes, type-2 diabetes, insulin resistance disease and obesity and fatty liver diseases including nonalcoholic steatohepatitis (NASH).

Description

ベンゾチオフェン化合物Benzothiophene compounds
 本発明は医薬組成物、殊に糖尿病治療用医薬組成物の有効成分として有用なベンゾチオフェン化合物に関する。 The present invention relates to a benzothiophene compound useful as an active ingredient of a pharmaceutical composition, particularly a pharmaceutical composition for treating diabetes.
 糖尿病は、膵臓β細胞からのインスリン分泌低下(インスリンの量的不足)及び筋肉や肝臓に代表される末梢組織のインスリン感受性低下(インスリンの質的不足)により、高血糖をはじめ全身の代謝異常(メタボリックシンドローム)を伴う疾患の一つである。その病態生理学的特徴より、糖尿病は基本的に二つのカテゴリー、1型と2型に分類される。1型糖尿病はインスリン分泌の低下が主病因であり、2型糖尿病はインスリン分泌低下とインスリン感受性低下の両方が病態生理学的に重要な病因とされる。糖尿病の型に依らず、高血糖状態が尿糖排泄や多尿を引き起こす程度まで悪化すると、この高血糖状態により更なるβ細胞からのインスリン分泌不全や末梢組織におけるインスリン抵抗性悪化といった悪循環(糖毒性)を形成し、血糖調節の更なる悪化を引き起こすとされている(Diabetes Care 第13巻, 610頁, 1990年、Diabetes Care 第15巻, 442頁, 1992年)。このように、高血糖、インスリン分泌不全及びインスリン抵抗性の全てが相互作用を示しながら病態の発症と進展に密接に関わっている。更に、慢性的な高血糖状態は心血管性疾患や腎症、神経障害及び網膜症を含む合併症心血管性疾患や腎症、神経障害及び網膜症を含む合併症の危険因子と定義されている(Annu. Rev. Med. 第46巻, 257頁, 1995年、Diabetes Care 第18巻, 258頁, 1995年、Ann. Intern. Med. 第122巻, 561頁, 1995年、Diabetes 第44巻, 968頁, 1995年、Diabetes 第47巻, 1703頁, 1995年)。よって、糖尿病の治療方針は食事療法と運動療法を基本として血糖の上昇をコントロールすることとされている。現在、いくつかの経口糖尿病治療薬及びインスリン製剤が開発されている(Joslin’s Diabetes Mellitus. 13th ed., 508頁, 1994年)。各々の薬剤は特定の患者に対して高い有効性を示すが、それらを以ってしても多くの糖尿病患者において良好な血糖状態をコントロールすることは困難とされている。 Diabetes is due to a decrease in insulin secretion from pancreatic β-cells (insufficient amount of insulin) and a decrease in insulin sensitivity in peripheral tissues such as muscle and liver (insufficient qualities of insulin). It is one of the diseases with metabolic syndrome. Due to its pathophysiological characteristics, diabetes is basically divided into two categories, type 1 and type 2. Type 1 diabetes is mainly caused by a decrease in insulin secretion, and type 2 diabetes is considered to have both pathophysiologically important causes of both insulin secretion decrease and insulin sensitivity decrease. Regardless of the type of diabetes, when the hyperglycemic state deteriorates to such an extent that it causes urinary glucose excretion and polyuria, this hyperglycemic state causes a vicious cycle (sugar reduction such as impaired insulin secretion from β cells and worsening insulin resistance in peripheral tissues). (Diabetes Care 13, 610, 1990, Diabetes Care 15, 442, 1992). Thus, hyperglycemia, insulin secretion deficiency, and insulin resistance are all closely related to the onset and development of pathological conditions while interacting with each other. In addition, chronic hyperglycemia is defined as a risk factor for complications including cardiovascular disease, nephropathy, neuropathy and retinopathy, and complications including cardiovascular disease, nephropathy, neuropathy and retinopathy (Annu. Rev. Med. 46, 257, 1995, Diabetes Care 18, 258, 1995, Ann. Intern. Med. 122, 561, 1995, Diabetes 44) , 968, 1995, Diabetes 47, 1703, 1995). Therefore, the treatment policy for diabetes is based on diet therapy and exercise therapy to control the increase in blood sugar. Currently, several oral anti-diabetic drugs and insulin preparations have been developed (Joslin ’s Diabetes Mellitus. 13th ed., 508, 1994). Although each drug shows high effectiveness for a specific patient, it is difficult to control a good blood glucose state in many diabetic patients.
 近年、高血糖状態を速やかに正常化し、同時に体内のエネルギーバランスを改善する抗糖尿病薬として、腸管における糖吸収または腎臓における糖再吸収に関与するNa-グルコース共輸送体(SGLT)を阻害する薬剤(Na+-グルコース共輸送体阻害剤)が注目されている。SGLTには少なくとも3種類のアイソフォ-ム、SGLT-1、SGLT-2及びSGLT-3が存在する。小腸内のグルコースはSGLT-1を介して血中に吸収され、SGLT-1を阻害し小腸における糖吸収を阻害することで、血糖値の上昇を抑制できることが知られている。(国際公開第2004/014932号パンフレット、特開2004-196788号公報、日本糖尿病学会II-P239及びII-P240(2004年)、及び米国糖尿病学会0510-P(2007年))。一方、血中の糖は腎糸球体でろ過され、ろ過された糖は近位尿細管においてSGLT-2を介して再吸収される(Am. J. Physiol. Renal. Physiol., 第280巻, F10項, 2001年)。また、近位尿細管にはSGLT-1も発現していることから糖再吸収に関与している可能性が考えられるが、糖再吸収への寄与度に関する明らかな知見は得られていない(Am. J. Physiol. Renal. Physiol., 第280巻, F10項, 2001年)。これらの知見より、SGLT-2あるいはSGLT-2及びSGLT-1を阻害することにより、尿中に過剰なグルコースを排泄させ血糖値を正常化させることが期待される。さらに尿中にグルコースとして体内のエネルギーを排泄することにより、栄養摂取過多に伴う肥満及び脂肪性肝疾患を改善することが考えられる(国際公開第2008/116195号パンフレット及び国際公開第2006/009149号パンフレット)。 In recent years, as an anti-diabetic drug that quickly normalizes hyperglycemia and at the same time improves the energy balance in the body, it inhibits Na + -glucose cotransporter (SGLT) involved in sugar absorption in the intestine or sugar reabsorption in the kidney Drugs (Na + -glucose cotransporter inhibitors) are drawing attention. SGLT has at least three types of isoforms, SGLT-1, SGLT-2 and SGLT-3. It is known that glucose in the small intestine is absorbed into the blood via SGLT-1, and the increase in blood glucose level can be suppressed by inhibiting SGLT-1 and inhibiting sugar absorption in the small intestine. (International Publication No. 2004/014932, JP 2004-196788, Japanese Diabetes Society II-P239 and II-P240 (2004), and American Diabetes Society 0510-P (2007)). On the other hand, blood sugar is filtered by the glomeruli, and the filtered sugar is reabsorbed in the proximal tubule via SGLT-2 (Am. J. Physiol. Renal. Physiol., 280, F10, 2001). In addition, SGLT-1 is also expressed in the proximal tubule, so it may be involved in sugar reabsorption, but no clear knowledge about the contribution to sugar reabsorption has been obtained ( Am. J. Physiol. Renal. Physiol., 280, F10, 2001). From these findings, inhibition of SGLT-2 or SGLT-2 and SGLT-1 is expected to excrete excess glucose in the urine and normalize blood glucose levels. Furthermore, it is conceivable to improve obesity and fatty liver disease associated with excessive nutrition by excreting energy in the body as glucose in urine (WO 2008/116195 and WO 2006/009149). Pamphlet).
 以上より、このようなNa+-グルコース共輸送体阻害剤は、1型糖尿病、2型糖尿病等の糖尿病の他、インスリン抵抗性疾患、及び肥満を含む各種糖尿病関連疾患、並びに、非アルコール性脂肪肝炎(non-alcoholic steatohepatis:NASH)を含む脂肪性肝疾患の優れた治療剤並びに予防剤として期待されている。 As described above, such Na + -glucose cotransporter inhibitors are not only diabetics such as type 1 diabetes and type 2 diabetes, but also various insulin-related diseases including insulin resistance diseases and obesity, and non-alcoholic fats. It is expected as an excellent therapeutic agent and preventive agent for fatty liver diseases including non-alcoholic steatohepatis (NASH).
 Na+-グルコース共輸送体阻害剤としては従来O-配糖体が知られていたが、近年、O-配糖体のグルコシド結合の酸素を介さないC-配糖体がNa+-グルコース共輸送体阻害剤として開発されている。 Na + - As the glucose cotransporter inhibitors was known conventionally O- glycosides, in recent years, without using the oxygen of glucosidic linkages O- glycosides C- glycoside Na + - glucose cotransporter It has been developed as a transporter inhibitor.
 例えば、下記式で示されるC-グリコシド誘導体又はその塩は、Na+-グルコース共輸送体阻害剤として、血糖低下作用を示すことが知られている(特許文献1参照、なお、式中の記号は当該公報を参照のこと。)。
Figure JPOXMLDOC01-appb-C000002
For example, a C-glycoside derivative represented by the following formula or a salt thereof is known to exhibit a hypoglycemic action as a Na + -glucose cotransporter inhibitor (see Patent Document 1, the symbols in the formula) See the publication.)
Figure JPOXMLDOC01-appb-C000002
 当該文献には、本発明化合物を包含する一般式化合物の記載はあるが、実施例等による本発明化合物の具体的開示や示唆はない。 In this document, there is a description of the compound of the general formula including the compound of the present invention, but there is no specific disclosure or suggestion of the compound of the present invention by Examples or the like.
 また、特許文献1に記載された化合物が、L-プロリンとの共結晶として存在しうることを報告した文献もあるが(特許文献2)、本発明化合物の具体的開示や示唆はない。 In addition, there is a document reporting that the compound described in Patent Document 1 can exist as a co-crystal with L-proline (Patent Document 2), but there is no specific disclosure or suggestion of the compound of the present invention.
 また、下記式で示される化合物が、Na+-グルコース共輸送体阻害剤として、血糖低下作用を示すことが知られている(特許文献3参照、なお、式中の記号は当該公報を参照のこと。)。
Figure JPOXMLDOC01-appb-C000003
In addition, it is known that a compound represented by the following formula exhibits a blood glucose lowering action as a Na + -glucose cotransporter inhibitor (see Patent Document 3, for the symbols in the formula refer to the publication) thing.).
Figure JPOXMLDOC01-appb-C000003
 当該文献には、本発明化合物を包含する一般式化合物の記載はあるが、実施例等による本発明化合物の具体的開示や示唆はない。 In this document, there is a description of the compound of the general formula including the compound of the present invention, but there is no specific disclosure or suggestion of the compound of the present invention by Examples or the like.
 また、下記化合物を含む1-フェニル 1-チオ-D-グルシトール誘導体は、SGLT-1及びSGLT-2の双方の活性を阻害し、消化管からのグルコース吸収抑制と尿糖排泄促進作用を併有する糖尿病治療剤の有効成分となり得ることが報告されている(特許文献4)。しかし、当該文献には、本発明化合物の具体的開示や示唆はない。 In addition, 1-phenyl 1-thio-D-glucitol derivatives, including the following compounds, inhibit both SGLT-1 and SGLT-2 activities, and have both glucose absorption suppression from the digestive tract and urinary glucose excretion promoting action. It has been reported that it can be an active ingredient of a therapeutic agent for diabetes (Patent Document 4). However, there is no specific disclosure or suggestion of the compound of the present invention in this document.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
国際公開第2004/080990号パンフレットInternational Publication No. 2004/080990 Pamphlet 国際公開第2007/114475号パンフレットInternational Publication No. 2007/114475 Pamphlet 米国特許出願公開第2005/0233988号明細書US Patent Application Publication No. 2005/0233988 国際公開第2008/072726号パンフレットInternational Publication No. 2008/072726 Pamphlet
 医薬組成物、特に糖尿病治療用医薬組成物の有効成分として有用な化合物を提供する。 Provided is a compound useful as an active ingredient of a pharmaceutical composition, particularly a pharmaceutical composition for treating diabetes.
 本発明者らは、SGLT-1及びSGLT-2の二重阻害作用を有する化合物について鋭意検討した結果、本発明のベンゾチオフェン化合物が、SGLT-1及びSGLT-2の二重阻害作用を有すること、重度の高血糖状態だけでなく、軽度の高血糖状態に対しても、優れた血糖低下作用を有し、高血糖状態の程度に関わらず、優れた血糖低下作用を有すること、さらに、正常血糖状態において優れた尿糖排泄作用を有することを知見して、本発明を完成した。また、本発明のベンゾチオフェン化合物は、SGLT-2を選択的に阻害する化合物に比べ、軽度の高血糖状態に対する血糖低下作用が極めて強いことを見出し、本発明を完成したものである。 As a result of intensive studies on compounds having a double inhibitory action of SGLT-1 and SGLT-2, the present inventors have found that the benzothiophene compound of the present invention has a double inhibitory action of SGLT-1 and SGLT-2. It has an excellent blood glucose lowering action not only for severe hyperglycemia but also for mild hyperglycemia, and has an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and normal Knowing that it has an excellent urinary glucose excretion effect in a blood glucose state, the present invention has been completed. Further, the benzothiophene compound of the present invention has been found to have an extremely strong blood glucose lowering effect on mild hyperglycemia compared to a compound that selectively inhibits SGLT-2, and has completed the present invention.
 即ち、本発明は、式(I)の化合物又はその塩(以下、本発明化合物ということがある)、並びに、式(I)の化合物又はその塩、及び賦形剤を含有する医薬組成物に関する。 That is, the present invention relates to a compound of formula (I) or a salt thereof (hereinafter sometimes referred to as the compound of the present invention), and a pharmaceutical composition containing a compound of formula (I) or a salt thereof, and an excipient. .
Figure JPOXMLDOC01-appb-C000005
 (式(I)中、R1は、-OHで置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は置換されていてもよいシクロアルキルであり、R2は、-H、置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は-OHであるか、又は、R1とR2は一体となって、低級アルキレンを形成する。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (I), R 1 is lower alkyl optionally substituted by —OH, lower alkyl optionally substituted by —O-, or cycloalkyl optionally substituted, and R 2 is , -H, optionally substituted lower alkyl, -O-optionally substituted lower alkyl, or -OH, or R 1 and R 2 together form a lower alkylene. .)
 なお、特に記載がない限り、本明細書中のある化学式中の記号が他の化学式においても用いられる場合、同一の記号は同一の意味を示す。 Unless otherwise specified, when a symbol in a chemical formula in this specification is also used in another chemical formula, the same symbol has the same meaning.
 また、本発明は、式(I)の化合物またはその塩を含有する糖尿病、肥満又は脂肪性肝疾患の治療用医薬組成物にも関する。なお、この医薬組成物は、式(I)の化合物又はその塩を含有する糖尿病、肥満又は脂肪性肝疾患の治療剤を包含する。 The present invention also relates to a pharmaceutical composition for the treatment of diabetes, obesity or fatty liver disease comprising a compound of formula (I) or a salt thereof. This pharmaceutical composition includes a therapeutic agent for diabetes, obesity or fatty liver disease containing the compound of formula (I) or a salt thereof.
 また、本発明は、糖尿病、肥満又は脂肪性肝疾患の治療用医薬組成物の製造のための式(I)の化合物又はその塩の使用、並びに、式(I)の化合物又はその塩の有効量を患者に投与することからなる糖尿病、肥満又は脂肪性肝疾患の治療方法に関する。 The present invention also relates to the use of a compound of formula (I) or a salt thereof for the manufacture of a pharmaceutical composition for the treatment of diabetes, obesity or fatty liver disease, and the effectiveness of a compound of formula (I) or a salt thereof. It relates to a method for treating diabetes, obesity or fatty liver disease comprising administering an amount to a patient.
 式(I)の化合物又はその塩は、SGLT-1及びSGLT-2の二重阻害作用、高血糖状態の程度に関わらない優れた血糖低下作用、並びに、正常血糖状態における優れた尿糖排泄作用を有し、1型糖尿病、2型糖尿病、インスリン抵抗性疾患、及び肥満を含む各種糖尿病関連疾患、並びに、非アルコール性脂肪肝炎(nonalcoholic steatohepatitis:NASH)を含む脂肪性肝疾患の予防及び/又は治療用医薬組成物の有効成分として使用できる。 The compound of formula (I) or a salt thereof is a double inhibitory action of SGLT-1 and SGLT-2, an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia And / or prevention and / or prevention of various diabetes-related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease and obesity, and nonalcoholic steatohepatitis (NASH) It can be used as an active ingredient of a therapeutic pharmaceutical composition.
ヒト小腸グルクロン酸抱合代謝試験結果のグラフを示す。グラフは、X軸を反応開始からの経過時間(反応時間)とし、Y軸を試験化合物の残存率とした。Exは実施例番号を示す。The graph of a human small intestine glucuronic acid conjugation metabolism test result is shown. In the graph, the X axis is the elapsed time from the start of the reaction (reaction time), and the Y axis is the residual ratio of the test compound. Ex indicates an example number.
 本発明により、以下が提供される。
 [1]式(I)の化合物又はその塩。
The present invention provides the following.
[1] A compound of the formula (I) or a salt thereof.
Figure JPOXMLDOC01-appb-C000006
 (式(I)中、R1は、-OHで置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は置換されていてもよいシクロアルキルであり、R2は、-H、置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は-OHであるか、又は、R1とR2は一体となって、低級アルキレンを形成する。)
 [2]R2が-H、メチル、メトキシ、又は-OHである[1]の化合物又はその塩。
 [3]R2が-H、メチル、又は-OHである[2]の化合物又はその塩。
 [4]R2が-Hである[3]の化合物又はその塩。
 [5]R1が(a)-OHで置換されていてもよい低級アルキル、(b)1個のシアノ又は1~3個のフルオロで置換されていてもよい-O-低級アルキル、又は、(c)シクロプロピルである[1]~[4]のいずれかの化合物又はその塩。
 [6]R1が(a)-OHで置換されていてもよい低級アルキル、又は、(b)メトキシである[5]の化合物又はその塩。
 [7]R1とR2が一体となって、トリメチレン又はテトラメチレンである[1]の化合物又はその塩。
 [8](1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メトキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-3,4-ジメチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-エチル-2-ヒドロキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-イソプロピルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-(ヒドロキシメチル)フェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[7-(1-ベンゾチエン-2-イルメチル)-4-ヒドロキシ-2,3-ジヒドロ-1H-インデン-5-イル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2,3-ジヒドロキシ-4-メチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(シアノメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(ジフルオロメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、又は
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-シクロプロピル-2-ヒドロキシフェニル]-D-グルシトールである、[1]記載の化合物又はその塩。
 [9][1]の化合物又はその塩、及び製薬学的に許容される賦形剤を含有する医薬組成物。
 [10][1]の化合物又はその塩を含有する、糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物。
 [11]糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物の製造のための[1]の化合物又はその塩の使用。
 [12]糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物の製造のための[1]の化合物又はその塩。
 [13]糖尿病、肥満又は脂肪性肝疾患の予防若しくは治療のための[1]に記載の化合物またはその塩の使用。
 [14][1]の化合物又はその塩の有効量を患者に投与することからなる糖尿病、肥満又は脂肪性肝疾患の予防若しくは治療方法。
 [15]後述の第一製法における、式1aの化合物又はその塩。なお、この化合物は、式(I)の化合物又はその塩を製造するにあたり、非常に重要な製造中間体である。
 [16]後述の第一製法における、式1aの化合物又はその塩の、保護基P1による保護を行う前の化合物又はその塩。即ち、式1aの構造式中のP1が-Hである化合物又はその塩。なお、この化合物は、式(I)の化合物又はその塩を製造するにあたり、非常に重要な製造中間体である。
 [17][16]の化合物又はその塩の水酸基をP1で保護する工程を含む、[15]の化合物又はその塩の製造法。なお、この製造法は、式(I)の化合物又はその塩を製造するにあたり、非常に重要な中間体製造工程に採用されるべき製造法である。
 [18]Xがブロモであり、R1がメチルであり、R2が-Hである、[15]若しくは[16]の化合物又はその塩、あるいは[17]の製造法。
 [19]P1がメトキシメチルである、[18]の化合物又はその塩、あるいは製造法。
Figure JPOXMLDOC01-appb-C000006
(In the formula (I), R 1 is lower alkyl optionally substituted by —OH, lower alkyl optionally substituted by —O-, or cycloalkyl optionally substituted, and R 2 is , -H, optionally substituted lower alkyl, -O-optionally substituted lower alkyl, or -OH, or R 1 and R 2 together form a lower alkylene. .)
[2] The compound of [1] or a salt thereof, wherein R 2 is —H, methyl, methoxy, or —OH.
[3] The compound or a salt thereof according to [2], wherein R 2 is —H, methyl, or —OH.
[4] The compound of [3] or a salt thereof, wherein R 2 is —H.
[5] R 1 is (a) lower alkyl optionally substituted with —OH, (b) —O-lower alkyl optionally substituted with 1 cyano or 1 to 3 fluoro, or (C) The compound or salt thereof according to any one of [1] to [4], which is cyclopropyl.
