WO1996013266A1 - Boronic ester and acid compounds, synthesis and uses - Google Patents

Boronic ester and acid compounds, synthesis and uses Download PDF

Info

Publication number
WO1996013266A1
WO1996013266A1 PCT/US1995/014117 US9514117W WO9613266A1 WO 1996013266 A1 WO1996013266 A1 WO 1996013266A1 US 9514117 W US9514117 W US 9514117W WO 9613266 A1 WO9613266 A1 WO 9613266A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
compound
aralkyl
independently
Prior art date
Application number
PCT/US1995/014117
Other languages
French (fr)
Inventor
Julian Adams
Yu-Ting Ma
Ross Stein
Matthew Baevsky
Louis Grenier
Louis Plamondon
Original Assignee
Proscript, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26987313&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996013266(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CH95939670T priority Critical patent/CH0788360H1/en
Priority to NZ296717A priority patent/NZ296717A/en
Priority to AU41398/96A priority patent/AU710564B2/en
Priority to EP95939670A priority patent/EP0788360B3/en
Priority to DE69530936T priority patent/DE69530936T3/en
Priority to DE200412000025 priority patent/DE122004000025I1/en
Priority to JP51483496A priority patent/JP3717934B2/en
Priority to DK05023462T priority patent/DK1627880T3/en
Priority to DK95939670.6T priority patent/DK0788360T5/en
Application filed by Proscript, Inc. filed Critical Proscript, Inc.
Priority to CA002203936A priority patent/CA2203936C/en
Priority to AT95939670T priority patent/ATE241631T1/en
Priority to DE1995630936 priority patent/DE122004000025I2/en
Publication of WO1996013266A1 publication Critical patent/WO1996013266A1/en
Priority to FI971746A priority patent/FI114801B/en
Priority to NO19971929A priority patent/NO310558B1/en
Priority to HK98100951A priority patent/HK1002059A1/en
Priority to NL300151C priority patent/NL300151I2/en
Priority to FR04C0014C priority patent/FR04C0014I2/fr
Priority to LU91083C priority patent/LU91083I2/en
Priority to NO2004004C priority patent/NO2004004I2/en
Priority to FI20041415A priority patent/FI120974B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06043Leu-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06191Dipeptides containing heteroatoms different from O, S, or N
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0827Tripeptides containing heteroatoms different from O, S, or N
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to boronic ester and acid compounds, their synthesis and uses.
  • Kettner et ⁇ l. J. Biol. Chem. 259(24):15106-15114 (1984)).
  • These compounds have been shown to be inhibitors of certain proteolytic enzymes (Shenvi et ⁇ l. USPN 4,499,082 issued February 12, 1985; Shenvi et ⁇ l. USPN 4,537,773; Siman et ⁇ l. WO 91/13904 published September 19, 1991; Kettner et al, J. Biol. Chem. 259(24):15106-151 14 (1984)).
  • a class of N-terminal tri-peptide boronic ester and acid compounds has been shown to inhibit the growth of cancer cells (Kinder et ⁇ l.
  • conjugated proteins are hydrolyzed by a 26S proteolytic complex containing a 20S degradative particle called the proteasome (Goldberg, Eur. J. Biochem. 203:9-23 (1992); Goldberg et al, Nature 357:375-379 (1992)).
  • This multicomponent system is known to catalyze the selective degradation of highly abnormal proteins and short-lived regulatory proteins.
  • the 20S proteasome is composed of about 15 distinct 20-30 kDa subunits.
  • NF- ⁇ B The transcription factor NF- ⁇ B and other members of the rel family of protein complexes play a central role in the regulation of a remarkably diverse set of genes involved in the immune and inflammatory responses (Grilli et ⁇ l, International Review of Cytology 143:1-62 (1993)).
  • NF- ⁇ B exists in an inactive form in the cytoplasm complexed with an inhibitor protein, I ⁇ B.
  • I ⁇ B an inhibitor protein
  • NF- ⁇ B is essential for the expression of the human immunodeficiency virus (HIV). Accordingly, a process that would prevent the activation of the NF- ⁇ B in patients suffering from such diseases could be therapeutically beneficial.
  • proteasome inhibitors to inhibit MHC-I antigen presentation.
  • the ubiquitination/proteolysis pathway is shown to be involved in the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules on an antigen presenting cell. Accordingly, inhibitors of this pathway would be useful for the treatment of diseases that result from undesired response to antigen presentation, including autoimmune diseases and transplant rejection.
  • Cyclins are proteins that are involved in cell cycle control in eukaryotes. Cyclins presumably act by regulating the activity of protein kinases, and their programmed degradation at specific stages of the cell cycle is required for the transition from one stage to the next.
  • Experiments utilizing modified ubiquitin (Glotzer et al, Nature 349:132-138 (1991); Hershko et al, J. Biol. Chem. 266:376 (1991)) have established that the ubiquitination/proteolysis pathway is involved in cyclin degradation. Accordingly, compounds that inhibit this pathway would cause cell cycle arrest and would be useful in the treatment of cancer, psoriasis, restenosis, and other cell proliferative diseases.
  • the present invention provides previously unknown peptidyl boronic acid ester and acid compounds.
  • the present invention also provides methods of using amino acid or peptidyl boronic ester and acid compounds, in general, as inhibitors of proteasome function.
  • the present invention provides novel boronic acid and ester compounds having formula (1a) or (2a), as set forth below.
  • An additional aspect of the present invention is related to the discovery that amino acid and peptidyl boronic acids and esters, in general, are potent and highly selective proteasome inhibitors and can be employed to inhibit proteasome function. Inhibition of proteasome function has a number of practical therapeutic and prophylactic applications.
  • the present invention provides a method for reducing the rate of muscle protein degradation in a cell comprising contacting said cell with a proteasome inhibitor having formula (1b) or (2b) as defined below.
  • This aspect of the present invention finds practical utility in inhibiting (reducing or preventing) the accelerated breakdown of muscle proteins that accompanies various physiological and pathological states and is responsible to a large extent for the loss of muscle mass (atrophy) that follows nerve injury, fasting, fever, acidosis, and certain endocrinopathies.
  • the present invention provides a method for reducing the activity of NF- ⁇ B in a cell comprising contacting the cell with a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • inhibitors employed in the practice of the present invention are capable of preventing this activation.
  • blocking NF- ⁇ B activity is contemplated as possessing important practical application in various areas of medicine, e.g., inflammation, sepsis, AIDS, and the like.
  • the present invention provides a method of reducing the rate of degradation of p53 protein in a cell comprising administering to the cell a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • the present invention provides a method for inhibiting cyclin degradation in a cell comprising contacting said cells with a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • Inhibiting cyclin degradation is contemplated as possessing important practical application in treating cell proliferative diseases, such as cancer, restenosis and psoriasis.
  • the present invention provides a method for inhibiting the growth of a cancer cell, comprising contacting said cell with a proteasome inhibitor of the formula (1a) or (2a), as set forth below.
  • the present invention provides a method for inhibiting antigen presentation in a cell comprising administering to the cell a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • the present invention provides a method for inhibiting inducible NF- ⁇ B dependent cell adhesion in an animal comprising administering to said animal a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • the present invention provides a method for inhibiting HIV replication in an animal comprising administering to said animal a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
  • the present invention provides an approach for inhibiting cytolytic immune responses.
  • the proteasome inhibitors of formula (1b) or (2b) can be used to inhibit the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules in an animal, and are therefore useful for treating autoimmune diseases and preventing rejection of foreign tissues, such as transplanted organs or grafts.
  • the present invention provides pharmaceutical compositions that comprise compounds of formula (1a), (1b), (2a) or (2b) in an amount effective to inhibit proteasome function in a mammal, and a pharmaceutically acceptable carrier or diluent.
  • Figure 2. NF- ⁇ B binding activity.
  • Figure 3. Inhibition by MG-273.
  • a first aspect of the present invention is directed to novel subsets of boronic acid and ester compounds having formula (1a) or (2a) below.
  • Novel compounds of formula (1a) include the following:
  • P is hydrogen or an amino-group-protecting moiety as further defined herein;
  • B 1 at each occurrence, is independently one of N or CH;
  • X 2 is one of -C(O)-NH-, -CH(OH)-CH 2 - -CH(OH)-CH(OH)-,
  • R is hydrogen or alkyl, or R forms together with the adjacent R 1 , or when
  • A is zero, forms together with the adjacent R 2 , a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
  • R 1 at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH 2 -R 5 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • R 2 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH 2 -R 5 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • R 3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH 2 -R 5 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • R 5 in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R 6 , where W is a chalcogen and R 6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • Z 1 and Z 2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z 1 and Z 2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N. S, or O; and A is 0, 1, or 2.
  • novel boronic acid and ester derivatives include compounds having a single amino acid side-chain. These compounds have the following formula:
  • Y is one of R 8 -C(O)-, R 8 -SO 2 -, R 8 -NH-C(O)- or R 8 -O-C(O)-, where
  • R 8 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R 8 -C(O)- or R 8 -SO 2 -, then R 8 can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;
  • X 3 is a covalent bond or -C(O)-CH 2 -;
  • R 3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH 2 -R 5 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • R 5 in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R 6 , where W is a chalcogen and R 6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
  • Z 1 and Z 2 are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;
  • R 8 is other than phenyl, benzyl or C 1 - C 3 alkyl.
  • P is one of R 7 -C(O)-, R 7 -SO 2 -, R 7 -NH-C(O)- or R 7 -O-C(O)-;
  • R 7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R 7 -C(O)- or R 7 -SO 2 -, R 7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle; and
  • R 1 is defined above as for formula (1a).
  • compositions that comprise compounds of formula (1a) or (2a) in an amount effective to inhibit proteasome function in a mammal, and a pharmaceutically acceptable carrier or diluent are within the scope of the present invention.
  • a second aspect of the present invention lies in the discovery that boronic acid and ester derivatives of amino acids and peptides, in general, as well as isosteric variations thereof, inhibit proteasome function.
  • the present invention also relates to the use of proteasome inhibitors having formula (1 b) or
  • proteasome inhibitors having formula (1b) or (2b) for treating specific conditions in animals that are mediated or exacerbated, directly or indirectly, by proteasome functions.
  • These conditions include inflammatory conditions, such as tissue rejection, organ rejection, arthritis, infection, dermatoses, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease such as lupus and multiple sclerosis: cell proliferative diseases, such as cancer, psoriasis and restenosis; and accelerated muscle protein breakdown that accompanies various physiological and pathological states and is responsible to a large extent for the loss of muscle mass (atrophy) that follows nerve injury, fasting, fever, acidosis, and certain endocrinopathies.
  • inflammatory conditions such as tissue rejection, organ rejection, arthritis, infection, dermatoses, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease such as lupus and multiple sclerosis
  • cell proliferative diseases such as cancer, psoria
  • Proteasome inhibitors of formula (1b) include: i
  • P 10 is hydrogen or an amino-group-protecting moiety
  • B 11 is independently one of N or CH
  • X 12 is one of -C(O)-NH- -CH(OH)-CH 2 -, -CH(OH)-CH(OH)-, -C(O)-CH 2 -, -SO 2 -NH- -SO 2 -CH 2 - or -CH(OH)-CH 2 -C(O)-NH-;
  • R 10 is hydrogen or alkyl, or R 10 forms together with the adjacent R 11 , or when A 10 is zero, forms together with the adjacent R 12 , a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
  • R n at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH 2 -R 15 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycl e can be optionally substituted;
  • R 12 and R 13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5- 10 membered saturated, partially unsaturated or aromatic heterocycle or
  • ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted
  • R 15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted
  • Z 11 and Z 12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z 11 and
  • Z 12 together form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
  • a 10 is 0, 1, or 2
  • Proteasome inhibitors of formula (2b) include:
  • Y 10 is one of R 8 -C(O)-, R 8 -SO 2 - R 8 -NH-C(O)- or R 8 -O-C(O)-, where
  • R 8 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R 8 -C(O)- or R 8 -SO 2 -, then R 8 can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;
  • X 13 is a covalent bond or -C(O)-CH 2 -;
  • R 13 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or-CH 2 -R 15 , where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
  • R 15 in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R 16 , where W is a chalcogen and R 16 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
  • Z 11 and Z 12 are independently alkyl, hydroxy, alkoxy, aryloxy. or together form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O.
  • P is one of R 7 -C(OX, R 7 -SO 2 -, R 7 -NH-C(O)- or R 7 -O-C(O)-;
  • R 7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R 7 -C(O)- or R 7 -SO 2 -, R 7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle; and
  • R 1 is as defined for formula (1a) above.
  • Preferred embodiments of the aforementioned methods of use employ compounds of formula (1a) and formula (2a) as defined above.
  • compositions comprising an effective amount of the proteasome inhibitors of formula (2a) or (2b), in combination with any conventional pharmaceutically acceptable carrier or diluent, are included in the present invention.
  • amino-group-protecting moiety refers to terminal amino protecting groups that are typically employed in organic synthesis, especially peptide synthesis. Any of the known categories of protecting groups can be employed, including acyl protecting groups, such as acetyl, and benzoyl; aromatic urethane protecting groups, such as benzyloxycarbonyl; and aliphatic urethane protecting groups, such as tert-butoxycarbonyl. See, for example, The Peptides, Gross and Mienhoffer, eds., Academic Press, New York (1981), Vol. 3, pp. 3-88; and Green, T.W. & Wuts,
  • Preferred protecting groups include aryl-, aralkyl-, heteroaryl- and heteroarylalkyl- carbonyl and sulfonyl moieties.
  • heterocycle is intended to mean a stable 5- to 7- membered monocyclic or 7- to 10-membered bicyclic heterocyclic moieties that are either saturated or unsaturated, and which consist of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S, wherein the nitrogen and sulfur heteroatoms can optionally be oxidized, the nitrogen can optionally be quatemized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • the heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable formula.
  • heterocyclic rings described herein can be substituted on carbon or on a nitrogen atom if the resulting compound is stable.
  • heterocycles include, but are not limited to, pyridyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl or octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thi
  • substituted means that one or more hydrogens of the designated moiety are replaced with a selection from the indicated group, provided that no atom's normal valency is exceeded, and that the substitution results in a stable compound.
  • 2 hydrogens attached to an atom of the moiety are replaced.
  • stable compound or “stable formula” is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture and formulation into an efficacious therapeutic agent.
  • heteroaryl refers to groups having 5 to 14 ring atoms; 6, 10 or 14 ⁇ electrons shared in a cyclic array; and containing carbon atoms and 1, 2 or 3 oxygen, nitrogen or sulfur heteroatoms (where examples of heteroaryl groups are: thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, furyl, pyranyl, isobenzofuranyl, benzoxazolyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, indazolyl, purinyl, 4
  • substituted heteroaryl or “optionally substituted heteroaryl,” used in reference to R 1 , refer to heteroaryl groups, as defined above, having one or more substituents selected from halogen, C 1-6 alkyl, C 1-6 alkoxy, carboxy, amino, C 1-6 alkylamino and/or di(C 1-6 )alkylamino.
  • aryl as employed herein by itself or as part of another group refers to monocyclic or bicyclic aromatic groups containing from 6 to 12 carbons in the ring portion, preferably 6-10 carbons in the ring portion, such as phenyl, naphthyl or tetrahydronaphthyl.
  • substituted aryl as employed herein includes aryl groups, as defined above, that include one or two substituents on either the phenyl or naphthyl group selected from C 1-6 alkyl, C 3-8 cycloalkyl, C 1-6 alkyl(C 3-8 )cycloalkyl,
  • alkyl as employed herein includes both straight and branched chain radicals of up to 12 carbons, preferably 1-8 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4- dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl and dodecyl.
  • substituted alkyl as employed herein includes alkyl groups as defined above that have one, two or three halo substituents, or one C 1-6 alkyl(C 6-10 )aryl, halo(C 6-10 )aryl, C 3-8 cycloalkyl, C 1-6 alkyl(C 3-8 )cycloalkyl, C 2-8 alkenyl, C 2-8 alkynyl, hydroxy and/or carboxy.
  • cycloalkyl as employed herein includes saturated cyclic hydrocarbon groups containing 3 to 12 carbons, preferably 3 to 8 carbons, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, any of which groups can be substituted with substituents such as halogen, C 1-6 alkyl, alkoxy and/or hydroxy group.
  • aralkyl or "arylalkyl” as used herein by itself or as part of another group refers to C 1-6 alkyl groups as discussed above having an aryl substituent, such as benzyl.
  • halogen or "halo” as used herein by itself or as part of another group refers to chlorine, bromine, fluorine or iodine with chlorine being preferred.
  • the pharmaceutically acceptable acid and base addition salts those salts in which the anion does not contribute significantly to toxicity or pharmacological activity of the organic cation, are preferred.
  • Basic salts are formed by mixing a solution of a boronic acid (Z 1 and Z 2 are both OH) of the present invention with a solution of a pharmaceutically acceptable non-toxic base, such as, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, or an amino compound, such as choline hydroxide, Tris, bis-Tris, N-methylglucamine or arginine. Water-soluble salts are preferable.
  • suitable salts include: alkaline metal salts (sodium, potassium etc.), alkaline earth metal salts (magnesium, calcium etc.), ammonium salts and salts of pharmaceutically acceptable amines (tetramethylammonium, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine monoethanolamine, diethanolamine, tris(hydroxymethyl)amine, lysine, arginine and N-methyl-D-glucamine).
  • alkaline metal salts sodium, potassium etc.
  • alkaline earth metal salts magnesium, calcium etc.