[6] The compound or a salt thereof according to [5], wherein R 1 is (a) lower alkyl optionally substituted with —OH, or (b) methoxy.
[7] The compound of [1] or a salt thereof, wherein R 1 and R 2 are combined to form trimethylene or tetramethylene.
[8] (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methoxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-3,4-dimethylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-ethyl-2-hydroxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-isopropylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4- (hydroxymethyl) phenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [7- (1-benzothien-2-ylmethyl) -4-hydroxy-2,3-dihydro-1H-inden-5-yl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2,3-dihydroxy-4-methylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (cyanomethoxy) -2-hydroxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (difluoromethoxy) -2-hydroxyphenyl] -D-glucitol, or (1S) -1,5 The compound or a salt thereof according to [1], which is -anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-cyclopropyl-2-hydroxyphenyl] -D-glucitol.
[9] A pharmaceutical composition comprising the compound of [1] or a salt thereof, and a pharmaceutically acceptable excipient.
[10] A pharmaceutical composition for preventing or treating diabetes, obesity or fatty liver disease, comprising the compound of [1] or a salt thereof.
[11] Use of the compound of [1] or a salt thereof for the manufacture of a pharmaceutical composition for prevention or treatment of diabetes, obesity or fatty liver disease.
[12] The compound of [1] or a salt thereof for the manufacture of a pharmaceutical composition for prevention or treatment of diabetes, obesity or fatty liver disease.
[13] Use of the compound or a salt thereof according to [1] for the prevention or treatment of diabetes, obesity or fatty liver disease.
[14] A method for preventing or treating diabetes, obesity or fatty liver disease, comprising administering an effective amount of the compound or salt thereof according to [1] to a patient.
[15] A compound of formula 1a or a salt thereof in the first production method described later. In addition, this compound is a very important production intermediate for producing the compound of the formula (I) or a salt thereof.
[16] The compound or salt thereof before the protection with the protecting group P 1 of the compound of formula 1a or a salt thereof in the first production method described later. That is, a compound or a salt thereof in which P 1 in the structural formula of formula 1a is —H. In addition, this compound is a very important production intermediate for producing the compound of the formula (I) or a salt thereof.
[17] A process for producing the compound of [15] or a salt thereof, comprising a step of protecting the hydroxyl group of the compound of [16] or a salt thereof with P 1 . In addition, this manufacturing method is a manufacturing method which should be employ | adopted as a very important intermediate manufacturing process in manufacturing the compound of Formula (I), or its salt.
[18] The method of [15] or [16] or a salt thereof, or a method for producing [17], wherein X is bromo, R 1 is methyl, and R 2 is —H.
[19] The compound of [18] or a salt thereof, or a production method, wherein P 1 is methoxymethyl.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本明細書において、「低級アルキル」とは、直鎖又は分枝状の炭素数が1から6のアルキル、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等であり;別の態様としては、直鎖又は分枝状の炭素数が1から4のアルキルであり;また別の態様としては、直鎖又は分枝状の炭素数が1から3のアルキルであり;さらにまた別の態様としては、炭素数が1から2のアルキルである。 In the present specification, “lower alkyl” means linear or branched alkyl having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, Pentyl, hexyl, etc .; in another embodiment, straight-chain or branched alkyl having 1 to 4 carbon atoms; and in another embodiment, straight-chain or branched carbon having 1 to 4 carbon atoms In still another embodiment, it is alkyl having 1 to 2 carbon atoms.
 「低級アルキレン」とは、直鎖又は分枝状の炭素数が3から5のアルキレン、例えばトリメチレン、テトラメチレン、1-メチルトリメチレン、2-メチルトリメチレン、ペンタメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1-エチルトリメチレン、2-エチルトリメチレン、1,1-ジメチルトリメチレン、1,2-ジメチルトリメチレンであり;別の態様としては、トリメチレン又はテトラメチレンであり;さらに別の態様としては、トリメチレンである。 “Lower alkylene” means linear or branched alkylene having 3 to 5 carbon atoms, such as trimethylene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1,1-dimethyltrimethylene, 1,2-dimethyltrimethylene; in another embodiment, trimethylene or tetramethylene; Another embodiment is trimethylene.
 「シクロアルキル」とは、炭素数3から10の飽和炭化水素環基であり、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等であり;別の態様としては、シクロプロピルである。 “Cycloalkyl” is a saturated hydrocarbon ring group having 3 to 10 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc .; another embodiment is cyclopropyl.
 本明細書において、「置換されていてもよい」とは、無置換、若しくは置換基を1~5個有していることを意味する。なお、複数個の置換基を有する場合、それらの置換基は同一であっても、互いに異なっていてもよい。 In the present specification, “optionally substituted” means unsubstituted or having 1 to 5 substituents. In addition, when it has a some substituent, those substituents may be the same, or may mutually differ.
 R1における「-OHで置換されていてもよい低級アルキル」のある態様としては、低級アルキルであり;別の態様としては、-OHで置換された低級アルキルである。 An embodiment of “lower alkyl optionally substituted with —OH” in R 1 is lower alkyl; another embodiment is lower alkyl substituted with —OH.
 R1における「-O-置換されていてもよい低級アルキル」のある態様としては、-O-(シアノ又はハロゲンで置換されていてもよい低級アルキル)であり;別の態様としては、-O-(シアノ又はフルオロで置換されていてもよい低級アルキル)であり;さらに別の態様としては、-O-低級アルキルであり;さらに別の態様としては、-O-(シアノで置換された低級アルキル)であり;さらに別の態様としては、-O-(1~3個のフルオロで置換された低級アルキル)である。 As one aspect of “lower alkyl optionally substituted with —O-” in R 1, there is —O— (lower alkyl optionally substituted with cyano or halogen); -(Lower alkyl optionally substituted with cyano or fluoro); in yet another embodiment is -O-lower alkyl; in yet another embodiment, -O- (lower substituted with cyano Yet another embodiment is -O- (lower alkyl substituted with 1 to 3 fluoro).
 R1における「置換されていてもよいシクロアルキル」のある態様としては、シクロアルキルである。 One embodiment of “optionally substituted cycloalkyl” for R 1 is cycloalkyl.
 R2における「置換されていてもよい低級アルキル」のある態様としては、低級アルキルである。 One embodiment of “optionally substituted lower alkyl” for R 2 is lower alkyl.
 R2における「-O-置換されていてもよい低級アルキル」のある態様としては、-O-低級アルキルである。 An embodiment of “lower alkyl optionally substituted with —O” in R 2 is —O-lower alkyl.
 式(I)の化合物のある態様を以下に示す。
 (1)R1が-OHで置換されていてもよい低級アルキルである化合物。別の態様として、R1がメチル、エチル、イソプロピル、イソブチル、ヒドロキシメチル、若しくは2-ヒドロキシプロパン-2-イルである化合物。
 (2)R1が-O-置換されていてもよい低級アルキルである化合物。別の態様として、R1がシアノ及びフルオロからなる群より選択される1~3個の置換基で置換されていてもよい-O-低級アルキルである化合物。さらに別の態様として、R1がメトキシ、エトキシ、イソプロポキシ、シアノメトキシ、ジフルオロメトキシ、2-フルオロエトキシ、若しくはトリフルオロメトキシである化合物。
 (3)R1が置換されていてもよいシクロアルキルである化合物。別の態様として、R1がシクロプロピルである化合物。
 (4)R2が-Hである化合物。
 (5)R2が置換されていてもよい低級アルキルである化合物。別の態様として、R2がメチルである化合物。
 (6)R2が-O-置換されていてもよい低級アルキルである化合物。別の態様として、R2がメトキシである化合物。
 (7)R2が-OHである化合物。
 (8)R1とR2が一体となって、低級アルキレンを形成している化合物。別の態様として、R1とR2が一体となって、トリメチレン又はテトラメチレンである化合物。
 (9)(1)~(3)のいずれかである化合物。
 (10)(4)~(7)のいずれかである化合物。
 (11)(9)及び(10)の組み合わせである化合物。
 (12)(8)~(11)のいずれかの化合物。
Certain embodiments of the compound of formula (I) are shown below.
(1) A compound wherein R 1 is lower alkyl optionally substituted with —OH. In another embodiment, the compound wherein R 1 is methyl, ethyl, isopropyl, isobutyl, hydroxymethyl, or 2-hydroxypropan-2-yl.
(2) A compound in which R 1 is optionally substituted -O-substituted lower alkyl. In another embodiment, the compound in which R 1 is —O-lower alkyl optionally substituted with 1 to 3 substituents selected from the group consisting of cyano and fluoro. In yet another embodiment, the compound wherein R 1 is methoxy, ethoxy, isopropoxy, cyanomethoxy, difluoromethoxy, 2-fluoroethoxy, or trifluoromethoxy.
(3) A compound in which R 1 is an optionally substituted cycloalkyl. In another embodiment, the compound wherein R 1 is cyclopropyl.
(4) The compound wherein R 2 is —H.
(5) The compound in which R 2 is optionally substituted lower alkyl. In another embodiment, the compound wherein R 2 is methyl.
(6) The compound wherein R 2 is optionally substituted -O-lower alkyl. In another embodiment, the compound wherein R 2 is methoxy.
(7) The compound wherein R 2 is —OH.
(8) A compound in which R 1 and R 2 are combined to form a lower alkylene. In another embodiment, the compound in which R 1 and R 2 are combined and are trimethylene or tetramethylene.
(9) The compound according to any one of (1) to (3).
(10) The compound according to any one of (4) to (7).
(11) A compound which is a combination of (9) and (10).
(12) The compound according to any one of (8) to (11).
 本発明に包含される具体的化合物の例として、以下の化合物が挙げられる。
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メトキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-3,4-ジメチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-エチル-2-ヒドロキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-イソプロピルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-(ヒドロキシメチル)フェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[7-(1-ベンゾチエン-2-イルメチル)-4-ヒドロキシ-2,3-ジヒドロ-1H-インデン-5-イル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2,3-ジヒドロキシ-4-メチルフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(シアノメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(ジフルオロメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-シクロプロピル-2-ヒドロキシフェニル]-D-グルシトール。
Examples of specific compounds included in the present invention include the following compounds.
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methoxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-3,4-dimethylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-ethyl-2-hydroxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-isopropylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4- (hydroxymethyl) phenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [7- (1-benzothien-2-ylmethyl) -4-hydroxy-2,3-dihydro-1H-inden-5-yl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2,3-dihydroxy-4-methylphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (cyanomethoxy) -2-hydroxyphenyl] -D-glucitol,
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (difluoromethoxy) -2-hydroxyphenyl] -D-glucitol,
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-cyclopropyl-2-hydroxyphenyl] -D-glucitol.
 式(I)の化合物には、置換基の種類によって、互変異性体や幾何異性体が存在しうる。本明細書中、式(I)の化合物が異性体の一形態のみで記載されることがあるが、本発明は、それ以外の異性体も包含し、異性体の分離されたもの、あるいはそれらの混合物も包含する。 In the compound of the formula (I), tautomers and geometric isomers may exist depending on the type of substituent. In the present specification, the compound of the formula (I) may be described in only one form of an isomer, but the present invention also includes other isomers, separated isomers, or those And mixtures thereof.
 また、式(I)の化合物には、不斉炭素原子や軸不斉を有する場合があり、これに基づく光学異性体が存在しうる。本発明は、式(I)の化合物の光学異性体の分離されたもの、あるいはそれらの混合物も包含する。 In addition, the compound of the formula (I) may have an asymmetric carbon atom or axial asymmetry, and optical isomers based on this may exist. The present invention also includes separated optical isomers of the compound of formula (I) or a mixture thereof.
 さらに、本発明は、式(I)で示される化合物の製薬学的に許容されるプロドラッグも包含する。製薬学的に許容されるプロドラッグとは、加溶媒分解により又は生理学的条件下で、アミノ基、水酸基、カルボキシル基等に変換されうる基を有する化合物である。プロドラッグを形成する基としては、例えば、Prog. Med., 5, 2157-2161(1985) や、「医薬品の開発」(廣川書店、1990年)第7巻 分子設計163-198に記載の基が挙げられる。 Furthermore, the present invention includes a pharmaceutically acceptable prodrug of the compound represented by the formula (I). A pharmaceutically acceptable prodrug is a compound having a group that can be converted to an amino group, a hydroxyl group, a carboxyl group, or the like by solvolysis or under physiological conditions. Examples of groups that form prodrugs include those described in Prog. Med., 5, 2157-2161 (1985), and “Development of Pharmaceuticals” (Yodogawa Shoten, 1990), Volume 7, Molecular Design 163-198. Is mentioned.
 また、式(I)の化合物の塩とは、式(I)の化合物の製薬学的に許容される塩であり、置換基の種類によって、酸付加塩又は塩基との塩を形成する場合がある。具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、マンデル酸、酒石酸、ジベンゾイル酒石酸、ジトルオイル酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩;ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基;メチルアミン、エチルアミン、エタノールアミン、リシン、オルニチン等の有機塩基との塩;アセチルロイシン等の各種アミノ酸及びアミノ酸誘導体との塩やアンモニウム塩等が挙げられる。 The salt of the compound of the formula (I) is a pharmaceutically acceptable salt of the compound of the formula (I), and may form an acid addition salt or a salt with a base depending on the type of substituent. is there. Specifically, inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid Acid addition with organic acids such as lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyl tartaric acid, ditoluoyl tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid Salts; inorganic bases such as sodium, potassium, magnesium, calcium and aluminum; salts with organic bases such as methylamine, ethylamine, ethanolamine, lysine and ornithine; salts and ammonium salts with various amino acids and amino acid derivatives such as acetylleucine Etc.
 さらに、本発明は、式(I)の化合物及びその塩の各種の水和物や溶媒和物、及び結晶多形の物質も包含する。また、本発明は、種々の放射性又は非放射性同位体でラベルされた化合物も包含する。 Furthermore, the present invention also includes various hydrates and solvates of the compound of formula (I) and salts thereof, and crystalline polymorphic substances. The present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
 (製造法)
 式(I)の化合物及びその塩は、その基本構造あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。その際、官能基の種類によっては、当該官能基を原料から中間体へ至る段階で適当な保護基(容易に当該官能基に転化可能な基)に置き換えておくことが製造技術上効果的な場合がある。このような保護基としては、例えば、ウッツ(P. G. M. Wuts) 及びグリーン (T. W. Greene) 著、「Greene’s Protective Groups in Organic Synthesis (第4版、2006年) 」に記載の保護基等を挙げることができ、これらの反応条件に応じて適宜選択して用いればよい。このような方法では、当該保護基を導入して反応を行なったあと、必要に応じて保護基を除去することにより、所望の化合物を得ることができる。
(Production method)
The compound of the formula (I) and a salt thereof can be produced by applying various known synthesis methods utilizing characteristics based on the basic structure or the type of substituent. At that time, depending on the type of functional group, it is effective in terms of production technology to replace the functional group with an appropriate protective group (a group that can be easily converted into the functional group) at the stage from the raw material to the intermediate. There is a case. Examples of such protecting groups include protecting groups described in “Greene's Protective Groups in Organic Synthesis (4th edition, 2006)” by PGM Wuts and TW Greene. These may be appropriately selected according to the reaction conditions. In such a method, after carrying out the reaction by introducing the protective group, the desired compound can be obtained by removing the protective group as necessary.
 また、式(I)の化合物のプロドラッグは、上記保護基と同様、原料から中間体へ至る段階で特定の基を導入、あるいは得られた式(I)の化合物を用いてさらに反応を行なうことで製造できる。反応は通常のエステル化、アミド化、脱水等、当業者に公知の方法を適用することにより行うことができる。 In addition, the prodrug of the compound of formula (I) introduces a specific group at the stage from the raw material to the intermediate as in the case of the protective group, or further reacts with the obtained compound of formula (I). Can be manufactured. The reaction can be carried out by applying a method known to those skilled in the art, such as ordinary esterification, amidation, dehydration and the like.
 式(I)の化合物は、前述の特許文献1に記載の方法、若しくはそれに準じた方法、又は当業者に自明の方法により製造することができる。 The compound of the formula (I) can be produced by the method described in Patent Document 1 described above, a method analogous thereto, or a method obvious to those skilled in the art.
 以下、式(I)の化合物の代表的な製造法を説明する。各製法は、当該説明に付した参考文献を参照して行うこともできる。なお、本発明の化合物の製造法は以下に示した例には限定されない。 Hereinafter, representative production methods of the compound of the formula (I) will be described. Each manufacturing method can also be performed with reference to the reference attached to the said description. In addition, the manufacturing method of the compound of this invention is not limited to the example shown below.
(第1製法)
Figure JPOXMLDOC01-appb-C000007
 (式中、P1は酸性条件で脱保護が可能な水酸基の保護基を、Xはクロロ、ブロモ又はヨードを、TMSはトリメチルシリルを、Rはメチル又はエチルを示す。)
(First manufacturing method)
Figure JPOXMLDOC01-appb-C000007
(Wherein P 1 represents a protecting group for a hydroxyl group that can be deprotected under acidic conditions, X represents chloro, bromo, or iodo, TMS represents trimethylsilyl, and R represents methyl or ethyl.)
 本製法は、適当な置換基で置換されたハロベンズアルデヒド1aに対してベンゾチオフェンを付加して1cとし、水酸基を還元して除去して1dとし、トリメチルシリル基で保護されたグルコースを付加した後、トリメチルシリル基及びP1で示される酸性条件で脱保護が可能な水酸基の保護基を除去して1fとし、水酸基を保護し、アノマー位のメトキシ若しくはエトキシを還元して除去し、さらに脱保護反応に付すことにより本発明化合物を製造する方法である。 In this production method, benzothiophene is added to halobenzaldehyde 1a substituted with an appropriate substituent to give 1c, the hydroxyl group is reduced to 1d, and glucose protected with a trimethylsilyl group is added, The trimethylsilyl group and the protecting group of the hydroxyl group that can be deprotected under the acidic condition shown by P 1 are removed to give 1f, the hydroxyl group is protected, methoxy or ethoxy at the anomeric position is reduced and removed, and the deprotection reaction is further performed. It is the method of manufacturing this invention compound by attaching | subjecting.
 なお、ある態様として、Xはブロモであり、P1はメトキシメチル、エトキシエチル、1-メトキシ-1-メチルエチル、メトキシエトキシメチル、若しくはテトラヒドロピラン-2-イルであり、Rはメチルである。 In some embodiments, X is bromo, P 1 is methoxymethyl, ethoxyethyl, 1-methoxy-1-methylethyl, methoxyethoxymethyl, or tetrahydropyran-2-yl, and R is methyl.
(Step 1-1)
 本工程は、化合物1aに化合物1bを付加する工程である。
 付加反応は、反応に不活性な溶媒中、-78 ℃~室温下、ある態様としては-78 ℃~-20 ℃において、化合物1bに塩基を作用させた後、化合物1aを加え、通常0.1~5時間攪拌して行われる。用いられる塩基としては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド等が挙げられる。ここで用いられる溶媒の例としては、特に限定されるものではないが、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、ジグライム等のエーテル類;ヘキサン、ペンタン、ヘプタン等の飽和炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;及びこれらの混合物が挙げられる。
(Step 1-1)
This step is a step of adding compound 1b to compound 1a.
The addition reaction is carried out by reacting compound 1b with a base in a solvent inert to the reaction at −78 ° C. to room temperature, in one embodiment at −78 ° C. to −20 ° C., and then adding compound 1a. Stir for 5 hours. Examples of the base used include n-butyllithium, sec-butyllithium, tert-butyllithium, lithium hexamethyldisilazide, potassium hexamethyldisilazide and the like. Examples of the solvent used here are not particularly limited, but ethers such as tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether, dimethoxyethane and diglyme; saturated hydrocarbons such as hexane, pentane and heptane; Aromatic hydrocarbons such as benzene, toluene and xylene; and mixtures thereof.
(Step 1-2)
 本工程は、化合物1cを還元する工程である。
 還元反応は、反応に不活性な溶媒中、-78 ℃~室温下、ある態様としては-78 ℃~-40 ℃において、化合物1cにルイス酸存在下で還元剤を作用させ、通常0.1~72 時間攪拌して行われる。用いられる還元剤としては、トリエチルシラン等が挙げられ、ルイス酸としては、三フッ化ホウ素・ジエチルエーテル錯体、トリメチルシリルトリフラート等が挙げられる。また、ここで用いられる溶媒の例としては、特に限定されるものではないが、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素類;エーテル類;飽和炭化水素類;芳香族炭化水素類;アセトニトリル;及びこれらの混合物が挙げられる。
(Step 1-2)
This step is a step of reducing compound 1c.
The reduction reaction is carried out by reacting compound 1c with a reducing agent in the presence of a Lewis acid in a solvent inert to the reaction at −78 ° C. to room temperature, and in one embodiment at −78 ° C. to −40 ° C. Stir for hours. Examples of the reducing agent used include triethylsilane, and examples of the Lewis acid include boron trifluoride / diethyl ether complex and trimethylsilyl triflate. Examples of the solvent used here are not particularly limited, but halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane; ethers; saturated hydrocarbons; aromatic hydrocarbons Acetonitrile; and mixtures thereof.