  • ammonium salts and salts of pharmaceutically acceptable amines tetramethylammonium, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine monoethanolamine, diethanolamine, tris(hydroxymethyl)amine, lysine, arginine
  • the acid addition salts are obtained either by reaction of an organic base of formula (1a) or (2a) with an organic or inorganic acid, preferably by contact in solution, or by any of the standard methods detailed in the literature available to any practitioner skilled in the art.
  • useful organic acids are carboxylic acids such as maleic acid, acetic acid, tartaric acid, propionic acid, fumaric acid, isethionic acid, succinic acid, cyclamic acid, pivalic acid and the like; useful inorganic acids are hydrohalide acids such as HCl, HBr, HI; sulfuric acid; phosphoric acid and the like.
  • Preferred acids for forming acid addition salts include HCl and acetic acid.
  • the boronate esters of boronic acid compounds of the present invention are also preferred. These esters are formed by reacting the acid groups of the boronic acid with a hydroxy compound.
  • Preferred hydroxy compounds are dihydroxy compounds, especially pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • the P moiety of the proteasome inhibitor of formula (1a) is preferably one of R 7 -C(O)-, R 7 -SO 2 -, R 7 -NH-C(O)- or R 7 -O-C(O)-, and R 7 is one of alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl, the ring portion of any of which can be optionally substituted, or if Y is R 7 -C(O)- or R 7 -SO 2 -, then R 7 can also be a saturated or partially unsaturated heterocycle.
  • P is one of R 7 -C(O)- or R 7 -SO 2 -
  • R 7 is one of aryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or a saturated or partially unsaturated heterocycle.
  • R 7 is alkyl, it is preferably straight chained or branched alkyl of from 1 to 6 carbon atoms, more preferably 1-4 carbon atoms.
  • Useful values include methyl, ethyl, propyl, butyl, isopropyl, isobutyl and tert-butyl, with methyl being most preferred.
  • R 7 is alkaryl, aralkyl or heteroarylalkyl
  • the alkyl moiety thereof is also preferably one having from 1 to
  • R 7 is aryl, it is preferably aryl of from 5 to 10 carbon atoms, more preferably 6 to 10 carbon atoms.
  • R 7 is heteroaryl, one or more of the carbon atoms of the aforementioned aryl is replaced by one to three of O, N, or S.
  • the aryl and heteroaryl moieties may, if desired, be ring substituted.
  • Useful ring substituents include one or two of hydroxy, nitro, trifluoromethyl, halogen, alkyl, alkoxy, cyano, C 6-10 aryl, benzyl, carboxyalkoxy, amino, and guanidino.
  • Preferred substituents include halogen, C 1-6 alkyl, C 1-6 alkoxy, phenyl and benzyl. Additionally, where R 7 is alkaryl, aralkyl or heteroarylalkyl, the above statements equally apply.
  • R 7 aryl and aralkyl groups include phenyl, 4-tolyl, benzyl, phenethyl, naphthyl, and naphthylmethyl.
  • Preferred heteroaryl groups are quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl.
  • Useful values of R 7 heteroaryl include 8-quinolinyl, 2-quinoxalinyl, 2-pyrazinyl, 3-furanyl, 2-pyridyl, 3-pyridyl and 4-pyridyl.
  • Preferred saturated or partially saturated heterocycle moieties are 5-, 6-, 9- and 10- membered heterocycles having one, two or three ring heteroatoms selected from O, S or N.
  • a useful value is N-morpholinyl.
  • Preferred cycloalkyl moieties include C 3-10 cycloalkyl. Useful values include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and cyclononyl.
  • P are 2-pyrazinecarbonyl, 8-quinolinesulfonyl and N-morpholinoyl.
  • a in formula (1a) and (1b) can be either 0, 1 or 2.
  • a in formula (1a) and (1b) can be either 0, 1 or 2.
  • a is 1 the residue within the brackets is not present and the inhibitor is a dipeptide.
  • a is 1 the amino acid or isosteric residue within the brackets is present and the inhibitor is a tripeptide.
  • a is 2 the inhibitor is a tetrapeptide.
  • A is zero.
  • R 1 , R 2 , and R 3 in formula (1a) and (1b) are each independently one of hydrogen, C 1-8 alkyl, C 3-10 cycloalkyl, C 6-10 aryl, a 5-, 6-, 9- or 10- membered heteroaryl group, or -CH 2 -R 5 , and more preferably C 1-8 alkyl or— CH 2 —R 5 wherein R 1 , R 2 , R 3 and R 5 are optionally substituted.
  • R 1 , R 2 and R 3 are each independently one of C 1-6 alkyl, e.g., methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and t-butyl, or—CH 2 —R 5 , where R 5 is one of cycloalkyl, aryl or heterocycle.
  • R 5 is preferably one of C 6-10 aryl, C 6-10 ar(C 1-6 )alkyl, C 1-6 alk(C 6-10 )aryl, C 3-10 cycloalkyl, C 1-8 alkoxy, C 1-8 alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group.
  • the ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R 1 , R 2 , R 3 and R 5 can be optionally substituted by one or two substituents independently selected from the group consisting of C 1-6 alkyl, C 3-8 cycloalkyl, C 1-6 alkyl(C 3-8 )cycloalkyl, C 2-8 alkenyl, C 2-8 alkynyl, cyano, amino, C 1-6 alkylamino, di(C 1-6 )alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C 1-6 )alkoxy, trifluoromethyl, halogen, C 1-6 alkoxy, C 6-10 aryl, C 6-10 aryl(C 1-6 )alkyl, C 1-10 aryl(C 1-6 )alkoxy, hydroxy, C 1-6 alkylthio, C
  • R 1 and R 2 are isobutyl or —CH 2 —R 5 , and most preferred that R 2 is—CH 2 —R 5 . It is preferred that R 5 is C 6-10 aryl, a 5-, 6-, 9- or 10- membered heteroaryl group having one to three heteroatoms independently selected from O, N and S.
  • R 2 is isobutyl, 6-quinolinylmethyl, 3-indolylmethyl, 4-pyridylmethyl, 3-pyridylmethyl, 2-pyridylmethyl, benzyl, 1-naphthylmethyl, 2-naphthylmethyl, 4-fluorobenzyl, 4-benzyloxybenzyl, 4-(2'-pyridylmethoxy)benzyl or benzylnaphthylmethyl.
  • R 3 is C 1-12 alkyl, more preferably C 1-6 alkyl, most preferably C 4 alkyl, such as isobutyl.
  • R 1 , R 2 or R 3 is a substituted alkyl, it is preferably C 1-6 alkyl substituted with at least one cycloalkyl group, preferably a C 1-6 cycloalkyl group.
  • R 1 , R 2 , R 3 , or R 5 is substituted aryl or substituted heterocycle, it is preferably substituted with at least one C 1-6 alkyl group.
  • R 1 , R 2 , R 3 or R 5 is cycloalkyl, it is preferably C 5-6 cycloalkyl, e.g., cyclopentyl or cyclohexyl, and can be optionally substituted with at least one C 6-10 aryl group or at least one alkyl group, preferably a C 1-6 alkyl group.
  • R 5 is -W-R 6
  • W is a chalcogen, preferably oxygen or sulfur, more preferably sulfur
  • R 6 is alkyl, preferably C 1-6 alkyl, e.g., methyl, ethyl, propyl, butyl, or isomers thereof.
  • R include hydrogen or C 1-8 alkyl, more preferably C 1-6 alkyl.
  • Useful values of R include methyl, ethyl, isopropyl, isobutyl and n-butyl.
  • R can form together with the adjacent R 1 , or when A is zero, form together with the adjacent R 2 , a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy. It is preferred that the ring system be chosen from one of:
  • Z 1 and Z 2 are each independently one of C 1-6 alkyl, hydroxy, C 1-6 alkoxy, and C 6-10 aryloxy; or together Z 1 and Z 2 preferably form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1 ,2- cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine, or other equivalents apparent to those skilled in the art.
  • Useful values include methyl, ethyl, propyl and n-butyl.
  • Z 1 and Z 2 are hydroxy.
  • a preferred embodiment of the invention is directed to a subgenus of compounds having formula (1a) above, where P is R 7 -C(O)- or R 7 -SO 2 -. and R 7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, and when P is R 7 -C(O)-, R 7 can also be N-morpholinyl.
  • a preferred group of compounds of this embodiment are compounds of formula (1a) wherein P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl; A is zero; X 2 is -C(O)-NH-; R is hydrogen or C 1-8 alkyl; R 2 and R 3 are each independently one of hydrogen, C 1-8 alkyl, C 3-10 cycloalkyl, C 6-10 aryl, C 6- 10 ar(C 1- 6 )alkyl, pyridylmethyl, or quinoliny lmethyl; and Z 1 and Z 2 are both hydroxy, C 1-6 alkoxy, or C 6-10 aryloxy, or together Z 1 and Z 2 form a moiety derived from a dihydroxy compound selected from the group consist
  • Another preferred embodiment of the present invention is directed to compounds of formula (1a) where A is zero. These compounds possess unexpectedly high potency and selectivity as inhibitors of proteasome function.
  • a third preferred subgenus of compounds are compounds of formula (1a) where one of R 1 , R 2 or R 3 corresponds to an amino acid side-chain corresponding to tyrosine or an O-substituted tyrosine derivative, formed by reacting the hydroxyl group of the tyrosine side-chain with a compound having a reactive functional group.
  • This subgenus includes compounds having the formula (1a), wherein at least one R 1 , R 2 or R 3 is:
  • R 9 is one of hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl, wherein the alkyl is optionally substituted with one of C 1-6 alkyl, halogen, monohalo (C 1-6 ) alkyl, and trifluoromethyl; and wherein said cycloalkyl, aryl, aralkyl, heteroaryl and heteroarylalkyl groups can be optionally substituted with one or two of C 1-6 alkyl, C 3-8 cycloalkyl, C 1-6 alkyl(C 3-8 )cycloalkyl, C 2-8 alkenyl, C 2-8 alkynyl, cyano, amino, C 1-6 alkylamino, di(C 1-6 )alky lamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C 1-6 )alkoxy, trifluoromethyl, halogen, C 1-6 alk
  • C 6-10 arylsulfonyl C 6-10 aryl, C 1-6 alkyl(C 6-10 )aryl, and halo(C 6-10 )aryl
  • a 1 and A 2 are independently one of hydrogen, C 1-6 alkyl, halogen, monohalo(C 1-6 )alkyl, or trifluoromethyl.
  • the group -O-R 9 is in either the ortho- or para- position, with parabeing preferred.
  • the groups A 1 and A 2 can be at any remaining positions on the phenyl ring.
  • R 9 is one of C 1-8 alkyl, C 3-10 cycloalkyl, C 6-10 aryl, C 6-10 ar (C 1-6 )alkyl, 5- to 10- membered heteroaryl or 5- to 10-membered heteroaryl(C 1- 6 )alkyl.
  • R 9 Useful values of R 9 include benzyl, phenethyl, pyridyl, pyridy lmethyl, furanylmethyl pyrrolymethyl, pyrrolidylmethyl, oxazolylmethyl and imidazoly lmethyl.
  • the ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R 1 , R 2 , R 3 and R 5 can be optionally substituted by one or two substituents independently selected from the group consisting of C 1-6 alkyl, C 3-8 cycloalkyl, C 1-6 alkyl(C 3-8 )cycloalkyl, C 2-8 alkenyl, C 2-8 alkynyl, cyano, amino, C 1-6 alkylamino, di(C 1-6 )alky lamino, benzylamino, dibenzy lamino, nitro, carboxy, carbo(C 1-6 )alkoxy, trifluoromethyl, halogen, C 1-6 alkoxy, C 6-10 aryl, C 6-10 aryl(C 1-6 )alkyl, C 6-10 aryl(C 1-6 )alkoxy, hydroxy, C 1-6 alkylthio, C
  • a preferred class of compounds of this embodiment are compounds of formula (1a) wherein: A is zero; P is one of R 7 -C(O)-, R 7 -SO 2 - R 7 -NH-C(O)- or R 7 -O-C(O)-; R 7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R 7 -C(O)-, R 7 can also be N-morpholinyl; X 2 is -C(O)-NH-; R 3 is C 1-6 alkyl; R 2 is:
  • a 1 and A 2 are independently one of hydrogen, C 1-6 alkyl, halogen, monohalo(C 1-6 )alkyl or trifluoromethyl; and R 9 is one of hydrogen, C 1-6 alkyl, phenyl, benzyl, phenethyl or pyridylmethyl; and
  • Z 1 and Z 2 are both hydroxy, C 1-6 alkoxy, or C 6-10 aryloxy, or together Z 1 and Z 2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • N-morpholinecarbonyl X 2 is -C(O)-NH-; R 3 is isobutyl; R 2 is:
  • a 1 and A 2 are independently one of hydrogen, methyl, ethyl, chloro, fluoro, or trifluoromethyl; and R 9 is one of hydrogen, methyl, ethyl, butyl, phenyl, benzyl, phenethyl or pyridylmethyl; and
  • Z 1 and Z 2 are both hydroxy, or together Z 1 and Z 2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol,
  • a fourth preferred subgenus of compounds includes compounds of formula (1a) wherein one of the amino acid side-chains, preferably the side-chain defined by R 2 , is an unnatural amino acid selected from naphthy lmethyl, pyridylmethyl and quinolinylmethyl, with quinolinylmethyl being most preferred.
  • this subgenus includes compounds of formula (1a), wherein at least one R 1 , R 2 or R 3 is naphthylmethyl, pyridylmethyl or quinolinylmethyl; provided that the compound is other than isovaleryl-phenylalanine-norvaline-[(naphthylmethyl),
  • a fifth preferred subgenus includes compounds of formula (1a) where R, together with R 1 , or with R 2 when A is zero, forms a nitrogen containing heterocycle.
  • This subgenus includes compounds having formula (1a), wherein:
  • R forms together with the adjacent R', or when A is zero, forms together with the adjacent R 2 , a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, aryl, alkoxy and aryloxy;
  • R 1 that is not adjacent to N-R is one of hydrogen, alkyl, cycloalkyl, aryl, heterocycle or -CH 2 -R 5 ; and when A is 1 or 2, R 2 is one of hydrogen, alkyl, cycloalkyl, aryl, heterocycle or -CH 2 -R 5 , where R 5 is defined as above.
  • a preferred class of compounds of this embodiment of the invention are those wherein: A is zero; P is hydrogen; X 2 is -C(O ⁇ -NH-; and R forms together with the adjacent R 2 , one of the nitrogen-containing ring systems shown in the above structures; R 3 is C 1-6 alkyl; and Z 1 and Z 2 are both hydroxy, C 1-6 alkoxy, or C 6-10 aryloxy, or together Z 1 and Z 2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • the hydrochloride salts of these compounds are also especially preferred.
  • R forms together with the adjacent R 2 , a nitrogen-containing ring system having one of the structures shown above; R 3 is isobutyl; and Z 1 and Z 2 are both hydroxy, or together Z 1 and
  • Z 2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
  • proteasome inhibitors include without limitation the following compounds, as well as pharmaceutically acceptable salts and boronate esters thereof:
  • N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid
  • N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid.
  • Preferred compounds having formula (2a) include compounds where Y is one of R 8 -C(O)-, R 8 -SO 2 -, R 8 - ⁇ H-C(O)- or R 8 -O-C(O)-, and
  • R 8 is one of C 6-10 aryl, C 6-10 ar(C 1-6 )alkyl, or a 5-10 membered heteroaryl, any of which can be optionally substituted, or when P is R 8 -C(O)-, R 8 can also be N-morpholinyl; provided that when Y is R 8 -C(O)-, then R 8 is other than phenyl, benzyl or C 1-3 alkyl.
  • R 8 is alkyl, it is preferably alkyl of from 1 to 4 carbon atoms, e.g., methyl, ethyl, propyl, butyl, or isomers thereof. Additionally, where R 8 is alkaryl or aralkyl, the alkyl moiety thereof is also preferably one having from 1 to 4 carbon atoms.
  • R 8 is aryl, it is preferably aryl of from 6 to 10 carbon atoms, e.g., phenyl or naphthyl, which may, if desired, be ring substituted. Additionally, where R 8 is alkaryl, aralkyl, aryloxy, alkaryloxy, or aralkoxy, the aryl moiety thereof is also preferably one having from 5 to 10 carbon atoms, most preferably 6 to 10 carbon atoms. Preferably, the R 8 moiety is a saturated, partially unsaturated or aromatic heterocycle, more preferably an isomeric pyridine ring or morpholine ring.
  • Y is most preferably one of:
  • R 4 is C 6-10 alkyl
  • the Y moiety of the proteasome inhibitor of formula (2a) is an isosteric amino acid replacement of formula (3a):
  • R 1 is as defined for formula (1a) above. Useful and preferred values of R 1 are the same as those defined for formula (1a) above; and
  • P is one of R 7 -C(O)-, R 7 -SO 2 -, R 7 -NH-C(O)- or R1-O—C(O)-, and R 7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R 7 -C(O)- or R 7 -SO 2 -, R 7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle.
  • R 7 when R 7 is one of alkyl, aryl, alkaryl, aralkyl, any of which are optionally substituted are as defined for formula (1a) above.
  • R 7 is optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle, preferred and useful values are as defined for heteroaryl, unsaturated and partially saturated heterocycle of the R 7 of formula (1a).
  • Y is most preferably:
  • X 1 represents a peptide bond or an isostere that can be used as a peptide bond replacement in the proteasome inhibitors to increase bioavailability and reduce hydrolytic metabolism.
  • X 1 is—C(O>—NH—.
  • R x and R y have the same definitions as R 1 and R 2 , above and P, Z 1 , Z 2 and R 3 are defined as above for formula (1a).
  • Another group of compounds of the present invention are aza-peptide isosteres. This is the result of the replacement of the ⁇ -carbon atom of an amino acid with a nitrogen atom, e.g.,
  • R x represents R 1
  • R y represents R 2
  • P, Z 1 , Z 2 and R 3 are defined as above for formula (1a) and (1b).
  • boronic ester and acid compounds include both D and L peptidyl configurations. However, L configurations are preferred.
  • the present invention relates to a method for reducing the rate of muscle protein degradation in a cell comprising contacting the cell with a proteasome inhibitor described above. More specifically, the present invention relates to a method for reducing the rate of loss of muscle mass in an animal comprising contacting cells of the muscle with a proteasome inhibitor described above.
  • the present invention also relates to a method for reducing the activity of NF- ⁇ B in a cell comprising contacting the cell with a proteasome inhibitor described above. More specifically, the present invention also relates to a method for reducing the activity of NF- ⁇ B in an animal comprising contacting cells of the animal with a proteasome inhibitor described above.
  • the present invention also relates to a method for reducing the rate of proteasome-dependent intracellular protein breakdown comprising contacting cells with a proteasome inhibitor described above. More specifically, the present invention also relates to a method for reducing the rate of intracellular protein breakdown in an animal comprising contacting cells of the animal with the proteasome inhibitor described above.
  • the present invention further relates to a method of reducing the rate of degradation of p53 protein in a cell comprising administering to the cell a proteasome inhibitor described above. More specifically, the present invention further provides a method of reducing the rate of degradation of p53 protein in an animal (preferably, an animal subjected to DNA damaging drugs or radiation) comprising administering to said animal a proteasome inhibitor described above.
  • the present invention further relates to a method for inhibiting cyclin degradation in a cell comprising contacting said cells with a proteasome inhibitor described above. More specifically, the present invention relates to a method for inhibiting cyclin degradation in an animal comprising contacting cells of said animal with a proteasome inhibitor described above.
  • the present invention also provides a method for treating cancer, psoriasis, restenosis, or other cell proliferative diseases in a patient comprising administering to the patient a proteasome inhibitor described above.
  • the present invention also relates to a method for inhibiting antigen presentation in a cell comprising administering to the cell a proteasome inhibitor described above. More specifically, the present invention relates to a method for inhibiting antigen presentation in animal comprising administering to the animal a proteasome inhibitor described above.
  • the present invention further provides a method for inhibiting inducible NF- ⁇ B dependent cell adhesion in an animal comprising administering to said animal a proteasome inhibitor described above.
  • the present invention also provides a method for inhibiting HIV infection in an animal comprising administering to said animal a proteasome inhibitor described above.
  • mammals are preferably mammals. Both terms are intended to include humans.
  • the methods described above deliver the proteasome inhibitor by either contacting cells of the animal with a proteasome inhibitor described above or by administering to the animal a proteasome inhibitor described above.
  • the compounds of the present invention inhibit the functioning of the proteasome.
  • This proteasome-inhibition activity results in the inhibition or blocking of a variety of intracellular functions.
  • inhibition of proteasome function inhibits the activation or processing of transcription factor NF- ⁇ B.
  • NF- ⁇ B plays a central role in the regulation of a diverse set of genes involved in the immune and inflammatory responses.
  • Inhibition of proteasome function also inhibit the ubiquitination/proteolysis pathway. This pathway catalyzes selective degradation of highly abnormal proteins and short-lived regulatory proteins.
  • the ubiquitination proteolysis pathway also is involved in the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules.
  • the proteasome inhibitors of the present invention can be used in reducing the activity of the cytosolic ATP-ubiquitin- dependent proteolytic system in a number of cell types.
  • the inhibitors can be used in vitro or in vivo. They can be administered by any number of known routes, including orally, intravenously, intramuscularly, subcutaneously, intrathecally, topically, and by infusion (Platt et ⁇ l, U.S. Patent No. 4,510, 130; Badalêt et ⁇ l, Proc. Natl Acad. Sci. U.S.A. 86:5983-5987 (1989); Staubli et ⁇ l, Brain Research 444:153-158 (1988)) and will generally be administered in combination with a physiologically acceptable carrier (e.g., physiological saline).
  • a physiologically acceptable carrier e.g., physiological saline
  • the effective quantity of inhibitor given will be determined empirically and will be based on such considerations as the particular inhibitor used, the condition of the individual, and the size and weight of the individual. It is to be expected that the general end-use application dose range will be about
  • the present invention relates to a method of inhibiting (reducing or preventing) the accelerated or enhanced proteolysis that occurs in atrophying muscles and is known to be due to activation of a nonlysosomal ATP-requiring process in which ubiquitin plays a critical role.
  • Inhibition of the ATP-ubiquitin-dependent pathway is a new approach for treating the negative nitrogen balance in catabolic states. This can be effected through use of an inhibitor of the present invention, resulting in reduction of loss of muscle mass in conditions in which it occurs. Excessive protein loss is common in many types of patients, including individuals with sepsis, burns, trauma, many cancers, chronic or systemic infections, neuromotor degenerative disease, such as muscular dystrophy, acidosis, or spinal or nerve injuries. It also occurs in individuals receiving corticosteroids, and those in whom food intake is reduced and/or absorption is compromised. Moreover, inhibitors of the protein breakdown pathway could possibly be valuable in animals, e.g., for combating "shipping fever", which often leads to a major weight loss in cattle or pigs.
  • this pathway is responsible for the accelerated proteolysis in these catabolic states is based on studies in which different proteolytic pathways were blocked or measured selectively in incubated muscles, and the finding of increased mRNA for components of this pathway (e.g., for ubiquitin and proteasome subunits) and increased levels of ubiquitin-protein conjugates in the atrophying muscles.
  • the nonlysosomal ATP-ubiquitin-dependent proteolytic process increases in muscle in these conditions and is responsible for most of the accelerated proteolysis that occurs in atrophying muscles.
  • the inhibitors of the present invention can be used to reduce (totally or partially) the nonlysosomal ATP-dependent protein degradation shown to be responsible for most of the increased protein degradation that occurs during fasting, denervation, or disuse (inactivity), steroid therapy, febrile infection, and other conditions.
  • One approach to testing drug candidates for their ability to inhibit the ATP-ubiquitin-dependent degradative process is to measure proteolysis in cultured cells (Rock, et ⁇ l, Cell 78:761 (1994)).
  • the degradation of long-lived intracellular proteins can be measured in mouse C2C12 myoblast cells. Cells are incubated with 35 S-methionine for 48 hours to label long-lived proteins and then chased for 2 hours with medium containing unlabeled methionine. After the chase period, the cells are incubated for 4 hours in the presence or absence of the test compound.
  • the amount of protein degradation in the cell can be measured by quantitating the trichloroacetic acid soluble radioactivity released from the pre-labeled proteins into the growth medium (an indicator of intracellular proteolysis).
  • Inhibitors can also be tested for their ability to reduce muscle wasting in vivo.
  • Urinary excretion of the modified amino acid 3-methyl histidine (3-MH) is probably the most well characterized method for studying myofibrillar protein degradation in vivo (see Young and Munro, Federation Proc. 37.229-2300 (1978)).
  • 3-Methylhistidine is a post-translationally modified amino acid which cannot be reutilized for protein synthesis, and it is only known to occur in actin and myosin. It occurs in actin isolated from all sources, including cytoplasmic actin from many different cell types.
  • myosin heavy chain of fast-twitch (white, type II) muscle fibers, but it is absent from myosin of cardiac muscle and myosin of slow-twitch (red, type I) muscle fibers. Due to its presence in actin of other tissues than skeletal muscle, other tissues will contribute to urinary 3-MH. Skeletal muscle has been estimated to contribute 38-74% of the urinary 3-MH in normal rats and 79-86% of the urinary 3-MH in rats treated with corticosterone (100 mg/kg/day subcutaneously) for 2-4 days (Millward and Bates, Biochem. J. 214:607-615 (1983); Kayali, et ⁇ l, Am. J.
  • glucocorticoid treatment is used to induce a state of muscle wasting in rats. Treating rats with daily subcutaneous injections of corticosterone (100 mg/kg) causes an increase of approximately 2-fold in urinary 3-MH. The increase in excretion of 3-MH is transient, with a peak increase after 2-4 days of treatment and a return to basal values after 6-7 days of treatment (Odedra, et ⁇ l,
  • proteasome inhibitors are therefore expected to inhibit the muscle wasting that occurs after glucocorticoid treatment.
  • proteasome inhibitors can be administered alone or in combination with another inhibitor or an inhibitor of another pathway (e.g., a lysosomal or Ca ++ -dependent pathway) responsible for loss of muscle mass.
  • another inhibitor or an inhibitor of another pathway e.g., a lysosomal or Ca ++ -dependent pathway
  • the inhibitors of the present invention will block the degradation of the tumor suppressor protein p53. This protein is degraded by the ATP ubiquitin dependent proteolysis by the proteasome (see Scheffner et ⁇ l, Cell 75:495-505 (1993)).
  • p53 knockout mice indicate an important role for p53 in reducing incidence of tumors (Donehower et ⁇ l, Nature 356:215-221 (1992)).
  • the basal levels of p53 are very low due to very rapid degradation of p53 protein.
  • expression of p53 protein in normal cells is stimulated in response to radiation and drugs that induce DNA damage (Kastan et ⁇ l, Cancer Res. 51:6304-631 1 (1991)).
  • proteasome inhibitors provides a method for augmenting the expression of p53 in normal cells by preventing its degradation by the proteasome.
  • An example of this would be the systemic administration of proteasome inhibitor at a sufficient dose to inhibit p53 degradation by the proteasome during the treatment of the tumor with cytotoxic drugs or radiation. This will prolong and increase the levels of p53 expression in normal cells and will enhance the arrest of normal cell proliferation, reducing their sensitivity to higher doses of radiation or cytotoxic drugs. Administration of proteasome inhibitors would therefore permit exposing the tumor to higher doses of radiation, enhancing the killing of tumor cells.
  • proteasome inhibitors can be used as adjuvants to therapy with tumoricidal agents, such as radiation and cytotoxic drugs.
  • Topical application of proteasome inhibitors to enhance p53 expression in skin The expression of p53 in normal skin is induced by exposure of the skin to UV irradiation, which inhibits DNA replication that is needed for cell division (Maltzman et ⁇ l. Mol. Cell. Biol. 4:1689 (1984); Hall et ⁇ l., Oncogene 5.203-207 (1993)). This protects normal skin from chromosomal DNA damage by allowing time for DNA repair before DNA replication.
  • Telangiectasia result in increased susceptibility to ionizing radiation-induced skin tumors (Kastan et ⁇ l, Cell 71:587-597 (1992)). It is well established that exposure of normal individuals increases the risk for many kinds of skin cancers.
  • Another approach would be to promote the resistance of the DNA in skin cells to UV damage by the topical application of agents that enhance the skin's expression of p53 in response to UV light. Inhibiting p53 degradation by the topical application of proteasome inhibitors provides a method to enhance the p53 response.
  • One preferred embodiment of the present invention is the topical application of proteasome inhibitors to reduce the acknowledged risk of skin cancers that results from the treatment of psoriasis using UV light, which is often combined with psoralens or coal tar. Each of these agents can induce DNA damage.
  • NF- ⁇ B exists in an inactive form in the cytoplasm complexed with an inhibitor protein, I ⁇ B.
  • I ⁇ B an inhibitor protein
  • the NF- ⁇ B In order for the NF- ⁇ B to become active and perform its function, it must enter the cell nucleus. It cannot do this, however, until the I ⁇ B portion of the complex is removed, a process referred to by those skilled in the art as the activation of, or processing of, NF- ⁇ B.
  • the normal performance of its function by the NF- ⁇ B can be detrimental to the health of the patient.
  • NF- ⁇ B is essential for the expression of the human immunodeficiency virus (HIV). Accordingly, a process that would prevent the activation of the NF- ⁇ B in patients suffering from such diseases could be therapeutically beneficial.
  • HAV human immunodeficiency virus
  • the inhibitors employed in the practice of the present invention are capable of preventing this activation.
  • blocking NF- KB activity could have important application in various areas of medicine, e.g., inflammation, through the inhibition of expression of inflammatory cytokines and cell adhesion molecules, (ref. Grilli et ⁇ l, International Review of Cytology 143: 1-62 ( 1993)) sepsis, AIDS, and the like.
  • NF-KB is highly regulated (Grilli et ⁇ l, International Review of Cytology 143: 1-62 (1993); Beg et al, Genes and Development 7:2064-2070 (1993)).
  • NF- ⁇ B comprises two subunits, p50 and an additional member of the rel gene family, e.g., p65 (also known as Rel A).
  • p65 also known as Rel A
  • the p50 and p65 are present in an inactive precursor form in the cytoplasm, bound to I ⁇ B.
  • the p50 subunit of NF- ⁇ B is generated by the proteolytic processing of a 105 kD precursor protein NF- ⁇ B, (p105), and this processing is also regulated.
  • the sequence of the N-terminal 50 kD portion of pi 05 is similar to that of p65 and other members of the rel gene family (the rel homology domain).
  • the C-terminal 55 kD of pi 05 bears a striking resemblance to I ⁇ B- ⁇ (also known as MAD3).
  • unprocessed pi 05 can associate with p65 and other members of the rel family to form a p65/p105 heterodimer.
  • Processing of pi 05 results in the production of p50, which can form the transcriptionally active p50/p65 heterodimer.
  • the C-terminal I ⁇ B- ⁇ -homologous sequence of p105 is rapidly degraded upon processing.
  • NF- ⁇ B 2 NF- ⁇ B 2
  • pi 00 NF- ⁇ B 2
  • the transcriptional activity of heterodimers consisting of p50 and one of the many rel family proteins, such as p65, can be regulated by at least two mechanisms.
  • the heterodimers associate with I ⁇ B- ⁇ to form an inactive ternary cytoplasmic complex.
  • the rel family members associate with p105 and p100 to form inactive complexes.
  • the ternary complex can be activated by the dissociation and destruction of I ⁇ B- ⁇ , while the p65/p105 and p65/p100 heterodimer can be activated by processing pi 05 and pi 00, respectively.
  • I ⁇ B- ⁇ The dissociation of I ⁇ B- ⁇ can be induced by a remarkably large number of extracellular signals, such as lipopolysaccharides, phorbol esters, TNF- ⁇ , and a variety of cytokines.
  • the I ⁇ B- ⁇ is then rapidly degraded.
  • Recent studies suggest that p105 and p100 processing can also be induced by at least some of these extracellular signals.
  • p105 or a truncated form of p 105 can be processed to p50 in vitro (Fan et ⁇ l, Nature 354:395-398 (1991)).
  • Certain of the requirements and characteristics of this in vitro processing reaction e.g., ATP/Mg ++ dependency
  • implicated the involvement of the ubiquitin-mediated protein degradation pathway Goldberg, Eur. J. Biochem. 203:9-23 (1992)
  • the proteasome is required for the processing of p105 to p50.
  • p105/p60Tth proteins are not processed in mammalian cell cytoplasmic extracts depleted of proteasome activity. However, addition of purified 26S proteasomes to these depleted extracts restores the processing activity. Additionally, specific inhibitors of the proteasome block the formation of p50 in mammalian cell extracts and in vivo.
  • mammalian pi 05 is processed to p50 in Saccharomyces cerevisiae in vivo, and a mutant deficient in the chymotrypsin-like activity of the proteasome showed a significant decrease in p105 processing.
  • p60Tth is ubiquitinated in vitro and this ubiquitination is a pre-requisite for pi 05 processing.
  • I ⁇ B- ⁇ degradation and the activation of NF- ⁇ B are also blocked by inhibitors of proteasome function or ubiquitin conjugation (Palombella et ⁇ l. , Cell 78:773-785 (1994)).
  • proteasome plays an essential role in the regulation of
  • the proteasome is required for the processing of pi 05 and possibly pi 00.
  • the degradation of the inhibitory C-terminus can also require the proteasome.
  • the proteasome appears to be required for the degradation of I ⁇ B- ⁇ in response to extracellular inducers.
  • the present invention relates to a method for reducing the activity of NF- KB in an animal comprising contacting cells of the animal with inhibitors of proteasome function.
  • Whole-cell extracts are prepared from untreated or TNF- ⁇ treated cells that have been pretreated for 1 hour with the test compound.
  • the DNA binding activity of NF- ⁇ B is measured by an electrophoretic mobility shift assay using the PRDII probe from the human IFN- ⁇ gene promoter.
  • NF- ⁇ B activation As an indirect measure of NF- ⁇ B activation, the cell-surface expression of E-selectin, I-CAM-1, and V-CAM-1 on primary human umbilical vein endothelial cells (HUVECs) can be determined by means of a cell surface fluorescent immuno-binding assay. Because E-selectin, I-CAM- 1 , and V-C AM-1 are under the regulatory control of NF- ⁇ B, inhibition of NF- ⁇ B activation results in reduced levels of these adhesion molecules on the cell surface.
  • Compounds can also be tested for their ability to inhibit a delayed-type hypersensitivity response in mice.
  • Contact hypersensitivity is a manifestation of an in vivo T-cell mediated immune response (Friedmann, Curr. Opinion
  • NF- ⁇ B by mediating events such as the production of cytokines and the induction and utilization of cell-surface adhesion molecules, is a central and coordinating regulator involved in immune responses.
  • the compounds of formula (1b) or (2b) can be used to treat chronic or acute inflammation that is the result of transplantation rejection, arthritis, rheumatoid arthritis, infection, dermatosis, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease. Additionally, inflammation associated with psoriasis and restenosis can also be treated.
  • treatment of inflammation or "treating inflammation” is intended to include the administration of compounds of the present invention to a subject for purposes which can include prophylaxis, amelioration, prevention or cure of an inflammatory response. Such treatment need not necessarily completely ameliorate the inflammatory response. Further, such treatment can be used in conjunction with other traditional treatments for reducing the inflammatory condition known to those of skill in the art.