(Step 1-3)
 本工程は、化合物1dに化合物1eを付加し、トリメチルシリル基及びP1で示される酸性条件で脱保護が可能な水酸基の保護基を除去する工程である。
 付加反応は、第1製法Step 1-1に準じて行うことができる。
(Step 1-3)
This process adds the Compound 1e to Compound 1d, a step of removing the hydroxyl-protecting group capable deprotection under acidic conditions represented by a trimethylsilyl group and P 1.
The addition reaction can be performed according to the first production method Step 1-1.
 保護基の除去反応は、メタノール若しくはエタノール中、冷却下~還流下、ある態様としては0 ℃~室温において、前工程の付加反応の生成物に酸を作用させ、通常0.1~72 時間攪拌して行われる。用いられる酸としては、塩酸、硫酸等の無機酸、トリフルオロ酢酸、p-トルエンスルホン酸、カンファースルホン酸、メタンスルホン酸等の有機酸を挙げることができる。 The reaction for removing the protecting group is carried out by allowing an acid to act on the product of the addition reaction in the previous step in methanol or ethanol under cooling to reflux, in one embodiment at 0 ° C. to room temperature, and usually stirring for 0.1 to 72 hours. Done. Examples of the acid used include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as trifluoroacetic acid, p-toluenesulfonic acid, camphorsulfonic acid, and methanesulfonic acid.
(Step 1-4)
 本工程は、化合物1fのアノマー位のメトキシ若しくはエトキシを除去するため、水酸基を保護し、アノマー位のメトキシ若しくはエトキシを還元して除去し、さらに保護基を除去して、本発明化合物を得る工程である。
(Step 1-4)
In this step, in order to remove anomeric methoxy or ethoxy of compound 1f, the hydroxyl group is protected, the anomeric methoxy or ethoxy is reduced and removed, and the protecting group is further removed to obtain the compound of the present invention. It is.
 保護基の導入は、反応に不活性な溶媒中、冷却下~還流下、ある態様としては0 ℃~室温において、通常0.1~72 時間攪拌して行われる。保護基としては、次の還元反応で除去されない基であればよく、具体的にはアセチル基が挙げられ、ウッツ(P. G. M. Wuts) 及びグリーン (T. W. Greene) 著、「Greene’s Protective Groups in Organic Synthesis(第4版、2006年) 」に記載の方法を用いうる。 The introduction of the protecting group is carried out by stirring in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours. The protecting group may be any group that cannot be removed by the following reduction reaction, and specifically includes an acetyl group. P. G. M. Wutsut and Green (T. W. Greene), `` Greene's Protective Groups in Organic Synthesis (4th edition, 2006) ”can be used.
 還元反応は、第1製法Step 1-2に準じて行うことができる。ただし、水を加えて反応させるほうが、反応進行に好ましい場合がある。 The reduction reaction can be carried out according to the first production method Step 1-2. However, it may be preferable for the reaction to proceed by adding water.
 保護基の除去反応は、反応に不活性な溶媒中、冷却下~還流下、ある態様としては0℃~室温において、通常0.1~72時間攪拌して行われる。除去する保護基により、ウッツ(P.G. M. Wuts) 及びグリーン (T. W. Greene) 著、「Greene’s Protective Groups in Organic Synthesis (第4版、2006年) 」に記載の方法から選択して行うことができる。アセチルを除去する場合には、アルコール類;水;又はこれらの混合溶媒中、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、ナトリウムメトキシド等の塩基を作用させ、0 ℃~室温において、0.1~72 時間攪拌して行うこともできる。 The reaction for removing the protecting group is carried out by stirring in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours. Depending on the protecting group to be removed, select from the methods described in "Greene's Protective Groups Organic Synthesis Synthesis (4th edition, 2006)" by PG M. Wuts and Green (T. W. Greene). Can do. In the case of removing acetyl, alcohols; water; or a mixed solvent thereof such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium methoxide, etc. It can also be carried out by allowing a base to act and stirring at 0 ° C. to room temperature for 0.1 to 72 hours.
 なお、本製法における化合物1a又はその塩は、式(I)の化合物又はその塩の製造にあたり、非常に有用な製造中間体であり、この製造中間体を経由することにより、特に収率の面で効率よく式(I)の化合物又はその塩を製造することができる。また、化合物1a又はその塩は、化合物1aの構造式中のP1が-Hである化合物に対して、保護基P1を導入することにより製造することができ、その方法は当業者に自明な方法、若しくはそれに準じる方法を採用することができる。例えば、P1がメトキシメチルの場合、メトキシメチルクロリド等のメトキシメチル化剤を用いて、適切な溶媒中で反応させ、適切な処理を行うことで、化合物1a又はその塩を製造することができる。 The compound 1a or a salt thereof in this production method is a very useful production intermediate in the production of the compound of the formula (I) or a salt thereof. Can efficiently produce the compound of formula (I) or a salt thereof. In addition, compound 1a or a salt thereof can be produced by introducing a protecting group P 1 into a compound in which P 1 in the structural formula of compound 1a is —H, and the method is obvious to those skilled in the art. Or a similar method can be employed. For example, when P 1 is methoxymethyl, compound 1a or a salt thereof can be produced by reacting in an appropriate solvent using a methoxymethylating agent such as methoxymethyl chloride and performing an appropriate treatment. .
(第2製法)
Figure JPOXMLDOC01-appb-C000008
 (式中、P2は水酸基の保護基を、Bnはベンジルを示す。)
(Second manufacturing method)
Figure JPOXMLDOC01-appb-C000008
(In the formula, P 2 represents a hydroxyl-protecting group, and Bn represents benzyl.)
 本製法は、適当な置換基で置換されたハロベンズアルデヒド2aに対してベンゾチオフェンを付加して2bとし、水酸基を還元して除去して2cとし、ベンジル基で保護されたグルコースを付加して2eとし、アノマー位の水酸基を還元して除去し、さらに脱保護反応に付すことにより本発明化合物を製造する方法である。 In this production method, benzothiophene was added to halobenzaldehyde 2a substituted with an appropriate substituent to give 2b, the hydroxyl group was reduced to 2c, and glucose protected with a benzyl group was added to give 2e. And the anomeric hydroxyl group is reduced and removed, and further subjected to a deprotection reaction to produce the compound of the present invention.
 なお、ある態様として、Xはブロモであり、P2はベンジル若しくは低級アルキルである。 In some embodiments, X is bromo and P 2 is benzyl or lower alkyl.
(Step 2-1)
 本工程は、化合物2aに化合物1bを付加する工程である。
 付加反応は、第1製法Step 1-1に準じて行うことができる。
(Step 2-1)
This step is a step of adding compound 1b to compound 2a.
The addition reaction can be performed according to the first production method Step 1-1.
(Step 2-2)
 本工程は、化合物2bを還元する工程である。
 還元反応は、第1製法Step 1-2に準じて行うことができる。
(Step 2-2)
This step is a step of reducing compound 2b.
The reduction reaction can be performed according to the first production method Step 1-2.
(Step 2-3)
 本工程は、化合物2cに化合物2dを付加する工程である。
 付加反応は、第1製法Step 1-1に準じて行うことができる。
(Step 2-3)
This step is a step of adding compound 2d to compound 2c.
The addition reaction can be performed according to the first production method Step 1-1.
(Step 2-4)
 本工程は、化合物2eのアノマー位の水酸基を還元して除去し、さらにベンジル基及びP2で示される水酸基の保護基を除去して、本発明化合物を得る工程である。
 還元反応は、第1製法Step 1-2に準じて行うことができる。
(Step 2-4)
This step is a step of obtaining the compound of the present invention by reducing and removing the anomeric hydroxyl group of compound 2e and further removing the benzyl group and the hydroxyl protecting group represented by P 2 .
The reduction reaction can be performed according to the first production method Step 1-2.
 保護基の除去反応は、反応に不活性な溶媒中、冷却下~還流下、ある態様としては0℃~室温において、通常0.1~72時間攪拌して行われる。除去する保護基により、ウッツ(P.G. M. Wuts) 及びグリーン (T. W. Greene) 著、「Greene’s Protective Groups in Organic Synthesis (第4版、2006年) 」に記載の方法から選択して行うことができる。P2がベンジルである場合には、ハロゲン化炭化水素類溶媒中、ペンタメチルベンゼンの存在下に、ルイス酸を作用させて、-78 ℃~-20 ℃において、0.1~72 時間攪拌して行うこともできる。ここで用いられるルイス酸としては、三塩化ホウ素、三臭化ホウ素、三フッ化ホウ素・ジメチルスルフィド錯体等が挙げられる。 The reaction for removing the protecting group is carried out in a solvent inert to the reaction under cooling to reflux, and in one embodiment, at 0 ° C. to room temperature, usually for 0.1 to 72 hours with stirring. Depending on the protecting group to be removed, the method can be selected from the methods described in “Greene's Protective Groups in Organic Synthesis (4th edition, 2006)” by PG M. Wuts and T. W. Greene. When P 2 is benzyl, a Lewis acid is allowed to act in a halogenated hydrocarbon solvent in the presence of pentamethylbenzene and stirred at -78 ° C to -20 ° C for 0.1 to 72 hours. You can also Examples of the Lewis acid used here include boron trichloride, boron tribromide, boron trifluoride / dimethyl sulfide complex, and the like.
(原料合成1)
Figure JPOXMLDOC01-appb-C000009
 (式中、P3は第1製法におけるP1若しくは第2製法におけるP2を、Yはクロロ、ブロモ又はヨードを示す。)
(Raw material synthesis 1)
Figure JPOXMLDOC01-appb-C000009
(In the formula, P 3 represents P 1 in the first production method or P 2 in the second production method, and Y represents chloro, bromo or iodo.)
 第1製法の原料である1a及び第2製法の原料である2aは、例えばテトラブチルアンモニウムトリブロミドやピリジニウムブロミドペルブロミドを用いた3aのブロム化で得られる3bの水酸基を、P1若しくはP2で保護した3cをリチオ化し、N,N-ジメチルホルムアミドを作用させてホルミル基を導入後、得られる3dに例えばテトラブチルアンモニウムトリブロミドを用いたブロム化を行うことで製造することができる。 The raw material 1a of the first production method and the raw material 2a of the second production method are prepared by converting the hydroxyl group of 3b obtained by bromination of 3a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide to P 1 or P 2 It can be produced by lithiation of 3c protected with γ, reacting N, N-dimethylformamide to introduce a formyl group, and then brominating the resulting 3d with, for example, tetrabutylammonium tribromide.
(原料合成2)
Figure JPOXMLDOC01-appb-C000010
(Raw material synthesis 2)
Figure JPOXMLDOC01-appb-C000010
 第1製法の原料である1a及び第2製法の原料である2aは、例えばテトラブチルアンモニウムトリブロミドやピリジニウムブロミドペルブロミドを用いた3aのブロム化で得られる3eをホルムアルデヒドを用いてヒドロキシメチル化した後に、得られた3fの水酸基を常法に従ってP1若しくはP2で保護し、得られた3gを通常の酸化剤で酸化させることで製造することができる。 The raw material 1a of the first manufacturing method and the raw material 2a of the second manufacturing method were obtained by hydroxymethylating 3e obtained by bromination of 3a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide using formaldehyde Thereafter, the obtained 3f hydroxyl group can be protected by P 1 or P 2 according to a conventional method, and the obtained 3 g can be oxidized with a normal oxidizing agent.
(原料合成3)
Figure JPOXMLDOC01-appb-C000011
(Raw material synthesis 3)
Figure JPOXMLDOC01-appb-C000011
 第1製法の原料である1a及び第2製法の原料である2aは、例えばテトラブチルアンモニウムトリブロミドやピリジニウムブロミドペルブロミドを用いた4aのブロム化で得られる4bの水酸基を、P1若しくはP2で保護することで製造することができる。 The raw material 1a of the first production method and the raw material 2a of the second production method are prepared by converting the hydroxyl group of 4b obtained by bromination of 4a using, for example, tetrabutylammonium tribromide or pyridinium bromide perbromide into P 1 or P 2 It can manufacture by protecting with.
(原料合成4)
Figure JPOXMLDOC01-appb-C000012
(Raw material synthesis 4)
Figure JPOXMLDOC01-appb-C000012
 原料合成2の中間体である3fは、例えば4aに水素化ホウ素ナトリウム等の還元剤を作用させて得られる4cをテトラブチルアンモニウムトリブロミドやピリジニウムブロミドペルブロミドを用いてブロム化することで製造することもできる。 3f, an intermediate of raw material synthesis 2, is produced, for example, by bromating 4c obtained by reacting 4a with a reducing agent such as sodium borohydride using tetrabutylammonium tribromide or pyridinium bromide perbromide. You can also.
 式(I)の化合物は、遊離化合物、その塩、水和物、溶媒和物、あるいは結晶多形の物質として単離され、精製される。式(I)の化合物の塩は、常法の造塩反応に付すことにより製造することもできる。 The compound of formula (I) is isolated and purified as a free compound, its salt, hydrate, solvate, or crystalline polymorphic substance. The salt of the compound of the formula (I) can also be produced by subjecting it to a conventional salt formation reaction.
 単離、精製は、抽出、分別結晶化、各種分画クロマトグラフィー等、通常の化学操作を適用して行なわれる。 Isolation and purification are performed by applying ordinary chemical operations such as extraction, fractional crystallization, and various fractional chromatography.
 各種の異性体は、適当な原料化合物を選択することにより製造でき、あるいは異性体間の物理化学的性質の差を利用して分離することができる。例えば、光学異性体は、ラセミ体の一般的な光学分割法(例えば、光学活性な塩基又は酸とのジアステレオマー塩に導く分別結晶化や、キラルカラム等を用いたクロマトグラフィー等)により得られ、また、適当な光学活性な原料化合物から製造することもできる。 Various isomers can be produced by selecting an appropriate raw material compound, or can be separated by utilizing a difference in physicochemical properties between isomers. For example, optical isomers can be obtained by general optical resolution of racemates (for example, fractional crystallization leading to diastereomeric salts with optically active bases or acids, chromatography using chiral columns, etc.). Further, it can also be produced from a suitable optically active raw material compound.
 式(I)の化合物の薬理活性は、以下の試験により確認された。 The pharmacological activity of the compound of formula (I) was confirmed by the following test.
試験例1 SGLT-1及びSGLT-2の阻害活性測定試験
(1)ヒトSGLT-1及びSGLT-2発現ベクターの作製
 Superscript II(Gibco社製)とランダムヘキサマーとを用いて、ヒト腎臓由来の全RNA(Clontech社製)から1本鎖cDNAを逆転写した。これを鋳型とし、Pyrobest DNAポリメラーゼ(Takara社製)を用いたPCR反応により、ヒトSGLT-1(GenBank M24847)、及びヒトSGLT-2(GenBank M95549)をコードするDNA断片を増幅した(このDNA断片の5’側にHind IIIサイトが、3’側にEcoRIサイトが導入されるようなプライマーを用いた)。
Test Example 1 SGLT-1 and SGLT-2 Inhibitory Activity Measurement Test (1) Production of Human SGLT-1 and SGLT-2 Expression Vectors Using Superscript II (Gibco) and random hexamers, derived from human kidney Single-stranded cDNA was reverse transcribed from total RNA (Clontech). Using this as a template, DNA fragments encoding human SGLT-1 (GenBank M24847) and human SGLT-2 (GenBank M95549) were amplified by PCR using Pyrobest DNA polymerase (Takara) (this DNA fragment). The primer was used so that the Hind III site was introduced on the 5 'side and the EcoRI site was introduced on the 3' side).
 増幅された断片をTopo TA Cloningキット(Invitrogen社製)を用いてpCR2.1-Topoベクターにクローニングし、大腸菌JM109株のコンピテントセルに導入して、アンピシリン耐性を示すクローンをアンピシリン(100 mg/L)を含むLB培地中で増殖した。増殖した大腸菌からHanahanの方法(Maniatisら、Molecular Cloningを参照)によりプラスミドを精製し、このプラスミドをHindIII、EcoRI消化して得られるヒトSGLT-2をコードするDNA断片を、発現ベクターpcDNA3.1(Invitrogen社製)の同サイトにT4 DNAリガーゼ(Roche Diagonostics社製)を用いてライゲーションし、クローニングした。ライゲーションしたクローンを、上記と同様に大腸菌JM109株のコンピテントセルに導入し、アンピシリンを含むLB培地中で増殖させ、Hanahanの方法によりヒトSGLT-1及びSGLT-2発現ベクターを取得した。 The amplified fragment was cloned into pCR2.1-Topo vector using TopoTopTA Cloning kit (Invitrogen), introduced into competent cells of E. coli strain JM109, and ampicillin resistant clones were ampicillin (100 mg / Grown in LB medium containing L). A plasmid was purified from the grown Escherichia coli by the method of Hanahan (see Maniatis et al., Molecular Cloning), and this plasmid was digested with HindIII and EcoRI. A DNA fragment encoding human SGLT-2 was obtained by expression vector pcDNA3.1 ( Invitrogen) was ligated to the same site using T4 DNA ligase (Roche Diagonostics) and cloned. The ligated clone was introduced into a competent cell of E. coli JM109 strain in the same manner as described above, grown in LB medium containing ampicillin, and human SGLT-1 and SGLT-2 expression vectors were obtained by the method of Hanahan.
(2)ヒトSGLT-1もしくはSGLT-2安定発現細胞の作製
 ヒトSGLT-1もしくはSGLT-2発現ベクターをLipofectamine2000(Gibco社製)を用いてCHO-K1細胞に導入した。遺伝子導入後、細胞をペニシリン(50 IU/mL 大日本製薬社製)、ストレプトマイシン(50 μg/mL 大日本製薬社製)、Geneticin(40 μg/mL Gibco社製)と10%ウシ胎児血清を含むHam’s F12培地(日水製薬社製)中で、37 ℃、5 % CO2存在下で2週間ほど培養し、Geneticin耐性のクローンを得た。これらのクローンの中からヒトSGLT-2を安定発現する細胞を、定常レベルに対するナトリウム存在下の糖取り込みの比活性を指標に選択し、取得した(糖取り込みの測定方法の詳細は次項以降参照)。
(2) Preparation of human SGLT-1 or SGLT-2 stable expression cells Human SGLT-1 or SGLT-2 expression vectors were introduced into CHO-K1 cells using Lipofectamine 2000 (Gibco). After gene transfer, cells contain penicillin (50 IU / mL Dainippon Pharmaceutical), streptomycin (50 μg / mL Dainippon Pharmaceutical), Geneticin (40 μg / mL Gibco) and 10% fetal bovine serum A geneticin-resistant clone was obtained by culturing in Ham's F12 medium (manufactured by Nissui Pharmaceutical) in the presence of 5% CO 2 at 37 ° C. for about 2 weeks. From these clones, cells stably expressing human SGLT-2 were selected using the specific activity of sugar uptake in the presence of sodium relative to the steady level as an index (see the following section for details of the method for measuring sugar uptake). .
(3)メチル-α-D-グルコピラノシド取り込み阻害活性の測定
 ヒトSGLT-1若しくはSGLT-2安定発現CHO細胞の培地を除去し、1ウェルあたり前処置用緩衝液(塩化コリン140 mM、塩化カリウム2 mM、塩化カルシウム1 mM、塩化マグネシウム1 mM、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸10 mM、トリス(ヒドロキシメチル)アミノメタン5 mMを含む緩衝液pH 7.4)を100 μL加え、37℃で20分間静置した。
(3) Measurement of methyl-α-D-glucopyranoside uptake inhibitory activity The medium of CHO cells stably expressing human SGLT-1 or SGLT-2 was removed, and a pretreatment buffer (choline chloride 140 mM, potassium chloride 2 mM) per well was removed. Buffer solution containing 1 mM calcium chloride, 1 mM magnesium chloride, 10 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid, 5 mM tris (hydroxymethyl) aminomethane, pH 7.4) 100 μL was added and allowed to stand at 37 ° C. for 20 minutes.
 試験化合物を含む取り込み用緩衝液(塩化ナトリウム140 mM、塩化カリウム2 mM、塩化カルシウム1 mM、塩化マグネシウム1 mM、メチル-α-D-グルコピラノシド50 μM、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸10 mM、トリス(ヒドロキシメチル)アミノメタン5 mMを含む緩衝液pH 7.4)1000 μLに11 μLのメチル-α-D-(U-14C)グルコピラノシド(Amersham Pharmacia Biotech社製)を加え混合し、取り込み用緩衝液とした。対照群に試験化合物を含まない取り込み用緩衝液を調製した。また、試験化合物及びナトリウム非存在下の基礎取り込み測定用に塩化ナトリウムに替えて140 mMの塩化コリンを含む基礎取り込み用緩衝液を同様に調製した。 Uptake buffer containing test compound (140 塩 化 ナ ト リ ウ ム mM sodium chloride, 2 mM potassium chloride, 1 mM calcium chloride, 1 mM magnesium chloride, 50 μM methyl-α-D-glucopyranoside, 2- [4- (2-hydroxyethyl) 1-piperazinyl] ethanesulfonic acid 10 mM, tris (hydroxymethyl) aminomethane 5 mM buffer pH 7.4) 1000 μL 11 μL methyl-α-D- (U-14C) glucopyranoside (Amersham Pharmacia Biotech) Product) and mixed to obtain a buffer for uptake. An uptake buffer containing no test compound was prepared in the control group. In addition, a basal uptake buffer solution containing 140 μM choline chloride instead of sodium chloride was prepared in the same manner for basal uptake measurement in the absence of the test compound and sodium.