  • proteasome inhibitors of the invention can be provided as a "preventive" treatment before detection of an inflammatory state, so as to prevent the same from developing in patients at high risk for the same, such as, for example, transplant patients.
  • efficacious levels of the proteasome inhibitors of the invention are administered so as to provide therapeutic benefits against the secondary harmful inflammatory effects of inflammation.
  • an "efficacious level” of a composition of the invention is meant a level at which some relief is afforded to the patient who is the recipient of the treatment.
  • an "abnormal" host inflammatory condition is meant an level of inflammation in the subject at a site which exceeds the norm for the healthy medical state of the subject, or exceeds a desired level.
  • secondary tissue damage or toxic effects is meant the tissue damage or toxic effects which occur to otherwise healthy tissues, organs, and the cells therein, due to the presence of an inflammatory response, including as a result of a "primary "inflammatory response elsewhere in the body.
  • Amounts and regimens for the administration of proteasome inhibitors and compositions of the invention can be determined readily by those with ordinary skill in the clinical art of treating inflammation-related disorders such as arthritis, tissue injury and tissue rejection.
  • the dosage of the composition of the invention will vary depending upon considerations such as: type of pharmaceutical composition employed; age; health; medical conditions being treated; kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired; extent of tissue damage; gender; duration of the symptoms; and, counter indications, if any, and other variables to be adjusted by the individual physician.
  • a desired dosage can be administered in one or more applications to obtain the desired results.
  • Pharmaceutical compositions containing the proteasome inhibitors of the invention can be provided in unit dosage forms.
  • proteasome inhibitors are useful for treating such conditions as tissue rejection, arthritis, local infections, dermatoses, inflammatory bowel diseases, autoimmune diseases, etc.
  • the proteasome inhibitors of the present invention can be employed to prevent the rejection or inflammation of transplanted tissue or organs of any type, for example, heart, lung, kidney, liver, skin grafts, and tissue grafts.
  • Compounds of the present invention inhibit the growth of cancer cells.
  • the compounds can be employed to treat cancer, psoriasis, restenosis or other cell proliferative diseases in a patient in need thereof.
  • cancer refers to the spectrum of pathological symptoms associated with the initiation or progression, as well as metastasis, of malignant tumors.
  • tumor refers to the spectrum of pathological symptoms associated with the initiation or progression, as well as metastasis, of malignant tumors.
  • tumor is intended, for the purpose of the present invention, a new growth of tissue in which the multiplication of cells is uncontrolled and progressive.
  • the tumor that is particularly relevant to the invention is the malignant tumor, one in which the primary tumor has the properties of invasion or metastasis or which shows a greater degree of anaplasia than do benign tumors.
  • treatment of cancer refers to an activity that prevents, alleviates or ameliorates any of the primary phenomena (initiation, progression, metastasis) or secondary symptoms associated with the disease.
  • Cancers that are treatable are broadly divided into the categories of carcinoma, lymphoma and sarcoma.
  • Sarcomas that can be treated by the composition of the present invention include, but are not limited to: amelioblastic sarcoma, angiolithic sarcoma, botryoid sarcoma, endometrial stroma sarcoma, ewing sarcoma, fascicular sarcoma, giant cell sarcoma, granulositic sarcoma, immunoblastic sarcoma, juxaccordial osteogenic sarcoma, coppices sarcoma, leukocytic sarcoma (leukemia), lymphatic sarcoma (lympho sarcoma), medullary sarcoma, myeloid sarcoma (granulocitic sarcoma), austiogenci sarcoma, periosteal sarcoma, reticulum cell sarcoma (histiocytic lymphoma), round cell sar
  • Lymphomas that can be treated by the composition of the present invention include, but are not limited to: Hodgkin's disease and lymphocytic lymphomas, such as Burkitt's lymphoma, NPDL, NML, NH and diffuse lymphomas.
  • the compounds of formulae (1b) and (2b) appear to be particularly useful in treating metastases.
  • Amounts and regimens for the administration of proteasome inhibitors and compositions of the invention can be determined readily by those with ordinary skill in the clinical art of treating cancer-related disorders such as the primary phenomena (initiation, progression, metastasis) or secondary symptoms associated with the disease.
  • the dosage of the composition of the invention will vary depending upon considerations such as: type of composition employed; age; health; medical conditions being treated; kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired; extent of tissue damage; gender; duration of the symptoms; and, counter indications, if any, and other variables to be adjusted by the individual physician.
  • a desired dosage can be administered in one or more applications to obtain the desired results.
  • Pharmaceutical compositions containing the proteasome inhibitors of the invention can be provided in unit dosage forms.
  • N-Protected (Boc-, Cbz-, or Fmoc-) amino acids were commercially available or were prepared from the corresponding free amino acid by standard protection methods, unless otherwise described in the Examples.
  • 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent), or O-(1H-benzotriazol-1-yl)-NNN'N'-tetramethyluronium tetrafluoroborate (TBTU) were employed as coupling reagents (Sheehan, J.C. et ⁇ l, J. Am. Chem. Soc. 87:2492 (1965); Castro, B., et ⁇ l, Synthesis 11:751 (1976); Tetrahedron Lett. 30:1927 ( 1989)).
  • Example 2 N-Cbz-L-Leucine-L-leucine boronic acid [MG-274] A. (1S,2S,3R,5S)-Pinanediol N-Cbz-L-leucine-L-leucine boronate
  • BOP reagent 827 mg, 1.87 mmol
  • (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt 595 mg, 1.58 mmol
  • N-Cbz-L-leucine 500 mg, 1.87 mmol
  • acetonitrile 30 mL
  • Example 3 ⁇ -(1-Naphthyl)-L-alanine-L-leucine boronic acid
  • Example 3 A To the product of Example 3 A (290 mg, 0.58 mmol) in a mixture of hexane (4 mL), MeOH (4 mL), and 1 ⁇ HCl (1.3 mL) was added i-BuB(OH) 2 (71 mg, 0.70 mmol). The reaction mixture was stirred for 72 h at room temperature.
  • the aqueous solution was made basic with ⁇ aOH and washed with ether-EtOAc
  • Example 4B The product of Example 4B (4.47 g, 7.23 mmol) was dissolved in CH 2 Cl 2 (40 mL) and cooled to 0°C. A solution of 4N H Cl in dioxane (40 mL, 0.16 mol) was added and the reaction mixture was stirred at room temperature for 1.5 h. Concentration afforded a yellow solid, which was triturated with hexane-ether (1 :1, 100 mL). Filtration afforded the title compound (3.65 g) as a pale yellow solid.
  • Example 4C By a procedure analogous to that described in Example 1C, the product of Example 4C (2.53 g, 4.56 mmol) was treated with 4-morpholinecarbonyl chloride (0.75 mL, 6.43 mmol) to provide the title compound (2.35 g) as a pale yellow solid.
  • 4-morpholinecarbonyl chloride (0.75 mL, 6.43 mmol)
  • Example 5 N-Methyl-N-Cbz-L-leucine-L-leucine boronic acid [MG-268]
  • Example 5A By a procedure analogous to that described in Example 1 A, the product of Example 5A (85.1 mg, 0.30 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (105 mg, 0.28 mmol) in the presence of EDC (64 mg, 0.33 mmol), HOBT (45 mg, 0.33 mmol), and ⁇ MM (37 mg, 0.37 mmol) to provide, after purification by flash chromatography (elution with 3:2 hexanes/acetone), the title compound (85 mg).
  • EDC 64 mg, 0.33 mmol
  • HOBT 45 mg, 0.33 mmol
  • ⁇ MM 37 mg, 0.37 mmol
  • Example 5B By a procedure analogous to that described in Example 1D, the product of Example 5B (85 mg, 0.16 mmol) was deprotected by treatment with ⁇ aIO 4 (104 mg, 0.485 mmol) and aqueous NH 4 OAc (0.1N, 5 mL, 0.5 mmol) in 10 mL of acetone to provide, after purification by flash chromatography (elution with
  • N-Acetyl ⁇ -(6-quinolinyl)-D,L-alanine ethyl ester (728 mg, 2.55 mmol) was heated at reflux in 6N HCl (20 mL). After 20 h, the reaction mixture was concentrated to dryness and the residue was dried in vacuo to provide the title compound, which was used directly in the next reaction.
  • Example 6B By a procedure analogous to that described in Example 2A, the product of Example 6B was coupled with (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt (943 mg, 2.5 mmol) in the presence of BOP reagent (1.33 g,
  • Example 6C The product of Example 6C (343 mg, 0.61 mmol) was treated with trifluoroacetic acid (7 mL) and thioanisole (1 mL) in CH 2 Cl 2 (15 mL) at 0°C, as described in Example 1B, to provide the title compound.
  • Example 6D The product of Example 6D was coupled with 4-morpholinecarbonyl chloride (0.14 mL, 1.22 mmol) by a procedure analogous to that described in Example 1C to produce the title compound (112 mg).
  • F. N-(4-Morpholine)carbonyl- ⁇ -(6-quinolinyl)-D, L-alanine-L-leucine boronate
  • Example 6E Deprotection of the product of Example 6E (153 mg, 0.27 mmol) was effected according to the procedure described in Example 3B. Purification by silica gel chromatography (elution with 50:50:10 hexanes/acetone/methanol) afforded the title compound (87 mg). The product was further purified by reverse phase HPLC; 5 mg of the title compound was recovered.
  • Example 7 N-(4-Morpholine)carbonyl- ⁇ -(1-naphthyl)-L-alanine-L-leucine methylboronic acid [MG-317]; and N-(4-Morpholine) carbonyl- ⁇ -(1-naphthyl)-L-alanine-L-leucine dimethylborane [MG-318]
  • 1,3-propanedioI (20.0 mL, 0.28 mmol).
  • the resultant clear solution was stirred for 30 min at room temperature, and then anhydrous MgSO 4 was added. Stirring was continued for an additional 30 min. and then the mixture was filtered through a cotton plug and then through a 0.2 mm PTFE filter. The solution was concentrated, toluene (2 mL) was added, and the mixture was again concentrated to produce a white solid. Anhydrous THF (3 mL) was added, and the resultant solution was cooled to 0°C. MeLi (0.8 mL, 1.12 mmol) was added. After 10 min, the mixture was warmed to room temperature.
  • Example 8C N-Benzyl-(3R)-3-dioxyboryl-5-methylhexanamide
  • the product of Example 8C (223 mg, 0.56 mmol) was deprotected according to the procedure described in Example 3B. Purification by flash chromatography (elution with 5% MeOH/CHCl 3 ) provided a pale yellow oil, which was dissolved in acetonitrile/MeOH. Water was added and the mixture was lyophilized overnight to produce the title compound (108 mg) as a fluffy white solid.
  • Example 9 N-Acetyl-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-L-leucine boronic acid [MG-310]
  • Example 9B The product of Example 9B (755 mg) was dissolved in CH 2 Cl 2 (10 mL) and cooled to 0°C. A solution of 4N H Cl in dioxane (8 mL, 0.03 mol) was added and the reaction mixture was stirred at room temperature. Concentration and trituration with ether-hexanes afforded the title compound (565 mg) as an off-white solid.
  • Example 10 N-(4-Morpholine)carbonyl- ⁇ -(2-quinolyl)-L-alanine-L-leucine boronic acid [MG-315]
  • Example 10A To a solution of the product of Example 10A (8 g, 22.3 mmol) in EtOH (180 mL) was added 6.1N ⁇ aOH (6.5 mL, 40 mmol). After 2 h, 1 1.1N HCl (3.6 mL, 40 mmol) was added, and the reaction mixture was concentrated to dryness. The residue was suspended in 1,4-dioxane (200 mL) and the mixture was heated at reflux for 90 min. The reaction mixture was concentrated and the residue was purified by silica gel chromatography (elution with 30-50% acetone-hexanes) to provide to title compound (4.3 g).
  • Example 10B The product of Example 10B (4.3 g, 15 mmol) was treated with Subtilisin Carlsberg (Sigma, 1 1.9 units/mg, 30 mg, 357 units) at room temperature in aqueous ⁇ aHCO 3 (0.2M, 120 mL). After 2 h. the reaction mixture was extracted with CHCl 3 (6 ⁇ 100 mL). The aqueous layer was concentrated to dryness to provide the title compound (3.5 g), which contained salts.
  • Subtilisin Carlsberg Sigma, 1 1.9 units/mg, 30 mg, 357 units
  • Example 10D By a procedure analogous to that described in Example 2A, the product of Example 10D (0.6 g, 1.9 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (716 mg, 1.9 mmol) in the presence of BOP reagent (0.84 g, 1.9 mmol) and triethylamine (0.27 mL, 1.9 mmol). Purification by silica gel chromatography (elution with 10-30% acetone-hexanes) afforded the title compound (194 mg). F. (1S,2S,3R,5S)-Pinanediol N-(4-morpholine)carbonyl- ⁇ - (2-quinolyl)-L-alanine-L-leucine boronate
  • Example 10E The product of Example 10E (194 mg) was treated with trifluoroacetic acid (7 mL) and thioanisole (1 mL) as described in Example 1B. The resultant product was condensed with 4-morpholinecarbonyl chloride (568 mg, 3.8 mmol) as described in Example 2C. Purification by silica gel chromatography (elution with 20-50% acetone-hexanes) afforded the title compound (367 mg). G.
  • Example 10F N-(4-Morpholine)carbonyl- ⁇ -(2-quinolyl)-L-alanine-L-leucine boronic acid
  • the product of Example 10F (367 mg, 0.64 mmol) was deprotected according to the procedure described in Example 3B to provide the title compound (222 mg).
  • Example 1 1B The product of Example 1 1B (762 mg, 4.3 mmol) was treated with di-tert-butyl pyrocarbonate (1.13 g, 5.17 mmol) according to the procedure described in Example 6B to afford the title compound (886 mg), as a foamy white solid.
  • Example 12 Diethanolamine N-(4-morpholine)carbonyl- ⁇ -(1-naphthyl)-L- alanine-L-leucine boronate [MG-286]
  • Example 12A To a solution of the product of Example 12A (9.7 g, 62 mmol) in CH 2 Cl 2 (150 mL) was added at room temperature (carbethoxymethylene) triphenylphosphorane (25 g, 71 mmol). The resultant mixture was stirred for 1.5 h, and the homogeneous yellow solution was then concentrated to dryness.
  • Example 12B The product of Example 12B (15.3 g, 68 mmol) was dissolved in a mixture of EtOAc ( 100 mL) and MeOH ( 10 mL) and hydrogenated at 1 atm. over
  • Example 12K By a procedure analogous to that described in Example 3B, the product of Example 12K (300 mg, 0.522 mmol) was deprotected to provide the title compound (150 mg).
  • trans-4-hydroxy-L-proline (5.12 g, 0.039 mol) was treated with benzyl chloroformate (8.5 mL, 0.06 mol) to provide the title compound (6.0 g) as a white solid.
  • Example 13D By a procedure analogous to that described in Example 12K, the product of Example 13D (250 mg, 0.72 mmol) was coupled with (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt (300 mg, 0.79 mmol) in the presence of TBTU (302 mg, 0.79 mmol) to provide the title compound (355 mg) as a white solid.
  • Example 13F By a procedure analogous to that described in Example 3B, the product of Example 13F (270 mg, 0.6 mmol) was deprotected to provide the title compound (130 mg) as a white solid.
  • Example 14B The product of Example 14B (1.24 g, 3.64 mmol) was dissolved in acetone (15 mL) and aqueous NaOH (1M, 4 mL, 4 mmol) was added. The reaction mixture was stirred at room temperature for 2 h. The mixture was acidified with 10% HCl and extracted with EtOAc (3 ⁇ 60 mL). The combined organic extract was washed with water, dried (anhydrous MgSO 4 ), filtered, and concentrated. The residue was purified by silica gel chromatography (elution with 30-50% acetone-hexanes and 70:30: 10 hexane:acetone:methanol) to give the title compound (0.61 g). C.
  • Example 14B By a procedure analogous to that described in Example 2, the product of Example 14B (395 mg, 1.1 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (415 mg, 1.1 mol) in the presence of BOP reagent (487 mg, 1.1 mmol) to afford the title compound (261 mg).
  • Example 14C The product of Example 14C (261 mg, 0.43 mmol) was dissolved in CH 2 Cl 2 (10 mL) and treated at 0°C with trifluoroacetic acid (5 mL) and thioanisole (1 mL). After 2 h, solvents were evaporated. The residue was dissolved in CH 2 Cl 2 (10 mL) and cooled to 0°C. 8-Quinolinesulfonyl chloride (98 mg, 0.43 mmol) and triethylamine (0.12 mL, 0.86 mmol) were added. The reaction mixture was stirred at 0°C for 1 h and at room temperature for 15 h. The solvents were removed, water was added, and the product was extracted with EtOAc (3 ⁇ 50 mL).
  • Example 14D 152 mg, 0.22 mmol was deprotected according to the procedure described in Example 3B to provide the title compound (12.7 mg).
  • Example 16 cis-3-Phenyl-D,L-prrline-L-leucine boronic acid hydrochloride salt[MG-359]
  • Trifluoroacetic acid (15.4 mL) was added slowly over 15 min to a solution of the product of Example 15A (7.0 g, 20.1 mmol) and triethylsilane (4.9 mL,
  • Example 15B The product of Example 15B (5.9 g) was dissolved in 0.5N NaOH (200 mL) and the resultant solution was stirred at room temperature for 21 h. The solution was washed with EtOAc (75 mL) and then acidified to pH 2 with 3N HCl. The precipitated solids were extracted with CHCl 3 . The organic layer was concentrated to give a gummy residue, which was dissolved in toluene (70 mL) and heated at 75°C for 1 h. The solvent was evaporated to provide the title compound (4.2 g) as a light yellow oil.
  • Example 15D The ester obtained in Example 15D (375 mg) was hydrolyzed by heating at reflux in 6N HCl (5 mL) for 17 h. The cooled reaction mixture was washed with EtOAc and the aqueous layer was concentrated to dryness. Recrystallization (MeOH-ether) afforded the title compound (201 mg).
  • Example 15F By a procedure analogous to that described in Example 4B, the product of Example 15F (192 mg, 0.66 mmol) was coupled with (1S,2S,3R,5S)pinanediol leucine boronate trifluoroacetate salt (274 mg, 0.73 mmol) in the presence of TBTU (277 mg, 0.73 mmol) to provide the title compound (286 mg).
  • Example 15G The product of Example 15G (262 mg) was dissolved in CH 2 Cl 2 (5 mL) and treated at 0°C with 4N HCl-dioxane (4 mL). After 2 h, the reaction mixture was concentrated to dryness, and the residue was treated with isobutylboronic acid (66 mg, 0.64 mmol) according to the procedure described in Example 3B to provide the title compound (71 mg) as a white solid.
  • the oil (900 mg, 2.68 mmol) was dissolved in a mixture of HOAc (7 mL) and 8N HCl and the mixture was heated at reflux for 18 h. The mixture was concentrated to dryness. The residue was dissolved in water (30 mL), washed with EtOAc, and again concentrated to dryness.
  • Table II summarizes results from kinetic experiments that measured the inhibition of the 20S proteasome by compounds having the formula of compound
  • Table III demonstrates that dipeptide boronic acids have lower K i values than the corresponding dipeptide aldehydes.
  • Table IV demonstrates the markedly superior selectivity for the 20S proteasome over other proteases, e.g. Cathepsin B, exhibited by the boronic esters/acids as compared to the peptide aldehydes.
  • C2Cl2 cells (a mouse myoblast line) were labelled for 48 hrs with 3 5 S-methionine. The cells were then washed and preincubated for 2 hrs in the same media supplemented with 2mM unlabelled methionine. The media was removed and replaced with a fresh aliquot of the preincubation media containing 50% serum, and a concentration of the compound to be tested. The media was then removed and made up to 10% TCA and centrifuged. The TCA soluble radioactivity was counted. Inhibition of proteolysis was calculated as the percent decrease in TCA soluble radioactivity. From this data, an EC 50 for each compound was calculated.
  • Rats were stabilized on a diet free from 3-methylhistidine and then placed in metabolic cages for collection of 24-hour urine samples. After two days of urine collections to determine basal 3-methylhistidine output, the rats were treated with daily subcutaneous injections of corticosterone (100 mg/kg).
  • Example 21 MG-273 Inhibits the Activation of NF- ⁇ B
  • Example 22 MG-273 Inhibits Expression of Cell Adhesion Molecules on
  • HUVECs in microtiter plates were exposed to the indicated concentrations of inhibitor for 1 hour, prior to the addition of 100 U/mL TNF- ⁇ .
  • Cell surface binding assays were performed at 4°C, using saturating concentrations of monoclonal antibodies specific for the cell adhesion molecules (Becton Dickenson) and fluorescent-conjugated F(ab') 2 goat anti-murine IgG (Caltag Labs, San Francisco, CA). Fluorescent immunoassays for E-selectin and I-CAM were performed at 4 hours, those for V-CAM at 16 hours.
  • Figure 3 shows that cell -surface expression I-CAM, V-CAM, and E-selectin on TNF- ⁇ stimulated HUVECs is significantly inhibited by MG-273 at concentrations of 0.5 ⁇ M or above.
  • Example 23 Boronic Acid Compounds Block the DTH Response in Mice
  • Naive mice were sensitized by the application of 20 ⁇ L of a 0.5% (v/v) solution of 2,4-dinitrofluorobenzene in 4:1 acetone/olive oil to both of the rear limb footpads. This procedure is performed on two consecutive days, which are referred to as days 0 and 1.
  • mice were lightly anaesthetized for this procedure by the intraperitoneal (i.p.) injection of a mixture of ketamine (80 mg/kg, Henry Schein) and xylazine (16 mg/kg, Henry Schein).
  • Test compounds were administered orally as a suspension in 0.5% methylcellulose (4000 centipoises Fisher Scientific) 30 minutes prior to the application of the challenge dose of 2,4-dinitrofluorobenzene to the ears.
  • the dose was delivered in a final volume of 0.5 mL using a 24 gauge 1 inch malleable feeding needle with a 1.25 mm ball tip (Roboz Surgical).
  • ear swelling was determined by measuring both the control and the experimental ear using a Mitutoyo Digital micrometer. The absolute difference in thickness of the experimental (left) ears vs. the control (right) ears was determined for each treatment group. Efficacy was determined by comparing this difference in thickness to the difference calculated for the vehicle control group. Test results are provided in Table VII.

Abstract

Disclosed herein is a method for reducing the rate of degradation of proteins in an animal comprising contacting cells of the animal with certain boronic ester and acid compounds. Also disclosed herein are novel boronic ester and acid compounds, their synthesis and uses.

Description

Boronic Ester and Acid Compounds, Synthesis and Uses Cross-Reference to Related Applications
This application is a continuation-in-part of U.S. application no. 08/442,581, filed May 16, 1995, which is a continuation-in-part of U.S. application no. 08/330,525, filed October 28, 1994, now abandoned, the contents of which are incorporated herein by reference.
Background of the Invention
1. Field of the Invention
The present invention relates to boronic ester and acid compounds, their synthesis and uses.
2. Description of Related Art
The synthesis of N-terminal peptidyl boronic ester and acid compounds, in general and of specific compounds, has been described previously (Shenvi et al. USPN 4.499,082 issued February 12, 1985; Shenvi et αl. USPN 4,537,773 issued August 27, 1985; Siman et αl. WO 91/13904 published September 19,
1991 ; Kettner et αl., J. Biol. Chem. 259(24):15106-15114 (1984)). These compounds have been shown to be inhibitors of certain proteolytic enzymes (Shenvi et αl. USPN 4,499,082 issued February 12, 1985; Shenvi et αl. USPN 4,537,773; Siman et αl. WO 91/13904 published September 19, 1991; Kettner et al, J. Biol. Chem. 259(24):15106-151 14 (1984)). A class of N-terminal tri-peptide boronic ester and acid compounds has been shown to inhibit the growth of cancer cells (Kinder et αl. USPN 5, 106,948 issued April 21, 1992). A broad class of N-terminal tri-peptide boronic ester and acid compounds and analogs thereof has been shown to inhibit renin (Kleeman et αl. USPN 5,169,841 issued December s. 1992). In the cell, there is a soluble proteolytic pathway that requires ATP and involves covalent conjugation of the cellular proteins with the small polypeptide ubiquitin ("Ub") (Hershko et al, A. Rev. Biochem. 61:761-807 (1992); Rechsteiner et αl, A. Rev. Cell. Biol. 3:1-30 (1987)). Thereafter, the conjugated proteins are hydrolyzed by a 26S proteolytic complex containing a 20S degradative particle called the proteasome (Goldberg, Eur. J. Biochem. 203:9-23 (1992); Goldberg et al, Nature 357:375-379 (1992)). This multicomponent system is known to catalyze the selective degradation of highly abnormal proteins and short-lived regulatory proteins.
The 20S proteasome is composed of about 15 distinct 20-30 kDa subunits.
It contains three different peptidase activities that cleave specifically on the carboxyl side of the hydrophobic, basic, and acidic amino acids (Goldberg et αl, Nature 357:375-379 (1992); Goldberg, Eur. J. Biochem. 203:9-23 (1992); Orlowski, Biochemistry 29:10289 (1990); Rivett et αl, Archs. Biochem. Biophys. 218:1 (1989); Rivett et αl, J. Biol. Chem. 264:12,215-12,219 (1989); Tanaka et al, New Biol. 4:1-11 (1992)). These peptidase activities are referred to as the chymotrypsin-like activity, the trypsin-like activity, and the peptidylglutamyl hydrolyzing activity, respectively.
Various inhibitors of the peptidase activities of the proteasome have been reported (Dick et αl, Biochemistry 30:2725-2734 (1991); Goldberg et αl, Nature
357:375-379 (1992); Goldberg, Eur. J. Biochem. 203:9-23 (1992); Orlowski, Biochemistry 29:10289 (1990); Rivett et αl, Archs. Biochem. Biophys. 218:1(1989); Rivett et αl, J. Biol Chem. 264:12,215-12,219 (1989); Tanaka et αl, New Biol. 4:1-11 (1992); Murakami et αl, Proc. Natl. Acad. Sci. U.S.A. 83:7588-7592 (1986); Li et αl, Biochemistry 30:9709-9715 (1991); Goldberg, Eur. J. Biochem.
203:9-23 (1992); Aoyagi et αl, Proteases and Biological Control, Cold Spring Harbor Laboratory Press (1975), pp. 429-454.
Stein et al, U.S. patent application serial number 08/212,909 filed
March 15, 1994, describe the use of peptide aldehydes to 1 ) reduce the rate of loss of muscle mass in an animal by contacting cells of the muscle with a peptide aldehyde proteasome inhibitor, 2) reduce the rate of intracellular protein breakdown in an animal by contacting cells of the animal with a peptide aldehyde proteasome inhibitor, and 3) reduce the rate of degradation of p53 protein in an animal by administering to the animal a peptide aldehyde proteasome inhibitor.
Palombella et αl. , PCT application serial number PCT/US95/03315, filed
March 17, 1995, describe the use of peptide aldehydes to reduce the cellular content and activity of NF-κB in an animal by contacting cells of the animal with a peptide aldehyde inhibitor of proteasome function or ubiquitin conjugation.
The transcription factor NF-κB and other members of the rel family of protein complexes play a central role in the regulation of a remarkably diverse set of genes involved in the immune and inflammatory responses (Grilli et αl, International Review of Cytology 143:1-62 (1993)). NF-κB exists in an inactive form in the cytoplasm complexed with an inhibitor protein, IκB. In order for the NF-KB to become active and perform its function, it must enter the cell nucleus. It cannot do this, however, until the IκB portion of the complex is removed, a process referred to by those skilled in the art as the activation of, or processing of, NF-KB. In some diseases, the normal performance of its function by the NF-KB can be detrimental to the health of the patient. For example, NF-κB is essential for the expression of the human immunodeficiency virus (HIV). Accordingly, a process that would prevent the activation of the NF-κB in patients suffering from such diseases could be therapeutically beneficial.
Goldberg and Rock, WO 94/17816, filed January 27, 1994, describe the use of proteasome inhibitors to inhibit MHC-I antigen presentation. The ubiquitination/proteolysis pathway is shown to be involved in the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules on an antigen presenting cell. Accordingly, inhibitors of this pathway would be useful for the treatment of diseases that result from undesired response to antigen presentation, including autoimmune diseases and transplant rejection.
Cyclins are proteins that are involved in cell cycle control in eukaryotes. Cyclins presumably act by regulating the activity of protein kinases, and their programmed degradation at specific stages of the cell cycle is required for the transition from one stage to the next. Experiments utilizing modified ubiquitin (Glotzer et al, Nature 349:132-138 (1991); Hershko et al, J. Biol. Chem. 266:376 (1991)) have established that the ubiquitination/proteolysis pathway is involved in cyclin degradation. Accordingly, compounds that inhibit this pathway would cause cell cycle arrest and would be useful in the treatment of cancer, psoriasis, restenosis, and other cell proliferative diseases.
Summary of the Invention
The present invention provides previously unknown peptidyl boronic acid ester and acid compounds. The present invention also provides methods of using amino acid or peptidyl boronic ester and acid compounds, in general, as inhibitors of proteasome function.
In a first embodiment, the present invention provides novel boronic acid and ester compounds having formula (1a) or (2a), as set forth below.
An additional aspect of the present invention is related to the discovery that amino acid and peptidyl boronic acids and esters, in general, are potent and highly selective proteasome inhibitors and can be employed to inhibit proteasome function. Inhibition of proteasome function has a number of practical therapeutic and prophylactic applications.
In a second embodiment, the present invention provides a method for reducing the rate of muscle protein degradation in a cell comprising contacting said cell with a proteasome inhibitor having formula (1b) or (2b) as defined below. This aspect of the present invention finds practical utility in inhibiting (reducing or preventing) the accelerated breakdown of muscle proteins that accompanies various physiological and pathological states and is responsible to a large extent for the loss of muscle mass (atrophy) that follows nerve injury, fasting, fever, acidosis, and certain endocrinopathies. In a third embodiment, the present invention provides a method for reducing the activity of NF-κB in a cell comprising contacting the cell with a proteasome inhibitor of the formula (1b) or (2b), as set forth below. The inhibitors employed in the practice of the present invention are capable of preventing this activation. Thus, blocking NF-κB activity is contemplated as possessing important practical application in various areas of medicine, e.g., inflammation, sepsis, AIDS, and the like.
In a fourth embodiment, the present invention provides a method of reducing the rate of degradation of p53 protein in a cell comprising administering to the cell a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
In a fifth embodiment, the present invention provides a method for inhibiting cyclin degradation in a cell comprising contacting said cells with a proteasome inhibitor of the formula (1b) or (2b), as set forth below. Inhibiting cyclin degradation is contemplated as possessing important practical application in treating cell proliferative diseases, such as cancer, restenosis and psoriasis.
In a sixth embodiment, the present invention provides a method for inhibiting the growth of a cancer cell, comprising contacting said cell with a proteasome inhibitor of the formula (1a) or (2a), as set forth below.
In a seventh embodiment, the present invention provides a method for inhibiting antigen presentation in a cell comprising administering to the cell a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
In an eighth embodiment, the present invention provides a method for inhibiting inducible NF-κB dependent cell adhesion in an animal comprising administering to said animal a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
In a ninth embodiment, the present invention provides a method for inhibiting HIV replication in an animal comprising administering to said animal a proteasome inhibitor of the formula (1b) or (2b), as set forth below.
In a tenth embodiment, the present invention provides an approach for inhibiting cytolytic immune responses. The proteasome inhibitors of formula (1b) or (2b) can be used to inhibit the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules in an animal, and are therefore useful for treating autoimmune diseases and preventing rejection of foreign tissues, such as transplanted organs or grafts.
In an eleventh embodiment, the present invention provides pharmaceutical compositions that comprise compounds of formula (1a), (1b), (2a) or (2b) in an amount effective to inhibit proteasome function in a mammal, and a pharmaceutically acceptable carrier or diluent.
Brief Description of the Figures Figure 1. Three day cumulative urinary 3-methylhistidine.
Figure 2. NF-κB binding activity. Figure 3. Inhibition by MG-273.
Description of the Preferred Embodiments
A first aspect of the present invention is directed to novel subsets of boronic acid and ester compounds having formula (1a) or (2a) below. Novel compounds of formula (1a) include the following:
Figure imgf000008_0001
or a pharmaceutically acceptable salt thereof;
wherein
P is hydrogen or an amino-group-protecting moiety as further defined herein;
B1, at each occurrence, is independently one of N or CH; X1, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH) -CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(OXCH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B1 is N, then the X1 attached to said B1 is -C(O)-NH-;
X2 is one of -C(O)-NH-, -CH(OH)-CH2- -CH(OH)-CH(OH)-,
-C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R is hydrogen or alkyl, or R forms together with the adjacent R1, or when
A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R1, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R2 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N. S, or O; and A is 0, 1, or 2.
Other novel boronic acid and ester derivatives include compounds having a single amino acid side-chain. These compounds have the following formula:
Figure imgf000010_0001
and pharmaceutically acceptable salts thereof;
wherein
Y is one of R8-C(O)-, R8-SO2-, R8-NH-C(O)- or R8-O-C(O)-, where
R8 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R8-C(O)- or R8-SO2-, then R8 can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;
X3 is a covalent bond or -C(O)-CH2-;
R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
Z1 and Z2 are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;
provided that when Y is R8-2(O)-, R8 is other than phenyl, benzyl or C1 - C3 alkyl.
Alternatively, the group Y in formula (2a) above, can be:
Figure imgf000011_0001
P is one of R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-;
R7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R7-C(O)- or R7-SO2-, R7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle; and
R1 is defined above as for formula (1a).
Pharmaceutical compositions that comprise compounds of formula (1a) or (2a) in an amount effective to inhibit proteasome function in a mammal, and a pharmaceutically acceptable carrier or diluent are within the scope of the present invention.
A second aspect of the present invention lies in the discovery that boronic acid and ester derivatives of amino acids and peptides, in general, as well as isosteric variations thereof, inhibit proteasome function. Thus, the present invention also relates to the use of proteasome inhibitors having formula (1 b) or
(2b) for reducing the rate of proteasome dependent intracellular protein breakdown, such as reducing the rate of muscle protein degradation, reducing the rate of degradation of p53 protein, and inhibiting cyclin degradation, and for inhibiting the activity of NF-κB in a cell.
Finally, the present invention relates to the use of proteasome inhibitors having formula (1b) or (2b) for treating specific conditions in animals that are mediated or exacerbated, directly or indirectly, by proteasome functions. These conditions include inflammatory conditions, such as tissue rejection, organ rejection, arthritis, infection, dermatoses, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease such as lupus and multiple sclerosis: cell proliferative diseases, such as cancer, psoriasis and restenosis; and accelerated muscle protein breakdown that accompanies various physiological and pathological states and is responsible to a large extent for the loss of muscle mass (atrophy) that follows nerve injury, fasting, fever, acidosis, and certain endocrinopathies.