 前処置用緩衝液を除去し、取り込み用緩衝液を1ウェルあたり25 μLずつ加え37 ℃でヒトSGLT-1及びSGLT-2安定発現細胞を2時間静置した。取り込み用緩衝液を除去し、洗浄用緩衝液(塩化コリン140 mM、塩化カリウム2 mM、塩化カルシウム1 mM、塩化マグネシウム1 mM、メチル-α-D-グルコピラノシド10 mM、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸10 mM、トリス(ヒドロキシメチル)アミノメタン5 mMを含む緩衝液pH 7.4)を1ウェルあたり200 μLずつ加え、すぐに除去した。この洗浄操作をさらに1回行い、0.5 %ラウリル硫酸ナトリウムを1ウェルあたり25 μLずつ加え、細胞を可溶化した。ここに75 μLのマイクロシンチ40(Packard社製)を加え、マイクロシンチレーションカウンター トップカウント(Packard社製)にて放射活性を計測した。対照群の取り込み量から基礎取り込み量を差し引いた値を100%とし、取り込み量の50%阻害する濃度(IC50値)を濃度-阻害曲線から最小二乗法により算出した。 The pretreatment buffer was removed, uptake buffer was added at 25 μL per well, and human SGLT-1 and SGLT-2 stably expressing cells were allowed to stand at 37 ° C. for 2 hours. The uptake buffer was removed and the wash buffer (choline chloride 140 mM, potassium chloride 2 mM, calcium chloride 1 mM, magnesium chloride 1 mM, methyl-α-D-glucopyranoside 10 mM, 2- [4- (2 -Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid 10 mM and tris (hydroxymethyl) aminomethane 5 mM in buffer pH 7.4) were added at 200 μL per well and immediately removed. This washing operation was performed once more, and 0.5% sodium lauryl sulfate was added at 25 μL per well to solubilize the cells. 75 μL of micro scintillation 40 (manufactured by Packard) was added thereto, and radioactivity was measured with a micro scintillation countertop count (manufactured by Packard). The value obtained by subtracting the basal uptake from the uptake of the control group was taken as 100%, and the concentration at which 50% of the uptake was inhibited (IC 50 value) was calculated from the concentration-inhibition curve by the least square method.
 その結果、本発明化合物はSGLT-1及びSGLT-2のいずれに対しても、ほぼ同等の阻害活性を示した。本発明のいくつかの化合物、及び参考化合物のIC50値を表1に示す。Exは実施例番号を示す。なお、参考化合物1及び2は、それぞれ国際公開第2004/080990号パンフレットに記載の実施例159及び127の化合物であり、ここでは、SGLT-2を選択的に阻害する化合物の一例として示した。 As a result, the compound of the present invention showed almost the same inhibitory activity against both SGLT-1 and SGLT-2. IC 50 values of some compounds of the present invention and reference compounds are shown in Table 1. Ex indicates an example number. Reference compounds 1 and 2 are the compounds of Examples 159 and 127 described in WO 2004/080990, respectively, and are shown here as examples of compounds that selectively inhibit SGLT-2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
試験例2 重度及び軽度の高血糖状態における血糖低下作用確認試験
 実験動物として飽食時及び空腹時(16時間絶食)のKK-Ayマウス(日本クレア、雄性)を用いた。KK-Ayマウス(雄性)の飽食時の血糖値は、400~500 mg/dL程度であり、KK-Ayマウス(雄性)の空腹時の血糖値は、150~200 mg/dL程度である。
Test Example 2 Hypoglycemic Action Confirmation Test in Severe and Mild Hyperglycemia State KK-Ay mice (Claire Japan, male) in satiety and fasting (fasted for 16 hours) were used as experimental animals. KK-Ay mice (male) have a satiety blood glucose level of about 400 to 500 mg / dL, and KK-Ay mice (male) have a fasting blood glucose level of about 150 to 200 mg / dL.
 試験化合物を0.5 %メチルセルロース水溶液に懸濁させ、1 mg/10 mLの濃度とした。マウスの体重を測定し、試験化合物懸濁液を10、30 mL/kg(試験化合物として1、3 mg/kg)の用量で強制経口投与し、対照群には0.5 %メチルセルロース水溶液のみを投与した。1群あたりの匹数は5もしくは6匹とし、試験化合物投与後絶食、絶水条件にした。採血は薬物投与直前及び薬物投与後1、2、4、8時間において尾静脈から行い、血糖値をグルコースCIIテストワコー(和光純薬)を用いて測定した。血糖低下作用の強度は、各試験化合物投与群の0から8時間での経時的血糖値よりtrapezoidal法を用いて血糖値-時間曲線化面積(AUC)を算出し、対照群のそれに対する血糖低下率(%)で示した。 The test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / lOmL. The body weight of the mice was measured, the test compound suspension was forcibly administered orally at a dose of 10, 30 mg / kg (1, 3 mg / kg as the test compound), and the control group was administered only with a 0.5 wt% methylcellulose aqueous solution. . The number of mice per group was 5 or 6, and fasting and water-fasting conditions were applied after test compound administration. Blood was collected from the tail vein immediately before drug administration and 1, 2, 4, and 8 hours after drug administration, and the blood glucose level was measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The strength of the hypoglycemic effect is calculated by calculating the blood glucose level-time curve area (AUC) using the trapezoidal method from the blood glucose level over time from 0 to 8 hours of each test compound administration group, and lowering the blood glucose level relative to that of the control group It was shown in rate (%).
 その結果、本発明のいくつかの化合物は、本試験動物の飽食時及び空腹時、即ち、血糖値が400~500 mg/dL程度の重度の高血糖状態及び血糖値が150~200 mg/dL程度の軽度の高血糖状態のいずれにおいても、1 mg/kgの用量で優れた血糖低下作用を有することが確認された。一方、SGLT-2を選択的に阻害する化合物である参考化合物1及び2は、飽食時、即ち、重度の高血糖状態では、1 mg/kgの用量で優れた血糖低下作用を示したが、空腹時、即ち、軽度の高血糖状態においては、3 mg/kgの用量でも十分な当該作用を示さなかった。本発明のいくつかの化合物、及び参考化合物の血糖低下率を表2に示す。Exは実施例番号を示す。なお、参考化合物1及び2は、上記試験例1において記載した化合物と同じ化合物を示す。また、NTは試験が該化合物については実施されていないことを示す。 As a result, some of the compounds of the present invention show that the test animals are satiety and fasting, that is, a severe hyperglycemia state with a blood glucose level of about 400 to 500 mg / dL and a blood glucose level of 150 to 200 mg / dL. In any mild hyperglycemic state, it was confirmed that the dose of 1 mg / kg has an excellent hypoglycemic effect. On the other hand, Reference Compounds 1 and 2 which are compounds that selectively inhibit SGLT-2 showed an excellent blood glucose lowering effect at a dose of 1 mg / kg at the time of satiety, that is, in a severe hyperglycemic state. In the fasting state, that is, in a mild hyperglycemic state, a dose of 3 mg / kg did not show sufficient effects. Table 2 shows the blood glucose lowering rate of some compounds of the present invention and reference compounds. Ex indicates an example number. Reference compounds 1 and 2 represent the same compounds as those described in Test Example 1 above. NT also indicates that the test has not been performed on the compound.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
試験例3 軽度の高血糖状態における血糖低下作用確認試験
 実験動物として飽食時のKK-Ayマウス(日本クレア、雌性)を用いた。KK-Ayマウス(雌性)の飽食時の血糖値は、200 mg/dL程度であり、試験例2におけるKK-Ayマウス(雄性)の空腹時の血糖値と同等である。
Test Example 3 Hypoglycemic Action Confirmation Test in Mild Hyperglycemia State KK-Ay mice (Japan Claire, female) at the time of satiation were used as experimental animals. The blood sugar level of KK-Ay mice (female) at the time of satiation is about 200 mg / dL, which is equivalent to the fasting blood sugar level of KK-Ay mice (male) in Test Example 2.
 試験化合物を0.5 %メチルセルロース水溶液に懸濁させ、1 mg/10 mLの濃度とした。マウスの体重を測定し、試験化合物懸濁液を10 mL/kg(試験化合物として1 mg/kg)の用量で強制経口投与し、対照群には0.5%メチルセルロース水溶液のみを投与した。1群あたりの匹数は5もしくは6匹とし、試験化合物投与後絶食、絶水条件にした。採血は薬物投与直前及び薬物投与後1、2、4、8時間において尾静脈から行い、血糖値をグルコースCIIテストワコー(和光純薬)を用いて測定した。血糖低下作用の強度は、各試験化合物投与群の0から8 時間での経時的血糖値よりtrapezoidal法を用いて血糖値-時間曲線化面積(AUC)を算出し、対照群のそれに対する血糖低下率(%)で示した。 The test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / lOmL. The body weight of the mice was measured, and the test compound suspension was forcibly orally administered at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group. The number of mice per group was 5 or 6, and fasting and water-fasting conditions were applied after test compound administration. Blood was collected from the tail vein immediately before drug administration and 1, 2, 4, and 8 hours after drug administration, and the blood glucose level was measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The strength of hypoglycemic action is calculated by calculating the blood glucose level-time curve area (AUC) using the trapezoidal method from the blood glucose level over time from 0 to 8 hours of each test compound administration group It was shown in rate (%).
 その結果、本発明化合物の中には、本試験動物の飽食時、即ち、血糖値が200 mg/dL程度の軽度の高血糖状態において、1 mg/kgの用量で25 %以上の血糖低下作用を示し、試験例2のKK-Ayマウス(雄性)の空腹時と同様、優れた当該作用を有する化合物があった。 As a result, some of the compounds of the present invention have a blood glucose lowering action of 25% or more at a dose of 1 mg / kg when the test animal is satiety, that is, in a mild hyperglycemia state where the blood glucose level is about 200 mg / dL. As in the fasting of the KK-Ay mouse (male) of Test Example 2, there was a compound having an excellent effect.
 以下、試験例1~3の結果をまとめる。 The results of Test Examples 1 to 3 are summarized below.
 SGLT-1及びSGLT-2の阻害活性測定試験より、本発明化合物は、SGLT-1及びSGLT-2のいずれに対しても、ほぼ同等の阻害活性を示し、SGLT-1及びSGLT-2の二重阻害活性を有することが明らかとなった。また、本発明のいくつかの化合物はSGLT-1及びSGLT-2のいずれにも、IC50値として、およそ10 nM以下の強い阻害活性を示した。 From the SGLT-1 and SGLT-2 inhibitory activity measurement test, the compounds of the present invention showed almost the same inhibitory activity against both SGLT-1 and SGLT-2. It became clear that it has heavy inhibitory activity. In addition, some compounds of the present invention showed strong inhibitory activity of about 10 nM or less as IC 50 values for both SGLT-1 and SGLT-2.
 重度及び軽度の高血糖状態における血糖低下作用確認試験より、SGLT-2を選択的に阻害する参考化合物1及び2は、重度の高血糖状態に対しては、優れた血糖低下作用を有するが、軽度の高血糖状態に対しては、十分な血糖低下作用を有していないことが明らかとなった。 From the test for confirming the hypoglycemic effect in severe and mild hyperglycemic conditions, Reference Compounds 1 and 2 that selectively inhibit SGLT-2 have an excellent hypoglycemic effect on severe hyperglycemic conditions. It has been clarified that it does not have a sufficient hypoglycemic effect for mild hyperglycemia.
 一方、本発明のいくつかの化合物は、重度の高血糖状態だけでなく、軽度の高血糖状態に対しても、1 mg/kgという低い用量で強力な血糖低下作用を発現し、高血糖状態の程度に関わらず、優れた当該作用を示すことが明らかとなった。 On the other hand, some compounds of the present invention exert a powerful hypoglycemic action at a dose as low as 1 mg / kg not only for severe hyperglycemia but also for mild hyperglycemia. It became clear that the said effect | action was excellent irrespective of the grade.
 以上より、軽度の高血糖状態に対する血糖低下作用の発現には、SGLT-2を阻害するだけではなく、SGLT-1も阻害する必要があると考えられた。 From the above, it was considered that not only SGLT-2 but also SGLT-1 must be inhibited in order to develop the hypoglycemic effect on mild hyperglycemia.
 従って、SGLT-2を選択的に阻害する化合物では、十分な効果が得られない軽度の高血糖状態に対しても、SGLT-1及びSGLT-2の二重阻害作用を有する本発明化合物は、優れた血糖低下作用を示し、高血糖状態の程度に関わらず、血糖低下作用を示すことから、糖尿病及び各種糖尿病関連疾患において、疾患の重症度を問わない、より多くの患者層に適応可能な該疾患の治療剤の有効成分として有用であることは明らかである。 Therefore, the compound of the present invention having a dual inhibitory action of SGLT-1 and SGLT-2 even for mild hyperglycemia where a compound that selectively inhibits SGLT-2 cannot achieve a sufficient effect, Because it exhibits an excellent blood glucose lowering effect and exhibits a blood glucose lowering effect regardless of the level of hyperglycemia, it can be applied to more patient groups regardless of the severity of the disease in diabetes and various diabetes-related diseases It is clear that it is useful as an active ingredient of a therapeutic agent for the disease.
試験例4 SGLT-1及びSGLT-2の阻害活性測定試験
 以下の比較化合物について、試験例1と同様に試験を実施した。
Test Example 4 SGLT-1 and SGLT-2 Inhibitory Activity Measurement Test The following comparative compounds were tested in the same manner as Test Example 1.
 その結果、比較化合物1及び2は、SGLT-1及びSGLT-2に対して、本発明化合物とほぼ同等の阻害活性を示した。一方、比較化合物3~5は、SGLT-2に対する阻害活性は、本発明化合物とほぼ同等であったが、SGLT-1に対する阻害活性は、本発明化合物と比較して、極めて弱かった。比較化合物1~5のIC50値を表3に示す。 As a result, Comparative Compounds 1 and 2 showed almost the same inhibitory activity against SGLT-1 and SGLT-2 as the compounds of the present invention. On the other hand, Comparative Compounds 3 to 5 had almost the same inhibitory activity against SGLT-2 as that of the compound of the present invention, but the inhibitory activity against SGLT-1 was very weak compared with the compound of the present invention. Table 3 shows the IC 50 values of Comparative Compounds 1 to 5.
 なお、比較化合物1~5は、それぞれ国際公開第2004/080990号パンフレットに記載の実施例144、表37(第1行、第3列)、実施例116、142及び143の化合物であり、いずれも下記式(II)中のRCがOHである化合物である。 Comparative compounds 1 to 5 are the compounds of Example 144, Table 37 (first row, third column), Examples 116, 142 and 143 described in International Publication No. 2004/080990, respectively. Is a compound in which R C in the following formula (II) is OH.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
試験例5 ヒト小腸グルクロン酸抱合代謝試験
 2μMの試験化合物を含む反応液(50 mM Tris-HCl (pH 7.4)、 50 μg/mg Alamethicin、8 mM MgCl2、 0.1 mg/mL Human intestinal Microsome)を5 分間37 ℃温浴中にてインキュベーションし、2 mM UDPGAを加えて反応を開始した。開始後、0、 10、 30、 60、 120分後に反応液の一部を採取し、氷冷アセトニトリル中に添加して反応を停止した。反応停止した溶液中の試験化合物をLC/MS/MS法により分析し、反応0 分時に対する各時点の試験化合物の残存率を算出した。
Test Example 5 Human Small Intestine Glucuronic Acid Conjugation Metabolism Test Reaction solution (50 mM Tris-HCl (pH 7.4), 50 μg / mg Alamethicin, 8 mM MgCl 2 , 0.1 mg / mL Human intestinal Microsome) containing 2 μM test compound Incubation was performed in a 37 ° C. water bath for 2 minutes, and 2 mM UDPGA was added to initiate the reaction. A part of the reaction solution was collected at 0, 10, 30, 60, 120 minutes after the start, and added to ice-cold acetonitrile to stop the reaction. The test compound in the solution where the reaction was stopped was analyzed by LC / MS / MS method, and the residual ratio of the test compound at each time point with respect to 0 minutes of reaction was calculated.
 その結果、本発明のいくつかの化合物は、反応開始後120 分時においても残存率が60 %以上と高く、ヒト小腸グルクロン酸抱合代謝を受けにくいことが確認された。一方、比較化合物1及び2は、反応開始後の残存率の低下が早く、反応開始後120 分時には残存率が10 %以下と極めて低い値となり、ヒト小腸グルクロン酸抱合代謝を非常に受けやすいことが確認された。X軸を反応時間、Y軸を残存率としたグラフを図1に、120 分時の試験化合物の残存率を表4に示す。Exは実施例番号を示す。なお、比較化合物1及び2は、上記試験例4において記載した化合物と同じ化合物を示す。 As a result, it was confirmed that some of the compounds of the present invention had a high residual rate of 60% or more even at 120 minutes after the start of the reaction, and were not easily subjected to human small intestinal glucuronide-metabolism. On the other hand, comparative compounds 1 and 2 have a rapid decrease in the residual rate after the start of the reaction, and the residual rate is extremely low at 10% or less at 120 minutes after the start of the reaction, and are very susceptible to human small intestinal glucuronidation metabolism. Was confirmed. A graph with the reaction time on the X axis and the residual rate on the Y axis is shown in FIG. 1, and the residual rate of the test compound at 120 minutes is shown in Table 4. Ex indicates an example number. Comparative compounds 1 and 2 represent the same compounds as those described in Test Example 4 above.
Figure JPOXMLDOC01-appb-T000016
 以下、試験例4、5の結果をまとめる。
Figure JPOXMLDOC01-appb-T000016
The results of Test Examples 4 and 5 are summarized below.
 SGLT-1及びSGLT-2の阻害活性測定試験より、比較化合物1及び2は、SGLT-1及びSGLT-2に対して、本発明のいくつかの化合物とほぼ同等の阻害活性を示すが、比較化合物3~5は、本発明のいくつかの化合物と比較してSGLT-1に対する阻害活性が極めて弱く、比較化合物3~5のSGLT-1に対するIC50値は、表1に示した本発明のいくつかの化合物のSGLT-1に対するIC50値の約15~170倍であることが明らかとなった。 From the SGLT-1 and SGLT-2 inhibitory activity measurement test, Comparative Compounds 1 and 2 showed almost the same inhibitory activity against SGLT-1 and SGLT-2 as some compounds of the present invention. Compounds 3 to 5 have very weak inhibitory activity against SGLT-1 compared to some compounds of the present invention, and the IC 50 values of Comparative Compounds 3 to 5 with respect to SGLT-1 are shown in Table 1. Some compounds were found to be about 15-170 times the IC 50 values for SGLT-1 for some compounds.
 上述のとおり、軽度の高血糖状態における血糖低下作用の発現には、SGLT-2を阻害するだけではなく、SGLT-1をも阻害する必要があると考えられる。 As described above, it is considered necessary not only to inhibit SGLT-2 but also to inhibit SGLT-1 in order to exert a hypoglycemic effect in a mild hyperglycemic state.
 従って、軽度の高血糖状態に対して、比較化合物3~5が、本発明化合物と同等の血糖低下作用を発現するためには、本発明化合物よりも高用量の投与を必要とすると考えられ、そのような高用量の投与においては、毒性発現の懸念もある。 Therefore, it is considered that the administration of a higher dose than the compound of the present invention is necessary for Comparative Compounds 3 to 5 to exhibit a blood glucose lowering effect equivalent to that of the compound of the present invention in a mild hyperglycemic state. There is also a concern of toxicity at such high doses.