Proteasome inhibitors of formula (1b) include: i
Figure imgf000012_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OHX, -CH(OH)-CH2-NH-, -CH=CH-,
-C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH- -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
Rn, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5- 10 membered saturated, partially unsaturated or aromatic heterocycle or
-CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted, where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2
Proteasome inhibitors of formula (2b) include:
Figure imgf000013_0001
or pharmaceutically acceptable salts thereof;
wherein
Y10 is one of R8-C(O)-, R8-SO2- R8-NH-C(O)- or R8-O-C(O)-, where
R8 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R8-C(O)- or R8-SO2-, then R8 can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;
X13 is a covalent bond or -C(O)-CH2-;
R13 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or-CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R15, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R16, where W is a chalcogen and R16 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy. or together form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O.
Alternatively, the group Y in formula (2b) can be:
Figure imgf000014_0001
P is one of R7-C(OX, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-;
R7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R7-C(O)- or R7-SO2-, R7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle; and
R1 is as defined for formula (1a) above.
Preferred embodiments of the aforementioned methods of use employ compounds of formula (1a) and formula (2a) as defined above.
Pharmaceutical compositions comprising an effective amount of the proteasome inhibitors of formula (2a) or (2b), in combination with any conventional pharmaceutically acceptable carrier or diluent, are included in the present invention.
The term "amino-group-protecting moiety," as used herein, refers to terminal amino protecting groups that are typically employed in organic synthesis, especially peptide synthesis. Any of the known categories of protecting groups can be employed, including acyl protecting groups, such as acetyl, and benzoyl; aromatic urethane protecting groups, such as benzyloxycarbonyl; and aliphatic urethane protecting groups, such as tert-butoxycarbonyl. See, for example, The Peptides, Gross and Mienhoffer, eds., Academic Press, New York (1981), Vol. 3, pp. 3-88; and Green, T.W. & Wuts,
P.G.M.. Protective Groups in Organic Synthesis, 2nd edition, John Wiley and Sons, Inc., New York (1991). Preferred protecting groups include aryl-, aralkyl-, heteroaryl- and heteroarylalkyl- carbonyl and sulfonyl moieties. As used herein, the term "heterocycle" is intended to mean a stable 5- to 7- membered monocyclic or 7- to 10-membered bicyclic heterocyclic moieties that are either saturated or unsaturated, and which consist of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S, wherein the nitrogen and sulfur heteroatoms can optionally be oxidized, the nitrogen can optionally be quatemized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable formula. The heterocyclic rings described herein can be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Examples of such heterocycles include, but are not limited to, pyridyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl or octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thiophene(yl), thianthrenyl, furanyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, pyrrole, imidazolyl, pyrazolyl, isothiazoiyl, isoxazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, isoquinolinyl, quinolinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, ß-carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, pyrrolidinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl or oxazolidinyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.
The term "substituted", as used herein, means that one or more hydrogens of the designated moiety are replaced with a selection from the indicated group, provided that no atom's normal valency is exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens attached to an atom of the moiety are replaced.
By "stable compound" or "stable formula" is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture and formulation into an efficacious therapeutic agent.
The term "heteroaryl" as employed herein refers to groups having 5 to 14 ring atoms; 6, 10 or 14 π electrons shared in a cyclic array; and containing carbon atoms and 1, 2 or 3 oxygen, nitrogen or sulfur heteroatoms (where examples of heteroaryl groups are: thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, furyl, pyranyl, isobenzofuranyl, benzoxazolyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazoiyl, phenothiazinyl, isoxazolyl, furazanyl and phenoxazinyl groups).
The terms "substituted heteroaryl" or "optionally substituted heteroaryl," used in reference to R1, refer to heteroaryl groups, as defined above, having one or more substituents selected from halogen, C1-6 alkyl, C1-6 alkoxy, carboxy, amino, C1-6 alkylamino and/or di(C1-6)alkylamino.
The term "aryl" as employed herein by itself or as part of another group refers to monocyclic or bicyclic aromatic groups containing from 6 to 12 carbons in the ring portion, preferably 6-10 carbons in the ring portion, such as phenyl, naphthyl or tetrahydronaphthyl.
The term "substituted aryl" as employed herein includes aryl groups, as defined above, that include one or two substituents on either the phenyl or naphthyl group selected from C1-6 alkyl, C3-8 cycloalkyl, C1-6alkyl(C3-8)cycloalkyl,
C2-8 alkenyl, C2-8 alkynyl. cyano, amino, C1-6 alkylamino, di(C1-6)alkylamino, benzylamino. dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 aryl, C6-10 arylthio, C6-10 arylsulfinyl and/or C6-10arylsulfonyl.
The term "alkyl" as employed herein includes both straight and branched chain radicals of up to 12 carbons, preferably 1-8 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4- dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl and dodecyl.
The term "substituted alkyl" as employed herein includes alkyl groups as defined above that have one, two or three halo substituents, or one C1-6 alkyl(C6-10)aryl, halo(C6-10)aryl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C2-8 alkenyl, C2-8 alkynyl, hydroxy and/or carboxy.
The term "cycloalkyl" as employed herein includes saturated cyclic hydrocarbon groups containing 3 to 12 carbons, preferably 3 to 8 carbons, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, any of which groups can be substituted with substituents such as halogen, C1-6 alkyl, alkoxy and/or hydroxy group.
The term "aralkyl" or "arylalkyl" as used herein by itself or as part of another group refers to C1-6alkyl groups as discussed above having an aryl substituent, such as benzyl.
The term "halogen" or "halo" as used herein by itself or as part of another group refers to chlorine, bromine, fluorine or iodine with chlorine being preferred.
For medicinal use, the pharmaceutically acceptable acid and base addition salts, those salts in which the anion does not contribute significantly to toxicity or pharmacological activity of the organic cation, are preferred. Basic salts are formed by mixing a solution of a boronic acid (Z1 and Z2 are both OH) of the present invention with a solution of a pharmaceutically acceptable non-toxic base, such as, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, or an amino compound, such as choline hydroxide, Tris, bis-Tris, N-methylglucamine or arginine. Water-soluble salts are preferable. Thus, suitable salts include: alkaline metal salts (sodium, potassium etc.), alkaline earth metal salts (magnesium, calcium etc.), ammonium salts and salts of pharmaceutically acceptable amines (tetramethylammonium, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine monoethanolamine, diethanolamine, tris(hydroxymethyl)amine, lysine, arginine and N-methyl-D-glucamine).
The acid addition salts are obtained either by reaction of an organic base of formula (1a) or (2a) with an organic or inorganic acid, preferably by contact in solution, or by any of the standard methods detailed in the literature available to any practitioner skilled in the art. Examples of useful organic acids are carboxylic acids such as maleic acid, acetic acid, tartaric acid, propionic acid, fumaric acid, isethionic acid, succinic acid, cyclamic acid, pivalic acid and the like; useful inorganic acids are hydrohalide acids such as HCl, HBr, HI; sulfuric acid; phosphoric acid and the like. Preferred acids for forming acid addition salts include HCl and acetic acid.
The boronate esters of boronic acid compounds of the present invention are also preferred. These esters are formed by reacting the acid groups of the boronic acid with a hydroxy compound. Preferred hydroxy compounds are dihydroxy compounds, especially pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
The P moiety of the proteasome inhibitor of formula (1a) is preferably one of R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-, and R7 is one of alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl, the ring portion of any of which can be optionally substituted, or if Y is R7-C(O)- or R7-SO2-, then R7 can also be a saturated or partially unsaturated heterocycle.
More preferably, P is one of R7-C(O)- or R7-SO2-, and R7 is one of aryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or a saturated or partially unsaturated heterocycle. Where R7 is alkyl, it is preferably straight chained or branched alkyl of from 1 to 6 carbon atoms, more preferably 1-4 carbon atoms. Useful values include methyl, ethyl, propyl, butyl, isopropyl, isobutyl and tert-butyl, with methyl being most preferred. Additionally, where R7 is alkaryl, aralkyl or heteroarylalkyl, the alkyl moiety thereof is also preferably one having from 1 to
4 carbon atoms, and most preferably 1 carbon atom.
Where R7 is aryl, it is preferably aryl of from 5 to 10 carbon atoms, more preferably 6 to 10 carbon atoms. Where R7 is heteroaryl, one or more of the carbon atoms of the aforementioned aryl is replaced by one to three of O, N, or S. The aryl and heteroaryl moieties may, if desired, be ring substituted. Useful ring substituents include one or two of hydroxy, nitro, trifluoromethyl, halogen, alkyl, alkoxy, cyano, C6-10 aryl, benzyl, carboxyalkoxy, amino, and guanidino. Preferred substituents include halogen, C1-6 alkyl, C1-6 alkoxy, phenyl and benzyl. Additionally, where R7 is alkaryl, aralkyl or heteroarylalkyl, the above statements equally apply.
Useful R7 aryl and aralkyl groups include phenyl, 4-tolyl, benzyl, phenethyl, naphthyl, and naphthylmethyl.
Preferred heteroaryl groups are quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl. Useful values of R7 heteroaryl include 8-quinolinyl, 2-quinoxalinyl, 2-pyrazinyl, 3-furanyl, 2-pyridyl, 3-pyridyl and 4-pyridyl.
Preferred saturated or partially saturated heterocycle moieties are 5-, 6-, 9- and 10- membered heterocycles having one, two or three ring heteroatoms selected from O, S or N. A useful value is N-morpholinyl.
Preferred cycloalkyl moieties include C3-10 cycloalkyl. Useful values include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and cyclononyl.
Especially preferred values of P are 2-pyrazinecarbonyl, 8-quinolinesulfonyl and N-morpholinoyl.
As noted above, A in formula (1a) and (1b) can be either 0, 1 or 2. Thus, when A is zero, the residue within the brackets is not present and the inhibitor is a dipeptide. Similarly, where A is 1 , the amino acid or isosteric residue within the brackets is present and the inhibitor is a tripeptide. Where A is 2, the inhibitor is a tetrapeptide. Most preferably, A is zero.
It is preferred that R1, R2, and R3 in formula (1a) and (1b) are each independently one of hydrogen, C1-8 alkyl, C3-10 cycloalkyl, C6-10 aryl, a 5-, 6-, 9- or 10- membered heteroaryl group, or -CH2-R5, and more preferably C1-8 alkyl or— CH2—R5 wherein R1, R2, R3 and R5 are optionally substituted. More preferably, R1, R2 and R3 are each independently one of C1-6 alkyl, e.g., methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and t-butyl, or—CH2—R5, where R5 is one of cycloalkyl, aryl or heterocycle. R5 is preferably one of C6-10 aryl, C6-10 ar(C1-6)alkyl, C1-6 alk(C6-10)aryl, C3-10 cycloalkyl, C 1-8 alkoxy, C 1-8 alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group.
The ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R1, R2, R3 and R5 can be optionally substituted by one or two substituents independently selected from the group consisting of C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C2-8 alkenyl, C2-8 alkynyl, cyano, amino, C1-6 alkylamino, di(C1-6)alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl, C6-10 aryl(C1-6)alkyl, C1-10aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 arylthio, C6-10 arylsulfinyl, C6-10 arylsulfonyl, C6-10 aryl,
C1-6alkyl(C6-10)aryl, and halo(C6-10)aryl.
It is more preferred that at least one of R1 and R2 is isobutyl or —CH2—R5, and most preferred that R2 is—CH2—R5. It is preferred that R5 is C6-10 aryl, a 5-, 6-, 9- or 10- membered heteroaryl group having one to three heteroatoms independently selected from O, N and S.
Most preferably, R2 is isobutyl, 6-quinolinylmethyl, 3-indolylmethyl, 4-pyridylmethyl, 3-pyridylmethyl, 2-pyridylmethyl, benzyl, 1-naphthylmethyl, 2-naphthylmethyl, 4-fluorobenzyl, 4-benzyloxybenzyl, 4-(2'-pyridylmethoxy)benzyl or benzylnaphthylmethyl. Preferably, R3 is C1-12 alkyl, more preferably C1-6 alkyl, most preferably C4 alkyl, such as isobutyl.
Where R1, R2 or R3 is a substituted alkyl, it is preferably C1-6 alkyl substituted with at least one cycloalkyl group, preferably a C1-6 cycloalkyl group.
Where R1, R2, R3, or R5 is substituted aryl or substituted heterocycle, it is preferably substituted with at least one C1-6 alkyl group.
Where R1, R2, R3 or R5 is cycloalkyl, it is preferably C5-6 cycloalkyl, e.g., cyclopentyl or cyclohexyl, and can be optionally substituted with at least one C6-10 aryl group or at least one alkyl group, preferably a C1-6 alkyl group.
Where R5 is -W-R6, W is a chalcogen, preferably oxygen or sulfur, more preferably sulfur; and R6 is alkyl, preferably C1-6 alkyl, e.g., methyl, ethyl, propyl, butyl, or isomers thereof.
Preferred values of R include hydrogen or C1-8 alkyl, more preferably C1-6 alkyl. Useful values of R include methyl, ethyl, isopropyl, isobutyl and n-butyl.
Additionally, R can form together with the adjacent R1, or when A is zero, form together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy. It is preferred that the ring system be chosen from one of:
Figure imgf000021_0001
The nitrogen in each of the above formulae is attached to P in formula ( 1a) and the open valence carbon is attached to either X1 or X2.
It is preferred that Z1 and Z2 are each independently one of C1-6 alkyl, hydroxy, C1-6 alkoxy, and C6-10 aryloxy; or together Z1 and Z2 preferably form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1 ,2- cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine, or other equivalents apparent to those skilled in the art. Useful values include methyl, ethyl, propyl and n-butyl. Most preferably, Z1 and Z2 are hydroxy.
A preferred embodiment of the invention is directed to a subgenus of compounds having formula (1a) above, where P is R7-C(O)- or R7-SO2-. and R7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, and when P is R7-C(O)-, R7 can also be N-morpholinyl.
A preferred group of compounds of this embodiment are compounds of formula (1a) wherein P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl; A is zero; X2 is -C(O)-NH-; R is hydrogen or C1-8 alkyl; R2 and R3 are each independently one of hydrogen, C1-8alkyl, C3-10cycloalkyl, C6-10aryl, C6- 10ar(C 1- 6)alkyl, pyridylmethyl, or quinoliny lmethyl; and Z1 and Z2 are both hydroxy, C1-6alkoxy, or C6-10aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
Even more preferred are those compounds wherein: P is
8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl,
2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 2-pyrazinesulfonyl. 3-pyridinecarbonyl. 3-pyridinesulfonyl, 3-furancarbonyl, 3-furansulfonyl or N-morpholinecarbonyl; R is hydrogen; R3 is isobutyl; R2 is isobutyl. 1-naphthylmethyl. 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6- quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluorobenzyl, 4-hydroxy benzyl, 4-(2'-pyridylmethoxy)benzyI, 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl; and Z1 and Z2 are both hydroxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol,
1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
Another preferred embodiment of the present invention is directed to compounds of formula (1a) where A is zero. These compounds possess unexpectedly high potency and selectivity as inhibitors of proteasome function.
A third preferred subgenus of compounds are compounds of formula (1a) where one of R1, R2 or R3 corresponds to an amino acid side-chain corresponding to tyrosine or an O-substituted tyrosine derivative, formed by reacting the hydroxyl group of the tyrosine side-chain with a compound having a reactive functional group. This subgenus includes compounds having the formula (1a), wherein at least one R1, R2 or R3 is:
Figure imgf000023_0001
where R9 is one of hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl, wherein the alkyl is optionally substituted with one of C1-6 alkyl, halogen, monohalo (C1-6) alkyl, and trifluoromethyl; and wherein said cycloalkyl, aryl, aralkyl, heteroaryl and heteroarylalkyl groups can be optionally substituted with one or two of C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C2-8 alkenyl, C2-8 alkynyl, cyano, amino, C1-6 alkylamino, di(C1-6)alky lamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6alkoxy, C6-10ryl, C6-10aryl(C1-6)alkyl, C1-6oaryl(C1 )
-6 alkoxy, hydroxy, C1-6alkylthio, C1-6alkylsulfinyl, C1-6alkylsulfonyl, C6-10arylthio, C6-10arylsulfinyl,
C6-10arylsulfonyl, C6-10aryl, C1-6alkyl(C6-10)aryl, and halo(C6-10)aryl; and A1 and A 2 are independently one of hydrogen, C1-6alkyl, halogen, monohalo(C1-6)alkyl, or trifluoromethyl.
The group -O-R9 is in either the ortho- or para- position, with parabeing preferred. The groups A1 and A2 can be at any remaining positions on the phenyl ring.
It is preferred that R9 is one of C1-8alkyl, C3-10cycloalkyl, C6-10aryl, C6-10ar (C1-6)alkyl, 5- to 10- membered heteroaryl or 5- to 10-membered heteroaryl(C1- 6)alkyl.
Useful values of R9 include benzyl, phenethyl, pyridyl, pyridy lmethyl, furanylmethyl pyrrolymethyl, pyrrolidylmethyl, oxazolylmethyl and imidazoly lmethyl.
The ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R1, R2, R3 and R5 can be optionally substituted by one or two substituents independently selected from the group consisting of C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C2-8 alkenyl, C2-8 alkynyl, cyano, amino, C1-6 alkylamino, di(C1-6)alky lamino, benzylamino, dibenzy lamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl, C6-10 aryl(C1-6)alkyl, C6-10 aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 arylthio, C6-10 arylsulfinyl, C6-10 arylsulfonyl, C6-10 aryl, C1-6 alkyl(C6-10)aryl, and halo(C6-10)aryl.
A preferred class of compounds of this embodiment are compounds of formula (1a) wherein: A is zero; P is one of R7-C(O)-, R7-SO2- R7-NH-C(O)- or R7-O-C(O)-; R7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R7-C(O)-, R7 can also be N-morpholinyl; X2 is -C(O)-NH-; R3 is C1-6alkyl; R2 is:
Figure imgf000024_0001
where A1 and A2 are independently one of hydrogen, C1-6 alkyl, halogen, monohalo(C1-6)alkyl or trifluoromethyl; and R9 is one of hydrogen, C1-6alkyl, phenyl, benzyl, phenethyl or pyridylmethyl; and
Z1 and Z2 are both hydroxy, C1-6alkoxy, or C6-10aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
Even more preferred are compounds of formula (1a) wherein: A is zero; P is 8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl,
2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 2-pyrazinesulfonyl, 3- pyridinecarbonyl, 3-pyridinesulfonyl, 3-furancarbonyl, 3-furansulfonyl or
N-morpholinecarbonyl; X2 is -C(O)-NH-; R3 is isobutyl; R2 is:
Figure imgf000025_0001
where A1 and A2 are independently one of hydrogen, methyl, ethyl, chloro, fluoro, or trifluoromethyl; and R9 is one of hydrogen, methyl, ethyl, butyl, phenyl, benzyl, phenethyl or pyridylmethyl; and
Z1 and Z2 are both hydroxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol,
1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
A fourth preferred subgenus of compounds includes compounds of formula (1a) wherein one of the amino acid side-chains, preferably the side-chain defined by R2, is an unnatural amino acid selected from naphthy lmethyl, pyridylmethyl and quinolinylmethyl, with quinolinylmethyl being most preferred.
Thus, this subgenus includes compounds of formula (1a), wherein at least one R1, R2 or R3 is naphthylmethyl, pyridylmethyl or quinolinylmethyl; provided that the compound is other than isovaleryl-phenylalanine-norvaline-[(naphthylmethyl),
(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)]methylamide or (3-t- butylsulfonyl)propionyl-norvaline-(1-naphthyl, dihydroxyboryl)methylamide.
A fifth preferred subgenus includes compounds of formula (1a) where R, together with R1, or with R2 when A is zero, forms a nitrogen containing heterocycle. This subgenus includes compounds having formula (1a), wherein:
R forms together with the adjacent R', or when A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, aryl, alkoxy and aryloxy;
when A is 2, the R1 that is not adjacent to N-R is one of hydrogen, alkyl, cycloalkyl, aryl, heterocycle or -CH2-R5; and when A is 1 or 2, R2 is one of hydrogen, alkyl, cycloalkyl, aryl, heterocycle or -CH2-R5, where R5 is defined as above.
A preferred class of compounds of this embodiment of the invention are those wherein: A is zero; P is hydrogen; X2 is -C(O}-NH-; and R forms together with the adjacent R2, one of the nitrogen-containing ring systems shown in the above structures; R3 is C1-6alkyl; and Z1 and Z2 are both hydroxy, C1-6alkoxy, or C6-10aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine. The hydrochloride salts of these compounds are also especially preferred.
Even more preferred are those compounds wherein R forms together with the adjacent R2, a nitrogen-containing ring system having one of the structures shown above; R3 is isobutyl; and Z1 and Z2 are both hydroxy, or together Z1 and
Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
Examples of suitable proteasome inhibitors include without limitation the following compounds, as well as pharmaceutically acceptable salts and boronate esters thereof:
N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,
L-proline-L-leucine boronic acid,
N-(2-quinoline)carbonyl-L-homophenylalanine-L-leucine boronic acid,
N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(3-phenylpropionyl)-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid, N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, and
N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid.
Preferred compounds having formula (2a) include compounds where Y is one of R8-C(O)-, R8-SO2-, R8-ΝH-C(O)- or R8-O-C(O)-, and
R8 is one of C6-10 aryl, C6-10 ar(C1-6)alkyl, or a 5-10 membered heteroaryl, any of which can be optionally substituted, or when P is R8-C(O)-, R8 can also be N-morpholinyl; provided that when Y is R8-C(O)-, then R8 is other than phenyl, benzyl or C1-3 alkyl.
Where R8 is alkyl, it is preferably alkyl of from 1 to 4 carbon atoms, e.g., methyl, ethyl, propyl, butyl, or isomers thereof. Additionally, where R8 is alkaryl or aralkyl, the alkyl moiety thereof is also preferably one having from 1 to 4 carbon atoms.
Where R8 is aryl, it is preferably aryl of from 6 to 10 carbon atoms, e.g., phenyl or naphthyl, which may, if desired, be ring substituted. Additionally, where R8 is alkaryl, aralkyl, aryloxy, alkaryloxy, or aralkoxy, the aryl moiety thereof is also preferably one having from 5 to 10 carbon atoms, most preferably 6 to 10 carbon atoms. Preferably, the R8 moiety is a saturated, partially unsaturated or aromatic heterocycle, more preferably an isomeric pyridine ring or morpholine ring.
Y is most preferably one of:
Figure imgf000028_0002
where R4 is C6-10 alkyl.
In an additional preferred embodiment of the present invention, the Y moiety of the proteasome inhibitor of formula (2a) is an isosteric amino acid replacement of formula (3a):
Figure imgf000028_0001
where R1 is as defined for formula (1a) above. Useful and preferred values of R1 are the same as those defined for formula (1a) above; and
P is one of R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R1-O—C(O)-, and R7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R7-C(O)- or R7-SO2-, R7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle.
Useful and preferred values of R7, when R7 is one of alkyl, aryl, alkaryl, aralkyl, any of which are optionally substituted are as defined for formula (1a) above. When R7 is optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle, preferred and useful values are as defined for heteroaryl, unsaturated and partially saturated heterocycle of the R7 of formula (1a). In this aspect of the invention Y is most preferably:
Figure imgf000029_0001
In either embodiment of the compounds of formula (2a), useful and preferred values of R3 are the same as for formula (1a) above.
In formula (1a) and (1b), X1 represents a peptide bond or an isostere that can be used as a peptide bond replacement in the proteasome inhibitors to increase bioavailability and reduce hydrolytic metabolism. As noted above, X1 can be one of -C(O)NH-, -CH2-NH-, -CH(OH)-CH(OH)-, -CH(OH)-CH2—CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH--SO2-CH2- or -CH(OH)-CH2-C(O)-NH-. Preferably, X1 is—C(O>—NH—.
Introduction of these X1 moieties into the proteasome inhibitors results in the following wherein Rx and Ry have the same definitions as R1 and R2, above and P, Z1, Z2 and R3 are defined as above for formula (1a).
Figure imgf000029_0002
Figure imgf000030_0001
Figure imgf000031_0003
Thus, for example, if Z-Leu-Leu-Leu-B(OH)2 is found to undergo rapid hydrolytic metabolism to produce Z-Leu-OH and H2N-Leu-Leu-B(OH)2, the hydroxyethylene isostere can be prepared to eliminate this reaction:
Figure imgf000031_0002
Another group of compounds of the present invention are aza-peptide isosteres. This is the result of the replacement of the α-carbon atom of an amino acid with a nitrogen atom, e.g.,
Figure imgf000031_0001
wherein Rx represents R1, Ry represents R2, P, Z1, Z2 and R3 are defined as above for formula (1a) and (1b).
When P and R are both H, formula (1) will exist in equilibrium with a cyclic formula (4), which is considered to be covered by the current invention:
Figure imgf000032_0001
The above-described boronic ester and acid compounds include both D and L peptidyl configurations. However, L configurations are preferred.
The present invention relates to a method for reducing the rate of muscle protein degradation in a cell comprising contacting the cell with a proteasome inhibitor described above. More specifically, the present invention relates to a method for reducing the rate of loss of muscle mass in an animal comprising contacting cells of the muscle with a proteasome inhibitor described above.
The present invention also relates to a method for reducing the activity of NF-κB in a cell comprising contacting the cell with a proteasome inhibitor described above. More specifically, the present invention also relates to a method for reducing the activity of NF-κB in an animal comprising contacting cells of the animal with a proteasome inhibitor described above.
The present invention also relates to a method for reducing the rate of proteasome-dependent intracellular protein breakdown comprising contacting cells with a proteasome inhibitor described above. More specifically, the present invention also relates to a method for reducing the rate of intracellular protein breakdown in an animal comprising contacting cells of the animal with the proteasome inhibitor described above.
The present invention further relates to a method of reducing the rate of degradation of p53 protein in a cell comprising administering to the cell a proteasome inhibitor described above. More specifically, the present invention further provides a method of reducing the rate of degradation of p53 protein in an animal (preferably, an animal subjected to DNA damaging drugs or radiation) comprising administering to said animal a proteasome inhibitor described above.
The present invention further relates to a method for inhibiting cyclin degradation in a cell comprising contacting said cells with a proteasome inhibitor described above. More specifically, the present invention relates to a method for inhibiting cyclin degradation in an animal comprising contacting cells of said animal with a proteasome inhibitor described above.
The present invention also provides a method for treating cancer, psoriasis, restenosis, or other cell proliferative diseases in a patient comprising administering to the patient a proteasome inhibitor described above.
The present invention also relates to a method for inhibiting antigen presentation in a cell comprising administering to the cell a proteasome inhibitor described above. More specifically, the present invention relates to a method for inhibiting antigen presentation in animal comprising administering to the animal a proteasome inhibitor described above.
The present invention further provides a method for inhibiting inducible NF-κB dependent cell adhesion in an animal comprising administering to said animal a proteasome inhibitor described above.
The present invention also provides a method for inhibiting HIV infection in an animal comprising administering to said animal a proteasome inhibitor described above.
The "animals" referred to herein are preferably mammals. Both terms are intended to include humans.
Preferably, the methods described above deliver the proteasome inhibitor by either contacting cells of the animal with a proteasome inhibitor described above or by administering to the animal a proteasome inhibitor described above.
The compounds of the present invention inhibit the functioning of the proteasome. This proteasome-inhibition activity results in the inhibition or blocking of a variety of intracellular functions. In particular, inhibition of proteasome function inhibits the activation or processing of transcription factor NF-κB. NF-κB plays a central role in the regulation of a diverse set of genes involved in the immune and inflammatory responses. Inhibition of proteasome function also inhibit the ubiquitination/proteolysis pathway. This pathway catalyzes selective degradation of highly abnormal proteins and short-lived regulatory proteins. The ubiquitination proteolysis pathway also is involved in the processing of internalized cellular or viral antigens into antigenic peptides that bind to MHC-I molecules. Thus, the proteasome inhibitors of the present invention can be used in reducing the activity of the cytosolic ATP-ubiquitin- dependent proteolytic system in a number of cell types.
The inhibitors can be used in vitro or in vivo. They can be administered by any number of known routes, including orally, intravenously, intramuscularly, subcutaneously, intrathecally, topically, and by infusion (Platt et αl, U.S. Patent No. 4,510, 130; Badalamente et αl, Proc. Natl Acad. Sci. U.S.A. 86:5983-5987 (1989); Staubli et αl, Brain Research 444:153-158 (1988)) and will generally be administered in combination with a physiologically acceptable carrier (e.g., physiological saline). The effective quantity of inhibitor given will be determined empirically and will be based on such considerations as the particular inhibitor used, the condition of the individual, and the size and weight of the individual. It is to be expected that the general end-use application dose range will be about
0.01 to 100 mg per kg per day, preferably 0.1 to 75 mg per kg per day for an effective therapeutic effect.
The present invention relates to a method of inhibiting (reducing or preventing) the accelerated or enhanced proteolysis that occurs in atrophying muscles and is known to be due to activation of a nonlysosomal ATP-requiring process in which ubiquitin plays a critical role.
Inhibition of the ATP-ubiquitin-dependent pathway is a new approach for treating the negative nitrogen balance in catabolic states. This can be effected through use of an inhibitor of the present invention, resulting in reduction of loss of muscle mass in conditions in which it occurs. Excessive protein loss is common in many types of patients, including individuals with sepsis, burns, trauma, many cancers, chronic or systemic infections, neuromotor degenerative disease, such as muscular dystrophy, acidosis, or spinal or nerve injuries. It also occurs in individuals receiving corticosteroids, and those in whom food intake is reduced and/or absorption is compromised. Moreover, inhibitors of the protein breakdown pathway could possibly be valuable in animals, e.g., for combating "shipping fever", which often leads to a major weight loss in cattle or pigs.
The accelerated proteolysis evident in atrophy of skeletal muscles upon denervation or fasting is catalyzed by the nonlysosomal ATP-dependent degradative pathway. It has been shown that in a variety of catabolic states (e.g., denervation, fasting, fever, certain endocrinopathies or metabolic acidosis) muscle wasting is due primarily to accelerated protein breakdown and, in addition, that the increased proteolysis results from activation of the cytosolic ATP-ubiquitin-dependent proteolytic system, which previously had been believed to serve only in the rapid elimination of abnormal proteins and certain short-lived enzymes. The discovery that this pathway is responsible for the accelerated proteolysis in these catabolic states is based on studies in which different proteolytic pathways were blocked or measured selectively in incubated muscles, and the finding of increased mRNA for components of this pathway (e.g., for ubiquitin and proteasome subunits) and increased levels of ubiquitin-protein conjugates in the atrophying muscles. The nonlysosomal ATP-ubiquitin-dependent proteolytic process increases in muscle in these conditions and is responsible for most of the accelerated proteolysis that occurs in atrophying muscles. There is a specific increase in ubiquitin mRNA, induction of mRNA for proteasome and increased ubiquitinated protein content in atrophying muscles that is not seen in non-muscle tissue under the same conditions.
The inhibitors of the present invention can be used to reduce (totally or partially) the nonlysosomal ATP-dependent protein degradation shown to be responsible for most of the increased protein degradation that occurs during fasting, denervation, or disuse (inactivity), steroid therapy, febrile infection, and other conditions.
One approach to testing drug candidates for their ability to inhibit the ATP-ubiquitin-dependent degradative process is to measure proteolysis in cultured cells (Rock, et αl, Cell 78:761 (1994)). For example, the degradation of long-lived intracellular proteins can be measured in mouse C2C12 myoblast cells. Cells are incubated with 35S-methionine for 48 hours to label long-lived proteins and then chased for 2 hours with medium containing unlabeled methionine. After the chase period, the cells are incubated for 4 hours in the presence or absence of the test compound. The amount of protein degradation in the cell can be measured by quantitating the trichloroacetic acid soluble radioactivity released from the pre-labeled proteins into the growth medium (an indicator of intracellular proteolysis).
Inhibitors can also be tested for their ability to reduce muscle wasting in vivo. Urinary excretion of the modified amino acid 3-methyl histidine (3-MH) is probably the most well characterized method for studying myofibrillar protein degradation in vivo (see Young and Munro, Federation Proc. 37.229-2300 (1978)). 3-Methylhistidine is a post-translationally modified amino acid which cannot be reutilized for protein synthesis, and it is only known to occur in actin and myosin. It occurs in actin isolated from all sources, including cytoplasmic actin from many different cell types. It also occurs in the myosin heavy chain of fast-twitch (white, type II) muscle fibers, but it is absent from myosin of cardiac muscle and myosin of slow-twitch (red, type I) muscle fibers. Due to its presence in actin of other tissues than skeletal muscle, other tissues will contribute to urinary 3-MH. Skeletal muscle has been estimated to contribute 38-74% of the urinary 3-MH in normal rats and 79-86% of the urinary 3-MH in rats treated with corticosterone (100 mg/kg/day subcutaneously) for 2-4 days (Millward and Bates, Biochem. J. 214:607-615 (1983); Kayali, et αl, Am. J. Physiol 252.E621-E626 (1987)). High-dose glucocorticoid treatment is used to induce a state of muscle wasting in rats. Treating rats with daily subcutaneous injections of corticosterone (100 mg/kg) causes an increase of approximately 2-fold in urinary 3-MH. The increase in excretion of 3-MH is transient, with a peak increase after 2-4 days of treatment and a return to basal values after 6-7 days of treatment (Odedra, et αl,
Biochem. J. 214:617-627 (1983); Kayali, et αl, Am. J. Physiol 252.E621-E626 (1987)). Glucocorticoids have been shown to activate the
ATP-ubiquitin-dependent proteolytic pathway in skeletal muscle (Wing and Goldberg, Am. J. Physiol. 264.E668-E676 (1993)) and proteasome inhibitors are therefore expected to inhibit the muscle wasting that occurs after glucocorticoid treatment.
The proteasome inhibitors can be administered alone or in combination with another inhibitor or an inhibitor of another pathway (e.g., a lysosomal or Ca++-dependent pathway) responsible for loss of muscle mass. Use of proteasome inhibitors as agents that selectively protect normal cells from DNA damage during radiation and chemotherapy treatment of tumors
The inhibitors of the present invention will block the degradation of the tumor suppressor protein p53. This protein is degraded by the ATP ubiquitin dependent proteolysis by the proteasome (see Scheffner et αl, Cell 75:495-505 (1993)).
Studies of p53 knockout mice indicate an important role for p53 in reducing incidence of tumors (Donehower et αl, Nature 356:215-221 (1992)). In normal cells expressing wild type, unmutated p53, the basal levels of p53 are very low due to very rapid degradation of p53 protein. However, expression of p53 protein in normal cells is stimulated in response to radiation and drugs that induce DNA damage (Kastan et αl, Cancer Res. 51:6304-631 1 (1991)). These induced high levels of wild type, unmutated p53 induce arrest of normal cell proliferation at the G1 stage of the cell cycle (Kastan et αl., supra; Kuerbitz, PNAS 89:7491-7495 (1992)). This arrest of cell proliferation permits repair of damaged DNA. By contrast, in tumor cells expressing mutant forms of p53, DNA damaging drugs or radiation do not induce cell cycle arrest (Kastan et αl, supra; Kastan et αl, Cell 77:587-597 (1992)). Consequently, tumor cells are selectively damaged by radiation and cytotoxic drugs.