 また、以下のとおり、糖尿病性合併症の発症予防及び進展抑制の点からも、SGLT-2を阻害するだけではなく、SGLT-1をも阻害することが重要となる。糖尿病における血糖コントロールの目的は、慢性的な高血糖状態の是正による心血管性疾患などの大血管合併症、及び腎症、神経障害及び網膜症を含む細小血管合併症の発症予防及び進展抑制である。より厳格な血糖コントロール、つまり長期血糖値の指標であるヘモグロビンA1c(HbA1c)を強力に低下させることにより、合併症の進展抑制率を高めることがすでに明らかにされている(Annu Rev Med 第46巻, 257頁, 1995年、Diabetes Care 第18巻, 258頁, 1995年、Ann Intern Med 第122巻, 561頁, 1995年、Diabetes 第44巻, 968頁, 1995年、Diabetes 第47巻, 1703頁, 1995年)。血糖値とHbA1cの関係については、Diabetes Control and Complication Trial (DCCT)において測定された1日7回の血糖値の平均値とHbA1cのデータより、HbA1c(%)=平均血糖値(mg/dL)/35.6+2.17であると報告されている(Diabetes Care 第25巻, 275頁, 2002年)。HbA1cが空腹時血糖と食後血糖どちらを主に反映するのかということに関して意見の一致は得られていないが、そのどちらをも厳格に管理することが糖尿病患者のHbA1c改善度を高める上で重要であるのは明確(Diabetes Care 第26巻, 881頁, 2003年)であることから、食後高血糖状態だけでなく空腹時(食前)及び食間の高血糖状態も是正することが糖尿病性合併症の発症予防及び進展抑制に重要であると考えられる。例えば、試験例2で用いられたKK-Ayマウス(雄性)のように、食後においては重度の高血糖状態であるが、空腹時においては軽度の高血糖状態となるような患者においては、食後高血糖状態だけでなく、空腹時高血糖状態を是正することが非常に重要である。 In addition, as described below, it is important not only to inhibit SGLT-2 but also to inhibit SGLT-1 from the viewpoint of preventing the onset of diabetic complications and suppressing the progression. The purpose of glycemic control in diabetes is to prevent and prevent the development of macrovascular complications such as cardiovascular disease and correction of chronic hyperglycemia, and microvascular complications including nephropathy, neuropathy and retinopathy. is there. It has already been clarified that stricter glycemic control, that is, hemoglobin A1c (HbA1c), which is an indicator of long-term blood glucose level, is strongly reduced to increase the rate of suppression of complications (Annu Rev Med 46) 257, 1995, Diabetes Care 18, 258, 1995, Ann Intern Med 122,122561, 1995, Diabetes 44,44968, 1995, Diabetes 47, 1703 , 1995). About the relationship between blood glucose level and HbA1c, HbA1c (%) = average blood glucose level (mg / dL) from the average of 7 times daily blood glucose level measured in Diabetes Control and Complication Trial (DCCT) and HbA1c data /35.6+2.17 (Diabetes Care 25, 275, 2002). There is no consensus on whether HbA1c primarily reflects fasting blood glucose or postprandial blood glucose, but strict management of both is important to improve HbA1c improvement in diabetics It is clear (Diabetes Care 26, 881, 2003) that correcting not only postprandial hyperglycemia but also fasting (pre-meal) and inter-meal hyperglycemia is a diabetic complication. It is thought to be important for prevention of onset and progress suppression. For example, in a patient who is severely hyperglycemic after meals, such as the KK-Ay mouse (male) used in Test Example 2, but who is mildly hyperglycemic on an empty stomach, It is very important to correct fasting hyperglycemia as well as hyperglycemia.
 従って、糖尿病性合併症の発症予防及び進展抑制の点から、食後及び空腹時高血糖状態の是正が重要であり、空腹時においては軽度の高血糖状態となるような患者における空腹時高血糖状態の是正のためには、SGLT-2を阻害するだけではなく、SGLT-1をも阻害することが必要となる。 Therefore, it is important to correct postprandial and fasting hyperglycemia from the viewpoint of preventing the development of diabetic complications and suppressing progression, and fasting hyperglycemia in patients who are mildly hyperglycemic during fasting. In order to correct this, it is necessary not only to inhibit SGLT-2 but also to inhibit SGLT-1.
 ヒト小腸グルクロン酸抱合代謝試験より、比較化合物1及び2は、ヒト小腸グルクロン酸抱合代謝を非常に受けやすいことが明らかとなった。一方、本発明のいくつかの化合物は、ヒト小腸グルクロン酸抱合代謝を受けにくいことが確認された。グルクロン酸抱合代謝は、生体内での主代謝経路のひとつと考えられていることから、本発明のいくつかの化合物は、血中で活性体として安定に持続して存在することができ、より持続性の高い薬剤となりうることが示唆された。持続性の高い薬剤は、例えば、1回の投与量を減らすことができたり、投与回数を減らすことができる点で、医薬として有用であることはよく知られたことである。 From the human small intestine glucuronidation metabolism test, it was revealed that Comparative Compounds 1 and 2 are very susceptible to human small intestine glucuronidation metabolism. On the other hand, it was confirmed that some compounds of the present invention are not easily subjected to human small intestine glucuronidation metabolism. Since glucuronide conjugation metabolism is considered as one of the main metabolic pathways in vivo, some compounds of the present invention can exist stably and persistently as active substances in blood, It was suggested that it can be a long-lasting drug. It is well known that a long-lasting drug is useful as a medicine in that, for example, a single dose can be reduced or the number of administrations can be reduced.
試験例6 重度及び軽度の高血糖状態における尿糖排泄作用確認試験
 実験動物として飽食時及び空腹時(16時間絶食)のKK-Ayマウス(日本クレア、雄性)を用いた。試験化合物を0.5 %メチルセルロース水溶液に懸濁させ、1 mg/10 mLの濃度とした。マウスの体重を測定後、試験化合物懸濁液を10 mL/kg(試験化合物として1 mg/kg)の用量で強制経口投与、対照群には0.5 %メチルセルロース水溶液のみを投与し、代謝ケ-ジに移した。1群あたりの匹数は5もしくは6匹とした。その後、24時間までの自発尿を採取し、尿量を測定した。尿サンプルは遠心分離 (3,000 rpm、 10分)を行い、上清中の尿中グルコ-ス濃度をグルコースCIIテストワコー(和光純薬)を用いて測定し、尿量との積より尿糖排泄量を算出した。
Test Example 6 Confirmation of urinary glucose excretion in severe and mildly hyperglycemic conditions KK-Ay mice (CLEA Japan, male) in satiety and fasting (16-hour fast) were used as experimental animals. The test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / 10 mL. After measuring the body weight of the mice, the test compound suspension was forcibly administered orally at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group. Moved to. The number of animals per group was 5 or 6. Thereafter, spontaneous urine up to 24 hours was collected and urine volume was measured. The urine sample is centrifuged (3,000 rpm, 10 minutes), and the urinary glucose concentration in the supernatant is measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The amount was calculated.
 その結果、本発明化合物の中には、重度の高血糖状態において、1 mg/kgの用量で1000 mg以上(対照群は約600-800 mg)、及び、軽度の高血糖状態において、1 mg/kgの用量で100 mg以上(対照群は10 mg以下)の尿糖排泄作用を示し、優れた当該作用を有する化合物があった。 As a result, some of the compounds of the present invention have a dose of 1 mg / kg at a dose of 1 mg / kg or more (about 600-800 mg in the control group) in severe hyperglycemia, and 1 mg in mild hyperglycemia. There was a compound having an excellent urinary glucose excretion at a dose of 100 mg / kg or more (the control group was 10 mg or less) and had such an effect.
試験例7 正常血糖状態における尿糖排泄作用確認試験
 実験動物として飽食時のICRマウス(日本エスエルシー、雄性)を用いた。試験化合物を0.5 %メチルセルロース水溶液に懸濁させ、1 mg/10 mLの濃度とした。マウスの体重を測定後、試験化合物懸濁液を10 mL/kg(試験化合物として1mg/kg)の用量で強制経口投与、対照群には0.5%メチルセルロース水溶液のみを投与し、代謝ケ-ジに移した。1群あたりの匹数は5もしくは6匹とした。その後、24時間までの自発尿を採取し、尿量を測定した。尿サンプルは遠心分離 (3,000 rpm、10 分)を行い、上清中の尿中グルコ-ス濃度をグルコースCIIテストワコー(和光純薬)を用いて測定し、尿量との積より尿糖排泄量を算出した。
Test Example 7 Test for confirming urinary glucose excretion in normoglycemic state ICR mice (Japan SLC, male) at the time of satiation were used as experimental animals. The test compound was suspended in a 0.5% aqueous methylcellulose solution to a concentration of 1 mg / 10 mL. After measuring the body weight of the mice, the test compound suspension was forcibly administered orally at a dose of 10 mL / kg (1 mg / kg as the test compound), and only 0.5% methylcellulose aqueous solution was administered to the control group. Moved. The number of animals per group was 5 or 6. Thereafter, spontaneous urine up to 24 hours was collected and urine volume was measured. The urine sample is centrifuged (3,000 rpm, 10 minutes), and the urinary glucose concentration in the supernatant is measured using Glucose CII Test Wako (Wako Pure Chemical Industries). The amount was calculated.
 その結果、本発明化合物の中には、正常血糖状態において、1 mg/kgの用量で300 mg以上(対照群は10 mg以下)の尿糖排泄作用を示し、優れた当該作用を有する化合物があった。一方、SGLT-2を選択的に阻害する化合物として知られている(1S)-1,5-アンヒドロ-1-[4-クロロ-3-(4-エトキシベンジル)フェニル]-D-グルシトールは、1 mg/kgの用量において、137 mgの尿糖排泄作用を示した。 As a result, among the compounds of the present invention, in normoglycemic state, a compound having an excellent urinary glucose excretion action of 300 mg or more (the control group is 10 mg or less) at a dose of 1 mg / kg is shown. there were. On the other hand, (1S) -1,5-anhydro-1- [4-chloro-3- (4-ethoxybenzyl) phenyl] -D-glucitol, which is known as a compound that selectively inhibits SGLT-2, At a dose of 1 mg / kg, 137 mg of urinary glucose excretion was shown.
試験例8 非アルコール性単純性脂肪肝モデル(KK-Ayマウス)に対する効果
 KK-Ayマウス(雌性)にCMF(特殊繁殖用)を自由に摂食させ、14週齢時に、体重、血糖値、血漿インスリン値、血漿トリグリセライド値及び血漿アラニンアミノトランスフェラーゼ(ALT)を測定し、これらの項目が均一になるように群分けを行う。試験化合物懸濁液は0.01~10 mg/kgの用量で1日1回、2週間強制経口反復投与する。対照群には0.5 %メチルセルロース溶液のみを投与する。1群あたりの匹数は6~8匹とする。最終投与の翌日にエーテル麻酔下で肝臓を採取し、液体窒素で凍結後に-80 ℃に保存する。
Test Example 8 Effect on non-alcoholic simple fatty liver model (KK-A y mouse) KK-A y mouse (female) was allowed to freely feed CMF (special breeding), and at 14 weeks of age, body weight and blood glucose Levels, plasma insulin levels, plasma triglyceride levels, and plasma alanine aminotransferase (ALT) are measured and grouped so that these items are uniform. The test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 2 weeks. Only 0.5% methylcellulose solution is administered to the control group. The number of animals per group is 6-8. The day after the final administration, the liver is collected under ether anesthesia, frozen in liquid nitrogen and stored at -80 ° C.
 肝臓のトリグリセライド含量は以下の手順で測定することができる。
 1.-80℃に凍結保存しておいた肝臓の一部(50~150 mg)をアシストチューブへ分取する。
 2.メタノール2 mLを添加し、POLYTRON(KINEMATICA社)で破砕する。
 3.そこへクロロホルムを4 mL添加し、室温で10分間激しく攪拌する。
 4.さらにmilliQ水を1 mL添加し激しく攪拌する。
 5.低速遠心機で遠心分離した(2,500 rpm、5 min、室温)。
 6.下層(全量4.5 mL)の一部をエッペンチューブへ分取し、遠心エバポレーターを用いて溶媒を除去する。
 7.エッペンチューブへ10 μLを加えエタノールで再溶解させる。
 8.そこへトリグリセライドE-テストワコー試薬(和光純薬工業株式会社)を1 mL加え、トリグリセライドを定量する。
The triglyceride content of the liver can be measured by the following procedure.
1. Part of the liver (50-150 mg) that has been stored frozen at -80 ° C is dispensed into an assist tube.
2. Add 2 mL of methanol and crush with POLYTRON (KINEMATICA).
3. Add 4 mL of chloroform and stir vigorously at room temperature for 10 minutes.
4). Add 1 mL of milliQ water and stir vigorously.
5). Centrifugation was performed with a low-speed centrifuge (2,500 rpm, 5 min, room temperature).
6). Transfer a portion of the lower layer (total volume 4.5 mL) to an Eppendorf tube, and remove the solvent using a centrifugal evaporator.
7). Add 10 μL to the Eppendorf tube and redissolve in ethanol.
8). 1 mL of triglyceride E-Test Wako Reagent (Wako Pure Chemical Industries, Ltd.) is added thereto, and the triglyceride is quantified.
 以上より、肝臓1 g当たりのトリグリセライド含量を算出する。データは平均値±標準誤差で示す。 From the above, the triglyceride content per 1 g of liver is calculated. Data are shown as mean ± standard error.
試験例9 非アルコール性脂肪肝炎モデル(メチオニン・コリン欠乏食(MCD食)負荷ラット)に対する効果
 本試験は、文献(J Hepatol., 2003, 39, 756-764)を参考に試験を実施することができる。Wistarラット(雄性)にMCD飼料(メチオニン・コリン欠乏食)を自由に摂食させ、9週齢時に、体重を測定し、均一になるように群分けを行い試験を開始する(各群10匹)。試験化合物懸濁液は0.01~10 mg/kgの用量で1日1回、16週間強制経口反復投与する。最終投与の翌日にエーテル麻酔下で肝臓を採取し、肝臓の一部を10 %中性緩衝ホルマリンにて固定する。定法によりパラフィン切片(3 μm)を作製し、HE染色とワンギーソン(van Gieson)染色を施す。HE染色標本を用いて炎症巣を、ワンギーソン染色標本を用いて線維化をそれぞれ評価する。評価は、炎症巣に関してはNASH activity score(NAS)を、線維化に関してはBrunt分類をそれぞれ参考(日本肝臓学会 編、NASH・NAFLDの診療ガイド、2006年)に、それぞれ0、1、2、3、4の五段階(表5参照)で評価することができる。
Test Example 9 Effects on non-alcoholic steatohepatitis model (rats loaded with methionine / choline-deficient diet (MCD diet)) This study should be conducted with reference to the literature (J Hepatol., 2003, 39, 756-764) Can do. Wistar rats (male) are allowed to eat MCD diet (methionine / choline deficient diet) freely, and at 9 weeks of age, body weights are measured and divided into groups so as to be uniform (10 animals per group). ). The test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 16 weeks. The day after the final administration, the liver is collected under ether anesthesia, and a part of the liver is fixed with 10% neutral buffered formalin. Paraffin sections (3 μm) are prepared by a conventional method, and HE staining and van Gieson staining are performed. Inflamed lesions are assessed using HE-stained specimens, and fibrosis is assessed using Wangyson-stained specimens. The evaluation was based on the NASH activity score (NAS) for inflammatory lesions and the Brunt classification for fibrosis (edited by the Japan Liver Society, edited by NASH / NAFLD, 2006), 0, 1, 2, 3 respectively. 4 (see Table 5).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
試験例10 非アルコール性脂肪肝炎モデル(コリン欠乏アミノ酸置換食(CDAA食)負荷ラット)に対する効果
 本試験は、文献(Biochem Biophys Res Commun., 2004, 315(1), 187-195)を参考に試験を実施することができる。Wistarラット(雄性)にCDAA飼料(コリン欠乏アミノ酸置換食)を自由に摂食させ、9週齢時に、体重を測定し、均一になるように群分けを行い試験を開始する(各群10匹)。試験化合物懸濁液は0.01~10 mg/kgの用量で1日1回、5週間強制経口反復投与する。対照群には0.5%メチルセルロース溶液のみを投与する。最終投与の翌日にエーテル麻酔下で肝臓を採取する。肝臓の一部を10%中性緩衝ホルマリンにて固定後、定法によりパラフィン切片(3 μm)を作製し、ワンギーソン(van Gieson)染色を施す。線維化の評価はBrunt分類を参考(日本肝臓学会 編、NASH・NAFLDの診療ガイド、2006年)に、0、1、2、3、4の五段階で評価(表5参照)することができる。
Test Example 10 Effect on non-alcoholic steatohepatitis model (choline-deficient amino acid substitution diet (CDAA diet) loaded rat) This study was based on literature (Biochem Biophys Res Commun., 2004, 315 (1), 187-195) A test can be performed. Wistar rats (male) are fed a CDAA diet (choline-deficient amino acid-substituted diet) freely, and at 9 weeks of age, body weights are measured and divided into groups so as to be uniform (10 animals in each group). ). The test compound suspension is administered by oral gavage at a dose of 0.01 to 10 mg / kg once a day for 5 weeks. Only 0.5% methylcellulose solution is administered to the control group. The liver is collected under ether anesthesia the day after the last dose. After fixing a part of the liver with 10% neutral buffered formalin, a paraffin section (3 μm) is prepared by a conventional method, and then stained with van Gieson. Fibrosis can be evaluated based on the Brunt classification (edited by the Japan Liver Society, edited by NASH / NAFLD, 2006) on a scale of 0, 1, 2, 3, 4 (see Table 5). .
試験例11 肥満モデルに対する効果
 雄性ICRマウス(5週齢)を8週齢より高脂肪飼料で飼育し、10週齢時に体重を基に均等に群分けを行う。試験化合物懸濁液は0.01~10 mg/kgの用量で1日1回、3週間強制経口反復投与する。対照群には0.5%メチルセルロース溶液のみを投与する。1群あたりの匹数は6~8匹とする。13週齢時に体重及び投与開始時からの体重変動量を測定し、データは平均値±標準誤差で示す。
Test Example 11 Effect on Obesity Model Male ICR mice (5 weeks old) are bred with a high-fat diet from 8 weeks of age, and equally divided into groups based on body weight at the age of 10 weeks. The test compound suspension is administered by repeated oral gavage once a day for 3 weeks at a dose of 0.01 to 10 mg / kg. Only 0.5% methylcellulose solution is administered to the control group. The number of animals per group is 6-8. At 13 weeks of age, the body weight and the amount of body weight fluctuation from the start of administration are measured, and the data are shown as mean ± standard error.
 以下、試験例6、7の結果、及び試験例8~11についてまとめる。 Hereinafter, the results of Test Examples 6 and 7 and Test Examples 8 to 11 will be summarized.
 重度及び軽度の高血糖状態における尿糖排泄作用確認試験より、本発明のいくつかの化合物は、重度の高血糖状態だけでなく、軽度の高血糖状態においても、1 mg/kgの用量で尿糖排泄作用を発現し、高血糖状態の程度に関わらず、優れた当該作用を示すことが明らかとなった。 From the test for confirming urinary glucose excretion in severe and mildly hyperglycemic conditions, some compounds of the present invention can be administered at a dose of 1 mg / kg not only in severely hyperglycemic conditions but also in mildly hyperglycemic conditions. It was revealed that it exerts a sugar excretion action and exhibits an excellent action regardless of the degree of hyperglycemia.
 正常血糖状態における尿糖排泄作用確認試験より、本発明のいくつかの化合物は、正常血糖状態においても、1 mg/kgの用量で優れた尿糖排泄作用を示すことが明らかとなった。 From a test for confirming urinary glucose excretion in normoglycemic state, it was revealed that some compounds of the present invention exhibited excellent urinary glucose excretion at a dose of 1 mg / kg even in normoglycemic state.
 従って、本発明化合物は、重度及び軽度の高血糖状態、並びに、正常血糖状態における優れた尿糖排泄作用に基づき、尿中にグルコースとして体内のエネルギーを排泄することにより、栄養摂取過多に伴う肥満及び非アルコール性脂肪肝炎(non-alcoholic steatohepatis:NASH)を含む脂肪性肝疾患に対する優れた改善作用を有すると期待される。これらの改善効果は、試験例8~11において確認することができる。 Therefore, the compound of the present invention is based on the excretion of urinary glucose in severe and mild hyperglycemic conditions and in normoglycemic conditions. And non-alcoholic steatohepatis (NASH), and is expected to have an excellent ameliorating effect on fatty liver diseases including non-alcoholic steatohepatis (NASH). These improvement effects can be confirmed in Test Examples 8 to 11.
 以上より、本発明化合物が、SGLT-1及びSGLT-2の二重阻害作用、高血糖状態の程度に関わらない優れた血糖低下作用、並びに、正常血糖状態における優れた尿糖排泄作用を有し、1型糖尿病、2型糖尿病、インスリン抵抗性疾患、及び肥満を含む各種糖尿病関連疾患、並びに、非アルコール性脂肪肝炎(non-alcoholic steatohepatis:NASH)を含む脂肪性肝疾患の予防及び/又は治療用医薬組成物の有効成分として有用であることは明らかである。 As described above, the compound of the present invention has a double inhibitory action of SGLT-1 and SGLT-2, an excellent hypoglycemic action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia. Prevention and / or treatment of various diabetes related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease, obesity, and fatty liver disease including non-alcoholic steatohepatis (NASH) It is clear that it is useful as an active ingredient of pharmaceutical compositions for medical use.
 式(I)の化合物又はその塩の1種又は2種以上を有効成分として含有する医薬組成物は、当分野において通常用いられている賦形剤、即ち、薬剤用賦形剤や薬剤用担体等を用いて、通常使用されている方法によって調製することができる。 A pharmaceutical composition containing one or more of the compounds of formula (I) or a salt thereof as an active ingredient is an excipient usually used in the art, that is, a pharmaceutical excipient or a pharmaceutical carrier. Can be prepared by a commonly used method.
 投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、又は、関節内、静脈内、筋肉内等の注射剤、坐剤、点眼剤、眼軟膏、経皮用液剤、軟膏剤、経皮用貼付剤、経粘膜液剤、経粘膜貼付剤、吸入剤等による非経口投与のいずれの形態であってもよい。 Administration is orally by tablets, pills, capsules, granules, powders, solutions, etc., or injections such as intra-articular, intravenous, intramuscular, suppositories, eye drops, ophthalmic ointments, transdermal solutions, Any form of parenteral administration such as an ointment, a transdermal patch, a transmucosal liquid, a transmucosal patch, and an inhalant may be used.