The selective arrest response of normal cells by inducing p53 suggests that enhancing the p53 response can allow the treatment of the tumor with higher/more prolonged tumoricidal doses of radiation or antineoplastic drugs. The idea that induction of p53 by a non toxic agent as an adjunct to radiotherapy has been reported previously (Lane, Nature 358:15-16 ( 1992), but a method for reducing it to practice was not described.
The use of proteasome inhibitors provides a method for augmenting the expression of p53 in normal cells by preventing its degradation by the proteasome. An example of this would be the systemic administration of proteasome inhibitor at a sufficient dose to inhibit p53 degradation by the proteasome during the treatment of the tumor with cytotoxic drugs or radiation. This will prolong and increase the levels of p53 expression in normal cells and will enhance the arrest of normal cell proliferation, reducing their sensitivity to higher doses of radiation or cytotoxic drugs. Administration of proteasome inhibitors would therefore permit exposing the tumor to higher doses of radiation, enhancing the killing of tumor cells. Thus, proteasome inhibitors can be used as adjuvants to therapy with tumoricidal agents, such as radiation and cytotoxic drugs.
Topical application of proteasome inhibitors to enhance p53 expression in skin The expression of p53 in normal skin is induced by exposure of the skin to UV irradiation, which inhibits DNA replication that is needed for cell division (Maltzman et αl. Mol. Cell. Biol. 4:1689 (1984); Hall et αl., Oncogene 5.203-207 (1993)). This protects normal skin from chromosomal DNA damage by allowing time for DNA repair before DNA replication.
Defects in the p53 response pathway, such as seen with Ataxia
Telangiectasia, result in increased susceptibility to ionizing radiation-induced skin tumors (Kastan et αl, Cell 71:587-597 (1992)). It is well established that exposure of normal individuals increases the risk for many kinds of skin cancers.
This risk can be diminished by UV filtering chemicals in skin creams. Another approach would be to promote the resistance of the DNA in skin cells to UV damage by the topical application of agents that enhance the skin's expression of p53 in response to UV light. Inhibiting p53 degradation by the topical application of proteasome inhibitors provides a method to enhance the p53 response.
One preferred embodiment of the present invention is the topical application of proteasome inhibitors to reduce the acknowledged risk of skin cancers that results from the treatment of psoriasis using UV light, which is often combined with psoralens or coal tar. Each of these agents can induce DNA damage.
Use of proteasome inhibitors to reduce the activity of NF-κB
NF-κB exists in an inactive form in the cytoplasm complexed with an inhibitor protein, IκB. In order for the NF-κB to become active and perform its function, it must enter the cell nucleus. It cannot do this, however, until the IκB portion of the complex is removed, a process referred to by those skilled in the art as the activation of, or processing of, NF-κB. In some diseases, the normal performance of its function by the NF-κB can be detrimental to the health of the patient. For example, as mentioned above, NF-κB is essential for the expression of the human immunodeficiency virus (HIV). Accordingly, a process that would prevent the activation of the NF-κB in patients suffering from such diseases could be therapeutically beneficial. The inhibitors employed in the practice of the present invention are capable of preventing this activation. Thus, blocking NF- KB activity could have important application in various areas of medicine, e.g., inflammation, through the inhibition of expression of inflammatory cytokines and cell adhesion molecules, (ref. Grilli et αl, International Review of Cytology 143: 1-62 ( 1993)) sepsis, AIDS, and the like.
More specifically, the activity of NF-KB is highly regulated (Grilli et αl, International Review of Cytology 143: 1-62 (1993); Beg et al, Genes and Development 7:2064-2070 (1993)). NF-κB comprises two subunits, p50 and an additional member of the rel gene family, e.g., p65 (also known as Rel A). In most cells, the p50 and p65 are present in an inactive precursor form in the cytoplasm, bound to IκB. In addition, the p50 subunit of NF-κB is generated by the proteolytic processing of a 105 kD precursor protein NF-κB, (p105), and this processing is also regulated. The sequence of the N-terminal 50 kD portion of pi 05 is similar to that of p65 and other members of the rel gene family (the rel homology domain). By contrast, the C-terminal 55 kD of pi 05 bears a striking resemblance to IκB-α (also known as MAD3). Significantly, unprocessed pi 05 can associate with p65 and other members of the rel family to form a p65/p105 heterodimer. Processing of pi 05 results in the production of p50, which can form the transcriptionally active p50/p65 heterodimer. The C-terminal IκB-α-homologous sequence of p105 is rapidly degraded upon processing.
There is another rel-related protein, NF-κB2 (pi 00), that is similar to p105 in that it, too, is processed to a DNA binding subunit, p52 (Neri et αl. Cell (67:1075 (1991); Schmid et αl, Nature 352:733 (1991); Bours et αl, Molecular and Cellular Biology 12:685 (1992); Mercurio et αl, DNA Cell Biology 11:523 (1992)). Many of the structural and regulatory features of p100 are similar to p105. In addition, the pi 00 protein can also form a heterodimer with p65 and other rel family members.
In summary, the transcriptional activity of heterodimers consisting of p50 and one of the many rel family proteins, such as p65, can be regulated by at least two mechanisms. First, the heterodimers associate with IκB-α to form an inactive ternary cytoplasmic complex. Second, the rel family members associate with p105 and p100 to form inactive complexes. The ternary complex can be activated by the dissociation and destruction of IκB-α, while the p65/p105 and p65/p100 heterodimer can be activated by processing pi 05 and pi 00, respectively.
The dissociation of IκB-α can be induced by a remarkably large number of extracellular signals, such as lipopolysaccharides, phorbol esters, TNF-α, and a variety of cytokines. The IκB-α is then rapidly degraded. Recent studies suggest that p105 and p100 processing can also be induced by at least some of these extracellular signals.
Studies have demonstrated that p105 or a truncated form of p 105 (p60Tth) can be processed to p50 in vitro (Fan et αl, Nature 354:395-398 (1991)). Certain of the requirements and characteristics of this in vitro processing reaction (e.g., ATP/Mg++ dependency) implicated the involvement of the ubiquitin-mediated protein degradation pathway (Goldberg, Eur. J. Biochem. 203:9-23 (1992),
Hershko et αl, Annu. Rev. Biochem. 61:761-807 (1992)).
The proteasome is required for the processing of p105 to p50. p105/p60Tth proteins are not processed in mammalian cell cytoplasmic extracts depleted of proteasome activity. However, addition of purified 26S proteasomes to these depleted extracts restores the processing activity. Additionally, specific inhibitors of the proteasome block the formation of p50 in mammalian cell extracts and in vivo. Also, mammalian pi 05 is processed to p50 in Saccharomyces cerevisiae in vivo, and a mutant deficient in the chymotrypsin-like activity of the proteasome showed a significant decrease in p105 processing. p60Tth is ubiquitinated in vitro and this ubiquitination is a pre-requisite for pi 05 processing.
As mentioned above, the C-terminal half of the pi 05 (p105C') is rapidly degraded during the formation of p50 and the sequence of p105C' is remarkably similar to that of IκB. IκB-α is rapidly degraded in response to NF-κB inducers and this degradation has been shown to be necessary for the activation (Mellits et αl, Nucleic Acids Research 21 (22):5059-5066 (1993); Henkel et αl, Nature 365:182-185 (1993); Beg et αl. Molecular and Cellular Biology 13(6):3301-3310 (1993)). IκB-α degradation and the activation of NF-κB are also blocked by inhibitors of proteasome function or ubiquitin conjugation (Palombella et αl. , Cell 78:773-785 (1994)).
Accordingly, the proteasome plays an essential role in the regulation of
NF-κB activity. First, the proteasome is required for the processing of pi 05 and possibly pi 00. The degradation of the inhibitory C-terminus can also require the proteasome. Second, the proteasome appears to be required for the degradation of IκB-α in response to extracellular inducers.
The present invention relates to a method for reducing the activity of NF- KB in an animal comprising contacting cells of the animal with inhibitors of proteasome function.
Compounds can be tested for their ability to inhibit the activation of NF-κB by means of a DNA binding assay (Palombella, et αl, Cell 78:773
(1994)). Whole-cell extracts are prepared from untreated or TNF-α treated cells that have been pretreated for 1 hour with the test compound. The DNA binding activity of NF-κB is measured by an electrophoretic mobility shift assay using the PRDII probe from the human IFN-β gene promoter.
As an indirect measure of NF-κB activation, the cell-surface expression of E-selectin, I-CAM-1, and V-CAM-1 on primary human umbilical vein endothelial cells (HUVECs) can be determined by means of a cell surface fluorescent immuno-binding assay. Because E-selectin, I-CAM- 1 , and V-C AM-1 are under the regulatory control of NF-κB, inhibition of NF-κB activation results in reduced levels of these adhesion molecules on the cell surface.
Compounds can also be tested for their ability to inhibit a delayed-type hypersensitivity response in mice. Contact hypersensitivity is a manifestation of an in vivo T-cell mediated immune response (Friedmann, Curr. Opinion
Immunology, 1:690-693 (1989)). Although the exact molecular mechanisms that regulate the cellular interactions and vascular changes involved in the response remain obscure, it is clear that the process is dependent upon the interplay of soluble mediators, adhesion molecules, and the cytokine network (Piguet, et αl,
J. Exp. Med. 173:673-679 (1991); Nickoloff, et αl. J. Invest. Dermatol
94. 151S-157S (1990)). NF-κB, by mediating events such as the production of cytokines and the induction and utilization of cell-surface adhesion molecules, is a central and coordinating regulator involved in immune responses.
The compounds of formula (1b) or (2b) can be used to treat chronic or acute inflammation that is the result of transplantation rejection, arthritis, rheumatoid arthritis, infection, dermatosis, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and autoimmune disease. Additionally, inflammation associated with psoriasis and restenosis can also be treated.
The term "treatment of inflammation" or "treating inflammation" is intended to include the administration of compounds of the present invention to a subject for purposes which can include prophylaxis, amelioration, prevention or cure of an inflammatory response. Such treatment need not necessarily completely ameliorate the inflammatory response. Further, such treatment can be used in conjunction with other traditional treatments for reducing the inflammatory condition known to those of skill in the art.
The proteasome inhibitors of the invention can be provided as a "preventive" treatment before detection of an inflammatory state, so as to prevent the same from developing in patients at high risk for the same, such as, for example, transplant patients.
In another embodiment, efficacious levels of the proteasome inhibitors of the invention are administered so as to provide therapeutic benefits against the secondary harmful inflammatory effects of inflammation. By an "efficacious level" of a composition of the invention is meant a level at which some relief is afforded to the patient who is the recipient of the treatment. By an "abnormal" host inflammatory condition is meant an level of inflammation in the subject at a site which exceeds the norm for the healthy medical state of the subject, or exceeds a desired level. By "secondary" tissue damage or toxic effects is meant the tissue damage or toxic effects which occur to otherwise healthy tissues, organs, and the cells therein, due to the presence of an inflammatory response, including as a result of a "primary "inflammatory response elsewhere in the body.
Amounts and regimens for the administration of proteasome inhibitors and compositions of the invention can be determined readily by those with ordinary skill in the clinical art of treating inflammation-related disorders such as arthritis, tissue injury and tissue rejection. Generally, the dosage of the composition of the invention will vary depending upon considerations such as: type of pharmaceutical composition employed; age; health; medical conditions being treated; kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired; extent of tissue damage; gender; duration of the symptoms; and, counter indications, if any, and other variables to be adjusted by the individual physician. A desired dosage can be administered in one or more applications to obtain the desired results. Pharmaceutical compositions containing the proteasome inhibitors of the invention can be provided in unit dosage forms.
Thus, the proteasome inhibitors are useful for treating such conditions as tissue rejection, arthritis, local infections, dermatoses, inflammatory bowel diseases, autoimmune diseases, etc. The proteasome inhibitors of the present invention can be employed to prevent the rejection or inflammation of transplanted tissue or organs of any type, for example, heart, lung, kidney, liver, skin grafts, and tissue grafts.
Compounds of the present invention inhibit the growth of cancer cells. Thus, the compounds can be employed to treat cancer, psoriasis, restenosis or other cell proliferative diseases in a patient in need thereof.
By the term "treatment of cancer" or "treating cancer" is intended description of an activity of compounds of the present invention wherein said activity prevents or alleviates or ameliorates any of the specific phenomena known in the art to be associated with the pathology commonly known as "cancer." The term "cancer" refers to the spectrum of pathological symptoms associated with the initiation or progression, as well as metastasis, of malignant tumors. By the term "tumor" is intended, for the purpose of the present invention, a new growth of tissue in which the multiplication of cells is uncontrolled and progressive. The tumor that is particularly relevant to the invention is the malignant tumor, one in which the primary tumor has the properties of invasion or metastasis or which shows a greater degree of anaplasia than do benign tumors.
Thus,"treatment of cancer" or "treating cancer" refers to an activity that prevents, alleviates or ameliorates any of the primary phenomena (initiation, progression, metastasis) or secondary symptoms associated with the disease. Cancers that are treatable are broadly divided into the categories of carcinoma, lymphoma and sarcoma. Examples of carcinomas that can be treated by the composition of the present invention include, but are not limited to: adenocarcinoma, acinic cell adenocarcinoma, adrenal cortical carcinomas, alveoli cell carcinoma, anaplastic carcinoma, basaloid carcinoma, basal cell carcinoma, bronchiolar carcinoma, bronchogenic carcinoma, renaladinol carcinoma, embryonal carcinoma, anometroid carcinoma, fibrolamolar liver cell carcinoma, follicular carcinomas, giant cell carcinomas, hepatocellular carcinoma, intraepidermal carcinoma, intraepithelial carcinoma, leptomanigio carcinoma, medullary carcinoma, melanotic carcinoma, menigual carcinoma, mesometonephric carcinoma, oat cell carcinoma, squamal cell carcinoma, sweat gland carcinoma, transitional cell carcinoma, and tubular cell carcinoma. Sarcomas that can be treated by the composition of the present invention include, but are not limited to: amelioblastic sarcoma, angiolithic sarcoma, botryoid sarcoma, endometrial stroma sarcoma, ewing sarcoma, fascicular sarcoma, giant cell sarcoma, granulositic sarcoma, immunoblastic sarcoma, juxaccordial osteogenic sarcoma, coppices sarcoma, leukocytic sarcoma (leukemia), lymphatic sarcoma (lympho sarcoma), medullary sarcoma, myeloid sarcoma (granulocitic sarcoma), austiogenci sarcoma, periosteal sarcoma, reticulum cell sarcoma (histiocytic lymphoma), round cell sarcoma, spindle cell sarcoma, synovial sarcoma, and telangiectatic audiogenic sarcoma. Lymphomas that can be treated by the composition of the present invention include, but are not limited to: Hodgkin's disease and lymphocytic lymphomas, such as Burkitt's lymphoma, NPDL, NML, NH and diffuse lymphomas.
The compounds of formulae (1b) and (2b) appear to be particularly useful in treating metastases.
Amounts and regimens for the administration of proteasome inhibitors and compositions of the invention can be determined readily by those with ordinary skill in the clinical art of treating cancer-related disorders such as the primary phenomena (initiation, progression, metastasis) or secondary symptoms associated with the disease. Generally, the dosage of the composition of the invention will vary depending upon considerations such as: type of composition employed; age; health; medical conditions being treated; kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired; extent of tissue damage; gender; duration of the symptoms; and, counter indications, if any, and other variables to be adjusted by the individual physician.
A desired dosage can be administered in one or more applications to obtain the desired results. Pharmaceutical compositions containing the proteasome inhibitors of the invention can be provided in unit dosage forms.
The present invention will now be illustrated by the following examples, which are not intended to be limiting in any way.
Examples
Most compounds of formulas (1a), (1b), (2a) or (2b) were prepared according to the general reaction sequence depicted in Scheme 1. R2 and R3 are as defined above for formulas (1b) and (2b). PG represents an amino-group-protecting moiety. The general procedures employed for each compound are summarized in Table I, and detailed descriptions of these procedures are provided in the Examples. Syntheses that do not conform to the general reaction sequence are described in full in the Examples. (1S,2S,3R,5S)-Pinanediol leucine boronate trifluoroacetate salt was prepared as previously reported (Kettner, C.A.; Shenvi, A.B. J. Biol. Chem. 259:15106 (1984)). N-Protected (Boc-, Cbz-, or Fmoc-) amino acids were commercially available or were prepared from the corresponding free amino acid by standard protection methods, unless otherwise described in the Examples. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent), or O-(1H-benzotriazol-1-yl)-NNN'N'-tetramethyluronium tetrafluoroborate (TBTU) were employed as coupling reagents (Sheehan, J.C. et αl, J. Am. Chem. Soc. 87:2492 (1965); Castro, B., et αl, Synthesis 11:751 (1976); Tetrahedron Lett. 30:1927 ( 1989)).
All compounds were characterized by proton nuclear magnetic resonance (ΝMR) spectroscopy. The purity of the products was verified by thin layer chromatography and by high performance liquid chromatography (ΗPLC).
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Example 1; N-(4-Morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L- leucine boronic acid [MG-273]
A. (1S,2S,3R,5S)-Pinanediol N-Boc-β-(1-naphthyl)-L- alanine-L-leucine boronate
To a solution of (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (664 mg, 1.76 mmol) and N-Boc-β-(1-naphthyl)-L-alanine (555 mg, 1.76 mmol) in DMF (10 mL) at 0°C was added 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride (EDC) (404 mg, 2.11 mmol), 1-hydroxybenzotriazole monohydrate (HOBT) (285 mg, 2.1 1 