 経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種又は2種以上の有効成分が、少なくとも1種の不活性な賦形剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、及び/又はメタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な添加剤、例えばステアリン酸マグネシウムのような滑沢剤やカルボキシメチルスターチナトリウム等のような崩壊剤、安定化剤、溶解補助剤を含有していてもよい。錠剤又は丸剤は必要により糖衣又は胃溶性若しくは腸溶性物質のフィルムで被膜してもよい。 Tablets, powders, granules, etc. are used as solid compositions for oral administration. In such a solid composition, one or more active ingredients contain at least one inert excipient such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone. And / or mixed with magnesium aluminate metasilicate. The composition may contain an inert additive, for example, a lubricant such as magnesium stearate, a disintegrant such as sodium carboxymethyl starch, a stabilizer, or a solubilizing agent according to a conventional method. . If necessary, tablets or pills may be coated with a sugar coating or a film of a gastric or enteric substance.
 経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤又はエリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水又はエタノールを含む。当該液体組成物は不活性な希釈剤以外に可溶化剤、湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。 Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs and the like, and commonly used inert diluents such as purified water. Or it contains ethanol. The liquid composition may contain solubilizers, wetting agents, auxiliaries such as suspending agents, sweeteners, flavors, fragrances and preservatives in addition to the inert diluent.
 非経口投与のための注射剤は、無菌の水性又は非水性の溶液剤、懸濁剤又は乳濁剤を含有する。水性の溶剤としては、例えば注射用蒸留水又は生理食塩液が含まれる。非水性の溶剤としては、例えばプロピレングリコール、ポリエチレングリコール又はオリーブ油のような植物油、エタノールのようなアルコール類、又はポリソルベート80(局方名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、又は溶解補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解又は懸濁して使用することもできる。 The injection for parenteral administration contains a sterile aqueous or non-aqueous solution, suspension or emulsion. Examples of the aqueous solvent include distilled water for injection or physiological saline. Examples of non-aqueous solvents include propylene glycol, polyethylene glycol or vegetable oil such as olive oil, alcohols such as ethanol, or polysorbate 80 (a pharmacopeia name). Such compositions may further contain isotonic agents, preservatives, wetting agents, emulsifiers, dispersants, stabilizers, or solubilizing agents. These are sterilized by, for example, filtration through a bacteria-retaining filter, blending with a bactericide or irradiation. These can also be used by producing a sterile solid composition and dissolving or suspending it in sterile water or a sterile solvent for injection before use.
 通常経口投与の場合、1日の投与量は、体重当たり約0.001~100 mg/kg、好ましくは0.05~30 mg/kg、更に好ましくは0.1~10 mg/kgが適当であり、これを1回であるいは2回~4回に分けて投与する。静脈内投与される場合は、1日の投与量は、体重当たり約0.0001~10 mg/kgが適当で、1日1回~複数回に分けて投与する。また、経粘膜剤としては、体重当たり約0.001~100 mg/kgを1日1回~複数回に分けて投与する。投与量は症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。 Usually, in the case of oral administration, the daily dose is about 0.001 to 100 mg / kg, preferably 0.05 to 30 mg / kg, more preferably 0.1 to 10 mg / kg per body weight. Or in 2 to 4 divided doses. When administered intravenously, the appropriate daily dose is about 0.0001 to 10 mg / kg per body weight, and is administered once to several times a day. As a transmucosal agent, about 0.001 to 100 mg / kg per body weight is administered once to several times a day. The dose is appropriately determined according to individual cases in consideration of symptoms, age, sex, and the like.
 式(I)の化合物は、前述の式(I)の化合物が有効性を示すと考えられる疾患の種々の治療剤又は予防剤と併用することができる。当該併用は、同時投与、或いは別個に連続して、若しくは所望の時間間隔をおいて投与してもよい。同時投与製剤は、配合剤であっても別個に製剤化されていてもよい。 The compound of the formula (I) can be used in combination with various therapeutic agents or preventive agents for diseases for which the compound of the formula (I) is considered to be effective. The combination may be administered simultaneously, separately separately, or at desired time intervals. The simultaneous administration preparation may be a compounding agent or may be separately formulated.
 以下、実施例に基づき、式(I)の化合物の製造法をさらに詳細に説明する。なお、本発明は、下記実施例に記載の化合物に限定されるものではない。また、原料化合物の製法を製造例にそれぞれ示す。また、式(I)の化合物の製造法は、以下に示される具体的実施例の製造法のみに限定されるものではなく、式(I)の化合物はこれらの製造法の組み合わせ、あるいは当業者に自明である方法によっても製造されうる。 Hereinafter, based on an Example, the manufacturing method of the compound of Formula (I) is demonstrated in detail. In addition, this invention is not limited to the compound as described in the following Example. Moreover, the manufacturing method of a raw material compound is shown in a manufacture example, respectively. Further, the production method of the compound of the formula (I) is not limited to the production methods of the specific examples shown below, and the compound of the formula (I) may be a combination of these production methods or a person skilled in the art. It can also be produced by methods that are self-evident.
 また、実施例、製造例及び後記表中において、以下の略号を用いることがある。
Rex:製造例番号、Ex:実施例番号、Structure:化学構造式、Data:物理化学的データ(FAB+:FAB-MS[M+H]+、FAB-:FAB-MS[M-H]-、ESI+:ESI-MS[M+H]+、ESI-:ESI-MS[M-H]-、EI:EI[M]+、NMR-DMSO-d6:ジメチルスルホキシド-d6中の1H-NMRにおけるピークのδ(ppm)、NMR-CDCl3:重クロロホルム中の1H-NMRにおけるピークのδ(ppm)、NMR-CD3OD:重メタノール中の1H-NMRにおけるピークのδ(ppm))、Me:メチル、Et:エチル、iPr:イソプロピル、TBS:tert-ブチルジメチルシリル、Bn:ベンジル、Ac:アセチル、MOM:メトキシメチル。Rsyn及びSyn:製造方法(数字は、当該化合物が、その番号を製造例番号又は実施例番号として有する化合物と同様の方法により、対応する原料を用いて製造されたことを示す。)。
Moreover, the following abbreviations may be used in Examples, Production Examples, and Tables below.
Rex: Production example number, Ex: Example number, Structure: Chemical structural formula, Data: Physicochemical data (FAB +: FAB-MS [M + H] + , FAB-: FAB-MS [MH] , ESI +: ESI-MS [M + H] +, ESI-: ESI-MS [MH] -, EI: EI [M] +, NMR-DMSO-d 6: of the peaks in 1 H-NMR in dimethylsulfoxide -d 6 δ (ppm), NMR-CDCl 3 : δ (ppm) of peak in 1 H-NMR in deuterated chloroform, NMR-CD 3 OD: δ (ppm) of peak in 1 H-NMR in deuterated methanol, Me : Methyl, Et: ethyl, iPr: isopropyl, TBS: tert-butyldimethylsilyl, Bn: benzyl, Ac: acetyl, MOM: methoxymethyl. Rsyn and Syn: Production method (numbers indicate that the compound was produced using the corresponding raw material in the same manner as the compound having the number as a production example number or an example number).
製造例1
 4-ヒドロキシ-2-メチルベンズアルデヒド(5g)、メタノール(12.5 mL)、ジクロロメタン(12.5 mL)の混合物にピリジニウムブロミドペルブロミド(13.5 g)を加え、室温で1.5 時間攪拌した。水を加え不溶物を濾取し、減圧下加熱乾燥し、5-ブロモ-4-ヒドロキシ-2-メチルベンズアルデヒド(3.65 g)を白色固体として得た。
Production Example 1
Pyridinium bromide perbromide (13.5 g) was added to a mixture of 4-hydroxy-2-methylbenzaldehyde (5 g), methanol (12.5 mL), and dichloromethane (12.5 mL), and the mixture was stirred at room temperature for 1.5 hours. Water was added, insoluble matter was collected by filtration, and heated and dried under reduced pressure to give 5-bromo-4-hydroxy-2-methylbenzaldehyde (3.65 g) as a white solid.
製造例2
 5-ブロモ-4-ヒドロキシ-2-メチルベンズアルデヒド(5 g)、炭酸カリウム(4.5 g)、アセトン(50 mL)の混合物にクロロメチルメチルエーテル(2.3 mL)を滴下し、室温で3.5時間攪拌した。不溶物を濾別し、減圧下濾液を濃縮した。残渣に酢酸エチルを加え、水、飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、5-ブロモ-4-(メトキシメトキシ)-2-メチルベンズアルデヒド(6.07 g)を白色固体として得た。
Production Example 2
Chloromethyl methyl ether (2.3 mL) was added dropwise to a mixture of 5-bromo-4-hydroxy-2-methylbenzaldehyde (5 g), potassium carbonate (4.5 g), and acetone (50 mL), and the mixture was stirred at room temperature for 3.5 hours. . Insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure. Ethyl acetate was added to the residue, washed with water and saturated aqueous sodium chloride solution, and dried over anhydrous magnesium sulfate. Insoluble matter was filtered off, and the solvent was distilled off under reduced pressure to obtain 5-bromo-4- (methoxymethoxy) -2-methylbenzaldehyde (6.07 g) as a white solid.
製造例3
 窒素気流下、-15 ℃に冷却したベンゾチオフェン(5.72 g)、テトラヒドロフラン(60 mL)の混合物に、n-ブチルリチウム (1.55 M n-ヘキサン溶液) (27.4 mL)を滴下し、-15 ℃で30 分間攪拌した。反応混合物に、5-ブロモ-4-(メトキシメトキシ)-2-メチルベンズアルデヒド(10 g)、テトラヒドロフラン(40 mL)の混合物を加え、室温まで昇温しながら1時間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、トルエンで抽出した。有機層を飽和塩化アンモニウム水溶液、飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、橙色油状物(16.4g)を得た。窒素気流下、-45℃に冷却した、橙色油状物(2.0 g)、トルエン(20 mL)の混合物に、トリエチルシラン(2.44 mL)、ボロントリフルオリド-エチルエーテルコンプレックス(0.77 mL)を順次滴下し、-55 ℃で30 分間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、トルエンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去した。残渣に2-プロパノールを加え、加熱溶解後、室温まで放冷した。生じた固体を濾取し、減圧下加熱乾燥し、2-[5-ブロモ-4-(メトキシメトキシ)-2-メチルベンジル]-1-ベンゾチオフェン(1.22 g)を白色固体として得た。
Production Example 3
To a mixture of benzothiophene (5.72 g) and tetrahydrofuran (60 mL) cooled to -15 ° C under a nitrogen stream, n-butyllithium (1.55 M n-hexane solution) (27.4 mL) was added dropwise at -15 ° C. Stir for 30 minutes. To the reaction mixture, a mixture of 5-bromo-4- (methoxymethoxy) -2-methylbenzaldehyde (10 g) and tetrahydrofuran (40 mL) was added and stirred for 1 hour while warming to room temperature. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with toluene. The organic layer was washed with a saturated aqueous ammonium chloride solution and a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. The insoluble material was filtered off, and the solvent was distilled off under reduced pressure to obtain an orange oil (16.4 g). Triethylsilane (2.44 mL) and boron trifluoride-ethyl ether complex (0.77 mL) were successively added dropwise to a mixture of orange oil (2.0 g) and toluene (20 mL) cooled to -45 ° C under a nitrogen stream. The mixture was stirred at -55 ° C for 30 minutes. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with toluene. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. Insoluble material was filtered off, and the solvent was distilled off under reduced pressure. 2-propanol was added to the residue, heated and dissolved, and then allowed to cool to room temperature. The resulting solid was collected by filtration and dried by heating under reduced pressure to give 2- [5-bromo-4- (methoxymethoxy) -2-methylbenzyl] -1-benzothiophene (1.22 g) as a white solid.
製造例4
 2-(4-メトキシ-2,3-ジメチルベンジル)-1-ベンゾチオフェン(7.8 g)のジクロロメタン溶液に1,2,3,4,5-ペンタメチルベンゼン(10.2 g)を加え、-40 ℃にて三臭化ホウ素(1M ジクロロメタン溶液)(40 mL)を滴下した。同温にて4時間攪拌した後に室温で15 時間攪拌した。反応液に氷-飽和炭酸水素ナトリウム水溶液を加え有機層を抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。不溶物を濾過した後に溶媒を濃縮し、残渣にヘキサンを加え攪拌した。固体をろ過し、ヘキサンで洗浄した後に減圧下乾燥し、4-(1-ベンゾチエン-2-イルメチル)-2,3-ジメチルフェノール(7.2 g)を得た。
Production Example 4
To a dichloromethane solution of 2- (4-methoxy-2,3-dimethylbenzyl) -1-benzothiophene (7.8 g) was added 1,2,3,4,5-pentamethylbenzene (10.2 g), and -40 ° C. Boron tribromide (1M in dichloromethane) (40 mL) was added dropwise. The mixture was stirred at the same temperature for 4 hours and then at room temperature for 15 hours. Ice-saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the organic layer was extracted. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The insoluble material was filtered off, the solvent was concentrated, and hexane was added to the residue and stirred. The solid was filtered, washed with hexane, and then dried under reduced pressure to obtain 4- (1-benzothien-2-ylmethyl) -2,3-dimethylphenol (7.2 g).
製造例5
 4-(ベンジルオキシ)-5-ブロモ-2-ヒドロキシベンズアルデヒド(16.48 g)、t-ブチルジメチルクロロシラン(10.51 g)、イミダゾール(4.75 g)、N,N-ジメチルホルムアミド(165 mL)の混合物を室温で3 日間攪拌した。減圧下溶媒を留去し、残渣に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、4-(ベンジルオキシ)-5-ブロモ-2-{[tert-ブチル(ジメチル)シリル]オキシ}ベンズアルデヒド(13.95 g)を白色固体として得た。
Production Example 5
A mixture of 4- (benzyloxy) -5-bromo-2-hydroxybenzaldehyde (16.48 g), t-butyldimethylchlorosilane (10.51 g), imidazole (4.75 g), N, N-dimethylformamide (165 mL) at room temperature For 3 days. The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give 4- (benzyloxy) -5-bromo-2-{[tert-butyl (dimethyl) silyl] oxy} benzaldehyde (13.95 g) was obtained as a white solid.
製造例6
 窒素気流下、-73℃に冷却したベンゾチオフェン(1.51 g)、テトラヒドロフラン(30 mL)の混合物に、n-ブチルリチウム(1.65 M n-ヘキサン溶液) (7.12 mL)を滴下し、-70℃で30分間攪拌した。反応混合物に4-(ベンジルオキシ)-5-ブロモ-2-エチルベンズアルデヒド(3g)、テトラヒドロフラン(30 mL)の混合物を滴下し、-70 ℃で1 時間攪拌した。反応混合物を0 ℃まで昇温し、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、1-ベンゾチエン-2-イル[4-(ベンジルオキシ)-5-ブロモ-2-エチルフェニル]メタノール(4.26 g)を淡茶色アモルファスとして得た。
Production Example 6
Under a nitrogen stream, n-butyllithium (1.65 M n-hexane solution) (7.12 mL) was added dropwise to a mixture of benzothiophene (1.51 g) and tetrahydrofuran (30 mL) cooled to -73 ° C, and the mixture was -70 ° C. Stir for 30 minutes. A mixture of 4- (benzyloxy) -5-bromo-2-ethylbenzaldehyde (3 g) and tetrahydrofuran (30 mL) was added dropwise to the reaction mixture, and the mixture was stirred at -70 ° C. for 1 hour. The reaction mixture was warmed to 0 ° C., saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (hexane-ethyl acetate), and 1-benzothien-2-yl [4- (benzyloxy) -5-bromo-2-ethylphenyl] methanol ( 4.26 g) was obtained as a light brown amorphous.
製造例7
 窒素気流下、-60 ℃に冷却した1-ベンゾチエン-2-イル[4-(ベンジルオキシ)-5-ブロモ-2-エチルフェニル]メタノール(4.26 g)、ジクロロメタン(64 mL)の混合物に、トリエチルシラン(6.6 mL)、ボロントリフルオリド-ジエチルエーテルコンプレックス(1.77 mL)を順次滴下し、-6 0℃で2 時間攪拌した。反応混合物を0 ℃まで昇温し、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製して得られた淡黄色固体に、ヘキサン(100 mL)を加えて洗浄し、固体を濾取し、減圧下加熱乾燥し、2-[4-(ベンジルオキシ)-5-ブロモ-2-エチルベンジル]-1-ベンゾチオフェン(3.03 g)を白色固体として得た。
Production Example 7
To a mixture of 1-benzothien-2-yl [4- (benzyloxy) -5-bromo-2-ethylphenyl] methanol (4.26 g) and dichloromethane (64 mL) cooled to −60 ° C. under a nitrogen stream, triethyl was added. Silane (6.6 mL) and boron trifluoride-diethyl ether complex (1.77 mL) were successively added dropwise, and the mixture was stirred at −60 ° C. for 2 hours. The reaction mixture was warmed to 0 ° C., saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate), washed with hexane (100 mL) by adding hexane (100 mL), and the solid was collected by filtration. Under heat and drying, 2- [4- (benzyloxy) -5-bromo-2-ethylbenzyl] -1-benzothiophene (3.03 g) was obtained as a white solid.
製造例8
 窒素気流下、-60 ℃に冷却した2-[4-(ベンジルオキシ)-5-ブロモ-2-エチルベンジル]-1-ベンゾチオフェン(3.03 g)、トルエン(24 mL)、テトラヒドロフラン(6 mL)の混合物に、n-ブチルリチウム(1.65 M n-ヘキサン溶液) (5 mL)を滴下し、-60 ℃で20 分間攪拌した。反応混合物を-60℃に冷却した2,3,4,6-テトラ-O-ベンジル-D-グルコノ-1,5-ラクトン(4.48 g)、トルエン(24 mL)、テトラヒドロフラン(6 mL)の混合物に加え、-60 ℃で1 時間攪拌した。反応混合物を室温まで昇温し、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、1-C-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-エチルフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルコピラノース(5.9 g)を白色固体として得た。
Production Example 8
2- [4- (Benzyloxy) -5-bromo-2-ethylbenzyl] -1-benzothiophene (3.03 g), toluene (24 mL), tetrahydrofuran (6 mL) cooled to −60 ° C. under a nitrogen stream N-Butyllithium (1.65 M n-hexane solution) (5 mL) was added dropwise to the mixture, and the mixture was stirred at −60 ° C. for 20 minutes. A mixture of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactone (4.48 g), toluene (24 mL), tetrahydrofuran (6 mL) cooled to −60 ° C. And stirred at -60 ° C for 1 hour. The reaction mixture was warmed to room temperature, saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give 1-C- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4- Ethylphenyl] -2,3,4,6-tetra-O-benzyl-D-glucopyranose (5.9 g) was obtained as a white solid.
製造例9
 窒素気流下、-60 ℃に冷却した1-C-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-エチルフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルコピラノース(5.9g)、ジクロロメタン(88.5 mL)、アセトニトリル(88.5 mL)の混合物に、トリエチルシラン(3.2mL)、ボロントリフルオリド-ジエチルエーテルコンプレックス(1.2 mL)を順次滴下し、-60 ℃で30 分間攪拌した。反応混合物を0 ℃まで昇温し、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-エチルフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(4.26 g)を無色油状物として得た。
Production Example 9
1-C- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-ethylphenyl] -2,3,4,6-tetra-cooled to −60 ° C. under nitrogen flow To a mixture of O-benzyl-D-glucopyranose (5.9 g), dichloromethane (88.5 mL), and acetonitrile (88.5 mL), triethylsilane (3.2 mL) and boron trifluoride-diethyl ether complex (1.2 mL) were successively added dropwise. The mixture was stirred at -60 ° C for 30 minutes. The reaction mixture was warmed to 0 ° C., saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2 -(Benzyloxy) -4-ethylphenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (4.26 g) was obtained as a colorless oil.
製造例10
 氷冷下、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-{[tert-ブチル(ジメチル)シリル]オキシ}フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(14.8 g)、テトラヒドロフラン(222 mL)の混合物に、テトラブチルアンモニウム フルオリド(1.0 M テトラヒドロフラン溶液) (18.1 mL)を滴下し、0 ℃で45 分間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-ヒドロキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(12.68 g)を淡黄色アモルファスとして得た。
Production Example 10
Under ice cooling, (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-{[tert-butyl (dimethyl) silyl] oxy} Phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (14.8 g) and tetrahydrofuran (222 mL) were added dropwise with tetrabutylammonium fluoride (1.0 M tetrahydrofuran solution) (18.1 mL). And stirred at 0 ° C. for 45 minutes. A saturated aqueous ammonium chloride solution was added to the reaction mixture, the mixture was extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. Insolubles were filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give (1S) -1,5-anhydro-1- [5- (1-benzothien -2-ylmethyl) -2- (benzyloxy) -4-hydroxyphenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (12.68 g) was obtained as a pale yellow amorphous.
製造例11
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-ヒドロキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(800 mg)、ヨウ化エチル(89 μL)、炭酸カリウム(153 mg)、N,N-ジメチルホルムアミド(10 mL)の混合物を60 ℃で5 時間加熱攪拌した。減圧下溶媒を留去し、残渣に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-エトキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(796 mg)を淡黄色油状物として得た。
Production Example 11
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-hydroxyphenyl] -2,3,4,6-tetra-O- A mixture of benzyl-D-glucitol (800 mg), ethyl iodide (89 μL), potassium carbonate (153 mg) and N, N-dimethylformamide (10 mL) was stirred with heating at 60 ° C. for 5 hours. The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate). (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2 -(Benzyloxy) -4-ethoxyphenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (796 mg) was obtained as a pale yellow oil.
製造例12
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-ヒドロキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(500 mg)、トルエン(7.5mL)の混合物に、1,1'-[(E)-ジアゼン-1,2-ジイルジカルボニル]ジピペリジン(260 mg)とトリ-n-ブチルホスフィン(0.26 mL)を加え、室温で10分間攪拌した。さらに2-フルオロエタノール(0.051 mL)を加え、室温で攪拌した。不溶物を濾過した後に溶媒を減圧下留去し、残渣に水を加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-(2-フルオロエトキシ)フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(376 mg)を得た。
Production Example 12
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-hydroxyphenyl] -2,3,4,6-tetra-O- To a mixture of benzyl-D-glucitol (500 mg) and toluene (7.5 mL), add 1,1 '-[(E) -diazene-1,2-diyldicarbonyl] dipiperidine (260 mg) and tri-n-butyl. Phosphine (0.26 mL) was added and stirred at room temperature for 10 minutes. Further, 2-fluoroethanol (0.051 mL) was added and stirred at room temperature. The insoluble material was filtered off, the solvent was evaporated under reduced pressure, water was added to the residue, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate), and (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2 -(Benzyloxy) -4- (2-fluoroethoxy) phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (376 mg) was obtained.
製造例13
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-ヒドロキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(1 g)、ブロモジフルオロ酢酸エチル(0.35 mL)、炭酸カリウム(381 mg)、N,N-ジメチルホルムアミド(12.5 mL)の混合物を80 ℃~100 ℃で4 日間加熱攪拌した。減圧下溶媒を留去し、残渣に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製して得られた混合物に、エタノール(5 mL)、テトラヒドロフラン(5 mL)、1M 水酸化ナトリウム水溶液(5 mL)を加えて60 ℃で10 分間加熱攪拌した。反応混合物に1M 塩酸(5 mL)を加え、酢酸エチルで抽出、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-(ジフルオロメトキシ)フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(246 mg)を黄色油状物として得た。
Production Example 13
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-hydroxyphenyl] -2,3,4,6-tetra-O- A mixture of benzyl-D-glucitol (1 g), ethyl bromodifluoroacetate (0.35 mL), potassium carbonate (381 mg) and N, N-dimethylformamide (12.5 mL) was heated and stirred at 80 to 100 ° C. for 4 days. . The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) .The resulting mixture was added to ethanol (5 mL), tetrahydrofuran (5 mL), 1M aqueous sodium hydroxide solution (5 mL). ) Was added and stirred at 60 ° C. for 10 minutes. 1M Hydrochloric acid (5 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2 -(Benzyloxy) -4- (difluoromethoxy) phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (246 mg) was obtained as a yellow oil.
製造例14
 氷冷下、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-ヒドロキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(13.2 g)、トリエチルアミン(3.3 mL)、ジクロロメタン(150 mL)の混合物に、トリフルオロメタンスルホン酸無水物(2.97 mL)を加え、0 ℃で10 分間攪拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-{[(トリフルオロメチル)スルホニル]オキシ}フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(13.1 g)を淡黄色油状物として得た。
Production Example 14
Under ice cooling, (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-hydroxyphenyl] -2,3,4,6- To a mixture of tetra-O-benzyl-D-glucitol (13.2 g), triethylamine (3.3 mL) and dichloromethane (150 mL) was added trifluoromethanesulfonic anhydride (2.97 mL), and the mixture was stirred at 0 ° C. for 10 minutes. A saturated aqueous ammonium chloride solution was added to the reaction mixture, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. Insolubles were filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give (1S) -1,5-anhydro-1- [5- (1-benzothien -2-ylmethyl) -2- (benzyloxy) -4-{[(trifluoromethyl) sulfonyl] oxy} phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (13.1 g) Was obtained as a pale yellow oil.
製造例15
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-(メトキシカルボニル)フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(402 mg)、メタノール(5 mL)、テトラヒドロフラン(3 mL)、水(1 mL)の混合物に、1 M 水酸化ナトリウム水溶液(1.32 mL)を加え、60 ℃で13時間加熱攪拌した。反応混合物に1M 塩酸(1.5mL)を加え、酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-カルボキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(373 mg)を無色アモルファス固体として得た。
Production Example 15
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4- (methoxycarbonyl) phenyl] -2,3,4,6-tetra To a mixture of -O-benzyl-D-glucitol (402 mg), methanol (5 mL), tetrahydrofuran (3 mL) and water (1 mL), add 1 M aqueous sodium hydroxide solution (1.32 mL) at 60 ° C. The mixture was stirred for 13 hours. To the reaction mixture was added 1M hydrochloric acid (1.5 mL), and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. Insolubles were filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give (1S) -1,5-anhydro-1- [5- (1-benzothien -2-ylmethyl) -2- (benzyloxy) -4-carboxyphenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (373 mg) was obtained as a colorless amorphous solid.
製造例16
 窒素気流下、-70 ℃に冷却したベンジル 7-ブロモ-2,3-ジヒドロ-1H-インデン-4-イル エーテル(7.6 g)、テトラヒドロフラン(76 mL)の混合物に、n-ブチルリチウム(1.61 M n-ヘキサン溶液) (18.7 mL)を滴下し、-70 ℃で30 分間攪拌した。反応混合物にN,N-ジメチルホルムアミド(3.9 mL)を滴下し、暫く-70 ℃で攪拌した後、0 ℃まで昇温し、反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、7-(ベンジルオキシ)インダン-4-カルボアルデヒド(5.53 g)を淡黄色油状物として得た。
Production Example 16
To a mixture of benzyl 7-bromo-2,3-dihydro-1H-inden-4-yl ether (7.6 g) and tetrahydrofuran (76 mL) cooled to -70 ° C under a nitrogen stream, n-butyllithium (1.61 M n-hexane solution) (18.7 mL) was added dropwise, and the mixture was stirred at -70 ° C for 30 minutes. N, N-dimethylformamide (3.9 mL) was added dropwise to the reaction mixture, and the mixture was stirred at -70 ° C for a while and then warmed to 0 ° C. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. Washed with brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain 7- (benzyloxy) indane-4-carbaldehyde (5.53 g) as a pale yellow oil.
製造例17
 一酸化炭素雰囲気下、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-{[(トリフルオロメチル)スルホニル]オキシ}フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(100 mg)、酢酸パラジウム(2 mg)、1,3-ビス(ジフェニルホスフィノ)プロパン(5.5 mg)、トリエチルアミン(27.9 μL)、N,N-ジメチルホルムアミド(1 mL)、メタノール(2 mL)の混合物を70 ℃で4.5 時間攪拌した。反応混合物に酢酸エチル、トルエンを加え、水、飽和塩化ナトリウム水溶液で洗浄後、有機層を無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)で精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-(メトキシカルボニル)フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(36.8 mg)を無色アモルファス固体として得た。
Production Example 17
Under a carbon monoxide atmosphere, (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-{[(trifluoromethyl) sulfonyl] oxy } Phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (100 mg), palladium acetate (2 mg), 1,3-bis (diphenylphosphino) propane (5.5 mg), triethylamine A mixture of (27.9 μL), N, N-dimethylformamide (1 mL), and methanol (2 mL) was stirred at 70 ° C. for 4.5 hours. Ethyl acetate and toluene were added to the reaction mixture, washed with water and saturated aqueous sodium chloride solution, and the organic layer was dried over anhydrous magnesium sulfate. Insoluble matter was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give (1S) -1,5-anhydro-1- [5- (1-benzothien -2-ylmethyl) -2- (benzyloxy) -4- (methoxycarbonyl) phenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (36.8 mg) was obtained as a colorless amorphous solid .
製造例18
 [4-(ベンジルオキシ)-5-ブロモ-2-(トリフルオロメトキシ)フェニル]メタノール(2.23 g)、二酸化マンガン(5.4 g)、クロロホルム(22 mL)の混合物を50 ℃で9 時間加熱攪拌した。セライト濾過により不溶物を濾別し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、4-(ベンジルオキシ)-5-ブロモ-2-(トリフルオロメトキシ)ベンズアルデヒド(1.81 g)を白色固体として得た。
Production Example 18
A mixture of [4- (benzyloxy) -5-bromo-2- (trifluoromethoxy) phenyl] methanol (2.23 g), manganese dioxide (5.4 g), and chloroform (22 mL) was stirred with heating at 50 ° C. for 9 hours. . The insoluble material was filtered off through Celite filtration, the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (hexane-ethyl acetate), and 4- (benzyloxy) -5-bromo-2- (trifluoro) Methoxy) benzaldehyde (1.81 g) was obtained as a white solid.
製造例19
 氷冷下、4-ヒドロキシ-2-(トリフルオロメトキシ)ベンズアルデヒド(1.84 g)、エタノール(18 mL)の混合物に、水素化ホウ素ナトリウム(405 mg)を加え、0 ℃で30 分間攪拌した。減圧下溶媒を留去し、残渣に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去することにより、4-(ヒドロキシメチル)-3-(トリフルオロメトキシ)フェノール(1.91 g)を黄色油状物として得た。
Production Example 19
Under ice-cooling, sodium borohydride (405 mg) was added to a mixture of 4-hydroxy-2- (trifluoromethoxy) benzaldehyde (1.84 g) and ethanol (18 mL), and the mixture was stirred at 0 ° C. for 30 min. The solvent was evaporated under reduced pressure, a saturated aqueous ammonium chloride solution was added to the residue, the mixture was extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. Insoluble material was filtered off, and the solvent was evaporated under reduced pressure to give 4- (hydroxymethyl) -3- (trifluoromethoxy) phenol (1.91 g) as a yellow oil.
製造例20
 2-ブロモ-4-(ヒドロキシメチル)-5-(トリフルオロメトキシ)フェノール(2.52 g)、ベンジルブロミド(1.25 mL)、炭酸カリウム(1.45 g)、N,N-ジメチルホルムアミド(25 mL)の混合物を60 ℃で3 時間加熱攪拌した。減圧下溶媒を留去し、残渣に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、[4-(ベンジルオキシ)-5-ブロモ-2-(トリフルオロメトキシ)フェニル]メタノール(2.23 g)を淡黄色固体として得た。
Production Example 20
Mixture of 2-bromo-4- (hydroxymethyl) -5- (trifluoromethoxy) phenol (2.52 g), benzyl bromide (1.25 mL), potassium carbonate (1.45 g), N, N-dimethylformamide (25 mL) Was stirred with heating at 60 ° C. for 3 hours. The solvent was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate), and [4- (benzyloxy) -5-bromo-2- (trifluoromethoxy) phenyl] methanol (2.23 g) Was obtained as a pale yellow solid.
製造例21
 6-ブロモ-2,3-ジメトキシフェノール(4.1g )、8 M 水酸化カリウム水溶液(2.42 mL)、水(15 mL)の混合物に、ホルムアルデヒド液(37 %)(4 mL)、水(2 mL)の混合物を滴下し、50 ℃で6.5 時間加熱攪拌した。反応混合物に1 M 塩酸を滴下して中和し、エーテルで抽出後、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、6-ブロモ-4-(ヒドロキシメチル)-2,3-ジメトキシフェノール(2.62 g)を淡黄色固体として得た。
Production Example 21
To a mixture of 6-bromo-2,3-dimethoxyphenol (4.1 g), 8 M aqueous potassium hydroxide (2.42 mL), and water (15 mL), formaldehyde solution (37%) (4 mL), water (2 mL) ) Was added dropwise, and the mixture was heated and stirred at 50 ° C. for 6.5 hours. The reaction mixture was neutralized by adding 1 M hydrochloric acid dropwise, extracted with ether, and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give 6-bromo-4- (hydroxymethyl) -2,3-dimethoxyphenol (2.62 g) as a pale yellow solid. Obtained.
製造例22
 窒素雰囲気下、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-{[(トリフルオロメチル)スルホニル]オキシ}フェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(1 g)、シクロプロピルボロン酸(669 mg)、酢酸パラジウム(67 mg)、トリシクロヘキシルホスフィン(168 mg)、リン酸三カリウム(2.23 g)、トルエン(20mL)、水(1 mL)の混合物を9 時間加熱還流した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-シクロプロピルフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(0.7 g)を淡黄色油状物として得た。
Production Example 22
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-{[(trifluoromethyl) sulfonyl] oxy} phenyl under nitrogen atmosphere ] -2,3,4,6-Tetra-O-benzyl-D-glucitol (1 g), cyclopropylboronic acid (669 mg), palladium acetate (67 mg), tricyclohexylphosphine (168 mg), phosphoric acid A mixture of tripotassium (2.23 g), toluene (20 mL) and water (1 mL) was heated to reflux for 9 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2 -(Benzyloxy) -4-cyclopropylphenyl] -2,3,4,6-tetra-O-benzyl-D-glucitol (0.7 g) was obtained as a pale yellow oil.
製造例23
 窒素気流下、-48 ℃に冷却した2-[5-ブロモ-4-(メトキシメトキシ)-2-メチルベンジル]-1-ベンゾチオフェン(10 g)、トルエン(65 mL)、ジイソプロピルエーテル(50 mL)の混合物に、n-ブチルリチウム(1.55 M n-ヘキサン溶液) (17.9 mL)を滴下し、-48 ℃から-25 ℃まで昇温しながら、30 分間攪拌した。反応混合物を-60 ℃に冷却し、2,3,4,5-テトラキス-O-(トリメチルシリル)-D-グルコノ-1,5-ラクトン(13.6 g)、トルエン(35 mL)の混合物を加え、-60 ℃から-24 ℃まで昇温しながら3時間攪拌した。反応混合物を、窒素気流下、氷冷した塩化水素(4 M 酢酸エチル溶液) (13.3 mL)、メタノール(50 mL)の混合物に加え、室温で2時間攪拌した。反応混合物に1M 水酸化ナトリウム水溶液(110 mL)及び、水を加え、トルエンで洗浄した。水層に1M 塩酸(35 mL)を加え、酢酸エチルで抽出し、有機層を無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、メチル1-C-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルコピラノシド(11.3 g)を淡黄色アモルファス固体として得た。
Production Example 23
2- [5-Bromo-4- (methoxymethoxy) -2-methylbenzyl] -1-benzothiophene (10 g), toluene (65 mL), diisopropyl ether (50 mL) cooled to −48 ° C. under a nitrogen stream N-butyllithium (1.55 M n-hexane solution) (17.9 mL) was added dropwise, and the mixture was stirred for 30 minutes while raising the temperature from -48 ° C to -25 ° C. The reaction mixture was cooled to −60 ° C. and a mixture of 2,3,4,5-tetrakis-O- (trimethylsilyl) -D-glucono-1,5-lactone (13.6 g), toluene (35 mL) was added, The mixture was stirred for 3 hours while raising the temperature from -60 ° C to -24 ° C. The reaction mixture was added to a mixture of ice-cooled hydrogen chloride (4 M ethyl acetate solution) (13.3 mL) and methanol (50 mL) under a nitrogen stream and stirred at room temperature for 2 hours. A 1M aqueous sodium hydroxide solution (110 mL) and water were added to the reaction mixture, and the mixture was washed with toluene. To the aqueous layer was added 1M hydrochloric acid (35 mL), extracted with ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate. The insoluble material was filtered off, and the solvent was distilled off under reduced pressure. Methyl 1-C- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D-glucopyranoside (11.3 g) Was obtained as a pale yellow amorphous solid.
製造例24
 窒素気流下、メチル 1-C-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルコピラノシド(11.3 g)、無水酢酸(14.4 mL)、ピリジン(16.5 mL)、4-ジメチルアミノピリジン(310 mg)、酢酸エチル(110 mL)の混合物を45 ℃で12 時間加熱攪拌した。反応混合物を1 M 塩酸、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去し、メチル 1-C-[2-アセトキシ-5-(1-ベンゾチエン-2-イルメチル)-4-メチルフェニル]-2,3,4,6-テトラ-O-アセチル-D-グルコピラノシド(14.2 g)を茶褐色アモルファス固体として得た。
Production Example 24
Under a nitrogen stream, methyl 1-C- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D-glucopyranoside (11.3 g), acetic anhydride (14.4 mL), pyridine (16.5 mL), 4-dimethylaminopyridine (310 mg), and ethyl acetate (110 mL) were stirred with heating at 45 ° C. for 12 hours. The reaction mixture was washed with 1 M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated aqueous sodium chloride solution, and the organic layer was dried over anhydrous magnesium sulfate. The insoluble material was filtered off, the solvent was distilled off under reduced pressure, and methyl 1-C- [2-acetoxy-5- (1-benzothien-2-ylmethyl) -4-methylphenyl] -2,3,4,6 -Tetra-O-acetyl-D-glucopyranoside (14.2 g) was obtained as a brown amorphous solid.
製造例25
 窒素気流下、-30 ℃に冷却したメチル1-C-[2-アセトキシ-5-(1-ベンゾチエン-2-イルメチル)-4-メチルフェニル]-2,3,4,6-テトラ-O-アセチル-D-グルコピラノシド(14.2 g)、トリエチルシラン(6.9 mL)、アセトニトリル(140 mL)、水(0.38 mL)の混合物にトリフルオロメタンスルホン酸トリメチルシリル(4.3 mL)を滴下し、-10 ℃で3.5 時間攪拌した。反応混合物に5 % 炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥した。不溶物を濾別し、減圧下溶媒を留去した。残渣に酢酸エチルを加え、加熱溶解後、ヘキサンを加え室温まで放冷した。生じた固体を濾取し、減圧下加熱乾燥し、(1S)-2,3,4,6-テトラ-O-アセチル-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール(7.1 g)を灰白色固体として得た。
Production Example 25
Methyl 1-C- [2-acetoxy-5- (1-benzothien-2-ylmethyl) -4-methylphenyl] -2,3,4,6-tetra-O- cooled to -30 ° C under nitrogen flow Trimethylsilyl trifluoromethanesulfonate (4.3 mL) was added dropwise to a mixture of acetyl-D-glucopyranoside (14.2 g), triethylsilane (6.9 mL), acetonitrile (140 mL), and water (0.38 mL) at -10 ° C for 3.5 hours. Stir. To the reaction mixture was added 5% aqueous sodium hydrogen carbonate solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. Insoluble material was filtered off, and the solvent was distilled off under reduced pressure. Ethyl acetate was added to the residue, heated and dissolved, hexane was added and the mixture was allowed to cool to room temperature. The resulting solid was collected by filtration, dried by heating under reduced pressure, and (1S) -2,3,4,6-tetra-O-acetyl-1,5-anhydro-1- [5- (1-benzothien-2- (Ilmethyl) -2-hydroxy-4-methylphenyl] -D-glucitol (7.1 g) was obtained as an off-white solid.
 上記製造例で製造した化合物の化学構造を、表6及び表7に示す。また、上記製造例の方法と同様にして、表8~表11に示す製造例化合物を、それぞれ対応する原料を使用して製造した。また、これら製造例化合物の製造方法及び機器分析データを表12~表23に示す。 Tables 6 and 7 show the chemical structures of the compounds produced in the above production examples. Further, in the same manner as in the above production examples, the production example compounds shown in Tables 8 to 11 were produced using the corresponding raw materials. In addition, production methods and instrumental analysis data of these production example compounds are shown in Tables 12 to 23.
実施例1
 氷冷下、(1S)-2,3,4,6-テトラ-O-アセチル-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール(7.05 g)、イソプロピルアルコール(25 mL)の混合物に、5M 水酸化ナトリウム水溶液(13.5 mL)を滴下し、反応混合物を室温まで昇温しながら、2 時間攪拌した。反応混合物を氷冷後、5 M 塩酸(13.5 mL)、水(95 mL)を順次滴下した。生じた固体を濾取し、減圧下加熱乾燥し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール(4.44 g)を淡褐色固体として得た。
Example 1
Under ice cooling, (1S) -2,3,4,6-tetra-O-acetyl-1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methyl To a mixture of phenyl] -D-glucitol (7.05 g) and isopropyl alcohol (25 mL), 5M aqueous sodium hydroxide solution (13.5 mL) was added dropwise, and the reaction mixture was stirred for 2 hours while warming to room temperature. The reaction mixture was ice-cooled, and 5 M hydrochloric acid (13.5 mL) and water (95 mL) were successively added dropwise. The resulting solid was collected by filtration, dried by heating under reduced pressure, and (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D -Glucitol (4.44 g) was obtained as a light brown solid.
実施例2
 窒素気流下、-70 ℃に冷却した(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-(ベンジルオキシ)-4-エチルフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(4.26 g)、1,2,3,4,5-ペンタメチルベンゼン(7.88 g)、ジクロロメタン(105 mL)の混合物に、三塩化ホウ素(1.0 M n-ヘプタン溶液)(40 mL)を滴下し、-70 ℃で2 時間15 分攪拌した。反応混合物にメタノール(40 mL)を滴下し、室温まで昇温させた後、減圧下溶媒を留去した。残渣にヘキサン、メタノールを加えて分液操作をし、メタノール層より減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)により精製して得られた淡黄色油状物を、2-プロパノール-水で粉末化し、粉末を濾取し、水で洗浄した後、減圧下加熱乾燥し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-エチル-2-ヒドロキシフェニル]-D-グルシトール(0.805 g)を白色固体として得た。
Example 2
(1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2- (benzyloxy) -4-ethylphenyl] -2, cooled to −70 ° C. under a nitrogen stream Boron trichloride was added to a mixture of 3,4,6-tetra-O-benzyl-D-glucitol (4.26 g), 1,2,3,4,5-pentamethylbenzene (7.88 g) and dichloromethane (105 mL). (1.0 M n-heptane solution) (40 mL) was added dropwise, and the mixture was stirred at -70 ° C for 2 hours and 15 minutes. Methanol (40 mL) was added dropwise to the reaction mixture, the temperature was raised to room temperature, and the solvent was evaporated under reduced pressure. Hexane and methanol were added to the residue for liquid separation, and the solvent was distilled off from the methanol layer under reduced pressure. The pale yellow oil obtained by purifying the residue by silica gel column chromatography (chloroform-methanol) was triturated with 2-propanol-water, and the powder was collected by filtration, washed with water, and then dried by heating under reduced pressure. , (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-ethyl-2-hydroxyphenyl] -D-glucitol (0.805 g) was obtained as a white solid.
実施例3
 窒素気流下、氷冷した(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-カルボキシ-2-ヒドロキシフェニル]-D-グルシトール(72 mg)のテトラヒドロフラン(1 mL)溶液に、ボラン-テトラヒドロフランコンプレックス(1 M テトラヒドロフラン溶液)(1.0 mL)を滴下し、室温まで昇温させた後、3 時間攪拌した。反応混合物にテトラヒドロフラン(5 mL)、ボラン-テトラヒドロフランコンプレックス(1 M テトラヒドロフラン溶液)(0.67 mL)を加え、室温で3 日間攪拌した。反応混合物に、ボラン-テトラヒドロフランコンプレックス(1 M テトラヒドロフラン溶液)(1.67 mL)を加え、室温で3 日間攪拌した。反応混合物を氷冷した後、水、1 M 塩酸(0.5 mL)を加え、減圧下溶媒を留去した。残渣をODSカラムクロマトグラフィー(水-アセトニトリル)により精製して得られた無色アモルファス固体を、ジエチルエーテル-ヘキサンで粉末化し、粉末を濾取し、減圧下加熱乾燥し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-(ヒドロキシメチル)フェニル]-D-グルシトール(28 mg)を白色固体として得た。
Example 3
Ice-cooled (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-carboxy-2-hydroxyphenyl] -D-glucitol (72 mg) in a nitrogen stream Borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (1.0 mL) was added dropwise to a tetrahydrofuran (1 mL) solution, and the mixture was warmed to room temperature and stirred for 3 hours. Tetrahydrofuran (5 mL) and borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (0.67 mL) were added to the reaction mixture, and the mixture was stirred at room temperature for 3 days. To the reaction mixture was added borane-tetrahydrofuran complex (1 M tetrahydrofuran solution) (1.67 mL), and the mixture was stirred at room temperature for 3 days. The reaction mixture was ice-cooled, water and 1 M hydrochloric acid (0.5 mL) were added, and the solvent was evaporated under reduced pressure. The colorless amorphous solid obtained by purifying the residue by ODS column chromatography (water-acetonitrile) was pulverized with diethyl ether-hexane, and the powder was collected by filtration, dried by heating under reduced pressure, and (1S) -1,5 -Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4- (hydroxymethyl) phenyl] -D-glucitol (28 mg) was obtained as a white solid.
実施例4
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-3-メトキシ-4-メチルフェニル]-D-グルシトール(187 mg)の1,2-ジクロロエタン(4 mL)溶液に、ボロントリフルオリド-ジメチルスルフィドコンプレックス(383 mg)を加え、室温で4時間攪拌した。反応混合物にメタノールを加え、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)、及びODSカラムクロマトグラフィー(水-アセトニトリル)により精製して得られた褐色アモルファス固体を、ヘキサンで粉末化し、減圧下加熱乾燥し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2,3-ジヒドロキシ-4-メチルフェニル]-D-グルシトール(22.6 mg)を淡褐色固体として得た。
Example 4
1,2 of (1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-3-methoxy-4-methylphenyl] -D-glucitol (187 mg) Boron trifluoride-dimethyl sulfide complex (383 mg) was added to a solution of -dichloroethane (4 mL), and the mixture was stirred at room temperature for 4 hours. Methanol was added to the reaction mixture, and the solvent was distilled off under reduced pressure. The brown amorphous solid obtained by purifying the residue by silica gel column chromatography (chloroform-methanol) and ODS column chromatography (water-acetonitrile) was pulverized with hexane, dried by heating under reduced pressure, and (1S) -1 , 5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2,3-dihydroxy-4-methylphenyl] -D-glucitol (22.6 mg) was obtained as a light brown solid.
実施例5
 (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ベンジルオキシ-4-カルボキシフェニル]-2,3,4,6-テトラ-O-ベンジル-D-グルシトール(280 mg)のトルエン(3 mL)溶液に、トリメチルシリルジアゾメタン(2M ジエチルエーテル溶液)(0.47 mL)を加え、室温で30分間攪拌した。反応混合物に酢酸(38 μL)を加え、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)により精製し、得られた淡黄色アモルファス固体(290 mg)、1,2,3,4,5-ペンタメチルベンゼン(481 mg)、トルエン(10 mL)の混合物に、窒素気流下、-70 ℃で三塩化ホウ素(1 M n-ヘプタン溶液)(1.62 mL)を滴下し、反応混合物を室温まで昇温しながら、1時間攪拌した。反応混合物にヘキサン、メタノールを加えて分液操作をし、メタノール層より減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)により精製し、得られた淡黄色アモルファス固体(129 mg)のテトラヒドロフラン(10 mL)溶液に、窒素雰囲気下、メチルマグネシウムブロミド(1 M テトラヒドロフラン溶液)(3.5 mL)を加え、室温で8時間攪拌した。反応混合物に、メチルマグネシウムブロミド(1 M テトラヒドロフラン溶液)(7.0 mL)を加え、60 ℃で5 日間加熱攪拌した。反応混合物に、1 M 塩酸を加え溶媒を留去した。残渣をODSカラムクロマトグラフィー(水-アセトニトリル)により精製して得られた淡黄色アモルファス固体を、ジエチルエーテルで粉末化し、減圧下加熱乾燥し、(1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-(1-ヒドロキシ-1-メチルエチル)フェニル]-D-グルシトール(32 mg)を淡橙色固体として得た。
Example 5
(1S) -1,5-Anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-benzyloxy-4-carboxyphenyl] -2,3,4,6-tetra-O-benzyl- Trimethylsilyldiazomethane (2M diethyl ether solution) (0.47 mL) was added to a toluene (3 mL) solution of D-glucitol (280 mg), and the mixture was stirred at room temperature for 30 minutes. Acetic acid (38 μL) was added to the reaction mixture, and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane-ethyl acetate), and the resulting pale yellow amorphous solid (290 mg), 1,2,3,4,5-pentamethylbenzene (481 mg), toluene (10 mL) Boron trichloride (1 M n-heptane solution) (1.62 mL) was added dropwise at −70 ° C. under a nitrogen stream, and the reaction mixture was stirred for 1 hour while warming to room temperature. Hexane and methanol were added to the reaction mixture for liquid separation, and the solvent was distilled off from the methanol layer under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-methanol). To a solution of the obtained pale yellow amorphous solid (129 mg) in tetrahydrofuran (10 mL) was added methylmagnesium bromide (1 M tetrahydrofuran solution) (3.5 mL) under a nitrogen atmosphere. mL) was added and stirred at room temperature for 8 hours. Methyl magnesium bromide (1 M tetrahydrofuran solution) (7.0 mL) was added to the reaction mixture, and the mixture was heated with stirring at 60 ° C. for 5 days. To the reaction mixture, 1 M hydrochloric acid was added and the solvent was distilled off. The pale yellow amorphous solid obtained by purifying the residue by ODS column chromatography (water-acetonitrile) was pulverized with diethyl ether, dried by heating under reduced pressure, and (1S) -1,5-anhydro-1- [5 -(1-Benzothien-2-ylmethyl) -2-hydroxy-4- (1-hydroxy-1-methylethyl) phenyl] -D-glucitol (32 mg) was obtained as a pale orange solid.
 上記実施例で製造した化合物の化学構造を、表24に示す。また、上記実施例の方法と同様にして、表25及び表26に示す実施例化合物を、それぞれ対応する原料を使用して製造した。また、これら実施例化合物の製造方法及び機器分析データを表27~表30に示す。 Table 24 shows the chemical structures of the compounds produced in the above examples. Moreover, it carried out similarly to the method of the said Example, and manufactured the Example compound shown in Table 25 and Table 26, respectively using the corresponding raw material. In addition, Tables 27 to 30 show the production methods and instrumental analysis data of these Example compounds.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 式(I)の化合物又はその塩は、SGLT-1及びSGLT-2の二重阻害作用、高血糖状態の程度に関わらない優れた血糖低下作用、並びに、正常血糖状態における優れた尿糖排泄作用を有し、1型糖尿病、2型糖尿病、インスリン抵抗性疾患、及び肥満を含む各種糖尿病関連疾患、並びに、非アルコール性脂肪肝炎(nonalcoholic steatohepatitis:NASH)を含む脂肪性肝疾患の予防及び/又は治療用医薬組成物の有効成分として使用できる。 The compound of formula (I) or a salt thereof is a double inhibitory action of SGLT-1 and SGLT-2, an excellent blood glucose lowering action regardless of the degree of hyperglycemia, and an excellent urinary glucose excretion action in normoglycemia Various diabetes related diseases including type 1 diabetes, type 2 diabetes, insulin resistance disease and obesity, and fatty liver disease including nonalcoholic steatohepatitis (NASH) and / or It can be used as an active ingredient of a therapeutic pharmaceutical composition.

Claims (14)

  1. 式(I)の化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、-OHで置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は置換されていてもよいシクロアルキルであり、R2は、-H、置換されていてもよい低級アルキル、-O-置換されていてもよい低級アルキル、又は-OHであるか、又は、R1とR2は一体となって、低級アルキレンを形成する。)
    A compound of formula (I) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is lower alkyl optionally substituted with —OH, lower alkyl optionally substituted with —O, or optionally substituted cycloalkyl, and R 2 represents —H Or lower alkyl optionally substituted, -O-lower alkyl optionally substituted, or -OH, or R 1 and R 2 together form a lower alkylene.)
  2. R2が-H、メチル、メトキシ、又は-OHである、請求項1に記載の化合物又はその塩。 The compound or a salt thereof according to claim 1, wherein R 2 is -H, methyl, methoxy, or -OH.
  3. R2が-H、メチル、又は-OHである、請求項2に記載の化合物又はその塩。 The compound or a salt thereof according to claim 2, wherein R 2 is -H, methyl, or -OH.
  4. R2が-Hである、請求項3に記載の化合物又はその塩。 The compound or a salt thereof according to claim 3, wherein R 2 is -H.
  5. R1が(a)-OHで置換されていてもよい低級アルキル、(b)1個のシアノ又は1~3個のフルオロで置換されていてもよい-O-低級アルキル、又は、(c)シクロプロピルである、請求項1~4のいずれか1項に記載の化合物又はその塩。 R 1 is (a) lower alkyl optionally substituted with —OH, (b) —O-lower alkyl optionally substituted with 1 cyano or 1 to 3 fluoro, or (c) The compound or a salt thereof according to any one of claims 1 to 4, which is cyclopropyl.
  6. R1が(a)-OHで置換されていてもよい低級アルキル、又は、(b)メトキシである、請求項5に記載の化合物又はその塩。 The compound or a salt thereof according to claim 5, wherein R 1 is (a) lower alkyl optionally substituted with -OH, or (b) methoxy.
  7. R1とR2が一体となって、トリメチレン又はテトラメチレンである、請求項1に記載の化合物又はその塩。 The compound or a salt thereof according to claim 1, wherein R 1 and R 2 are combined to form trimethylene or tetramethylene.
  8. (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メトキシフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-メチルフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-3,4-ジメチルフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-エチル-2-ヒドロキシフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-イソプロピルフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2-ヒドロキシ-4-(ヒドロキシメチル)フェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[7-(1-ベンゾチエン-2-イルメチル)-4-ヒドロキシ-2,3-ジヒドロ-1H-インデン-5-イル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-2,3-ジヒドロキシ-4-メチルフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(シアノメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-(ジフルオロメトキシ)-2-ヒドロキシフェニル]-D-グルシトール、又は
     (1S)-1,5-アンヒドロ-1-[5-(1-ベンゾチエン-2-イルメチル)-4-シクロプロピル-2-ヒドロキシフェニル]-D-グルシトールである、請求項1に記載の化合物又はその塩。
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methoxyphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-methylphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-3,4-dimethylphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-ethyl-2-hydroxyphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4-isopropylphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2-hydroxy-4- (hydroxymethyl) phenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [7- (1-benzothien-2-ylmethyl) -4-hydroxy-2,3-dihydro-1H-inden-5-yl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -2,3-dihydroxy-4-methylphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (cyanomethoxy) -2-hydroxyphenyl] -D-glucitol,
    (1S) -1,5-anhydro-1- [5- (1-benzothien-2-ylmethyl) -4- (difluoromethoxy) -2-hydroxyphenyl] -D-glucitol, or (1S) -1,5 The compound or a salt thereof according to claim 1, which is -anhydro-1- [5- (1-benzothien-2-ylmethyl) -4-cyclopropyl-2-hydroxyphenyl] -D-glucitol.
  9. 請求項1に記載の化合物又はその塩、及び製薬学的に許容される賦形剤を含有する医薬組成物。 A pharmaceutical composition comprising the compound according to claim 1 or a salt thereof, and a pharmaceutically acceptable excipient.
  10. 請求項1に記載の化合物又はその塩を含有する、糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物。 A pharmaceutical composition for the prevention or treatment of diabetes, obesity or fatty liver disease, comprising the compound according to claim 1 or a salt thereof.
  11. 糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物の製造のための請求項1に記載の化合物又はその塩の使用。 Use of the compound according to claim 1 or a salt thereof for the manufacture of a pharmaceutical composition for prevention or treatment of diabetes, obesity or fatty liver disease.
  12. 糖尿病、肥満又は脂肪性肝疾患の予防用若しくは治療用医薬組成物の製造のための請求項1に記載の化合物又はその塩。 The compound or its salt of Claim 1 for manufacture of the pharmaceutical composition for prevention or treatment of diabetes, obesity, or fatty liver disease.
  13. 糖尿病、肥満又は脂肪性肝疾患の予防若しくは治療のための請求項1に記載に記載の化合物またはその塩の使用。 Use of the compound according to claim 1 or a salt thereof for the prevention or treatment of diabetes, obesity or fatty liver disease.
  14. 請求項1に記載の化合物又はその塩の有効量を患者に投与することからなる糖尿病、肥満又は脂肪性肝疾患の予防若しくは治療方法。 A method for preventing or treating diabetes, obesity, or fatty liver disease, comprising administering an effective amount of the compound or salt thereof according to claim 1 to a patient.
PCT/JP2009/071569 2008-12-26 2009-12-25 Benzothiophen compound WO2010074219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-331950 2008-12-26
JP2008331950 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010074219A1 true WO2010074219A1 (en) 2010-07-01

Family

ID=42287824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071569 WO2010074219A1 (en) 2008-12-26 2009-12-25 Benzothiophen compound

Country Status (1)

Country Link
WO (1) WO2010074219A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163704B2 (en) 2009-10-20 2012-04-24 Novartis Ag Glycoside derivatives and uses thereof
CN102757415A (en) * 2011-04-25 2012-10-31 北京普禄德医药科技有限公司 Inhibitor of sodium-dependent glucose transport protein and preparation method therefor and use thereof
JP2013533291A (en) * 2010-08-10 2013-08-22 シャンハイ ヘンルイ ファーマスーティカル カンパニー リミテッド C-aryl glucoside derivative, production method and pharmaceutical use thereof
CN105085454A (en) * 2014-05-13 2015-11-25 北京韩美药品有限公司 SGLT inhibitor and pharmaceutical composition
JP2016516689A (en) * 2013-03-11 2016-06-09 ヤンセン ファーマシューティカ エヌ.ベー. Dual SGLT1 / SGLT2 inhibitor
JP2016529298A (en) * 2013-09-09 2016-09-23 ジエンス ハンセン ファーマセウティカル グループ カンパニー リミテッド C-aryl glucoside derivative, production method thereof and pharmaceutical application thereof
US20210238170A1 (en) * 2018-05-09 2021-08-05 Janssen Pharmaceutica Nv 5,5-Difluoro- and 5-Fluoro-5-Methyl-C-Glycoside Derivatives Useful As Dual SGLT1 / SGLT2 Modulators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080990A1 (en) * 2003-03-14 2004-09-23 Astellas Pharma Inc. C-glycoside derivatives and salts thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080990A1 (en) * 2003-03-14 2004-09-23 Astellas Pharma Inc. C-glycoside derivatives and salts thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895389B2 (en) 2009-10-20 2018-02-20 Novartis Ag Glycoside derivatives and uses thereof
USRE49080E1 (en) 2009-10-20 2022-05-24 Novartis Ag Glycoside derivatives and uses thereof
US8466114B2 (en) 2009-10-20 2013-06-18 Novartis Ag Glycoside derivatives and uses thereof
US8163704B2 (en) 2009-10-20 2012-04-24 Novartis Ag Glycoside derivatives and uses thereof
US8828951B2 (en) 2009-10-20 2014-09-09 Novartis Ag Glycoside derivatives and uses thereof
JP2013533291A (en) * 2010-08-10 2013-08-22 シャンハイ ヘンルイ ファーマスーティカル カンパニー リミテッド C-aryl glucoside derivative, production method and pharmaceutical use thereof
CN102757415B (en) * 2011-04-25 2015-07-29 北京普禄德医药科技有限公司 A kind of sodium dependent glucose transporter inhibitors and its production and use
CN102757415A (en) * 2011-04-25 2012-10-31 北京普禄德医药科技有限公司 Inhibitor of sodium-dependent glucose transport protein and preparation method therefor and use thereof
JP2016516689A (en) * 2013-03-11 2016-06-09 ヤンセン ファーマシューティカ エヌ.ベー. Dual SGLT1 / SGLT2 inhibitor
JP2016529298A (en) * 2013-09-09 2016-09-23 ジエンス ハンセン ファーマセウティカル グループ カンパニー リミテッド C-aryl glucoside derivative, production method thereof and pharmaceutical application thereof
US10011627B2 (en) 2013-09-09 2018-07-03 Youngene Therapeutics Co., Ltd C-aryl glucoside derivative, preparation methods thereof, and medical applications thereof
CN105085454A (en) * 2014-05-13 2015-11-25 北京韩美药品有限公司 SGLT inhibitor and pharmaceutical composition
US20210238170A1 (en) * 2018-05-09 2021-08-05 Janssen Pharmaceutica Nv 5,5-Difluoro- and 5-Fluoro-5-Methyl-C-Glycoside Derivatives Useful As Dual SGLT1 / SGLT2 Modulators

Similar Documents

Publication Publication Date Title
WO2010074219A1 (en) Benzothiophen compound
TWI403516B (en) To replace spirocyclic alcohol derivatives, and its use as a therapeutic agent for diabetes
KR100647204B1 (en) Glucopyranosyloxybenzylbenzene derivatives and medicinal compositions containing the same
JP3773450B2 (en) Glucopyranosyloxybenzylbenzene derivative, pharmaceutical composition containing the same, and production intermediate thereof
KR100591585B1 (en) Glucopyranosyloxypyrazole derivatives, medicinal compositions containing the same and intermediates in the production thereof
KR101837488B1 (en) Optically pure benzyl-4-chlorophenyl-c-glucoside derivative
JP4697962B2 (en) Compounds for the treatment of metabolic disorders
EP0881219A1 (en) N-substituted dioxothiazolidylbenzamide derivatives and process for producing the same
JP6802302B2 (en) Benzo-condensed heterocyclic derivative useful as a GPR120 agonist
JP2004359630A (en) Difluorodiphenylmethane derivative and its salt
KR20090010035A (en) Compounds for the treatment of metabolic disorders
WO2004080990A1 (en) C-glycoside derivatives and salts thereof
JP2013082753A (en) Compound for treatment of metabolic defect
JP4697973B2 (en) Compounds for the treatment of metabolic disorders
KR20100075539A (en) Oxadiazolidinedione compound
KR20080086523A (en) Compounds for the treatment of metabolic disorders
KR20120006311A (en) Novel c-aryl glucoside and preparation method thereof
JP5496913B2 (en) Compounds for the treatment of metabolic disorders
JP4794285B2 (en) Benzylphenol derivative or its salt
KR20130078228A (en) Novel c-aryl glucoside having 4-[1,3]-dioxolane and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP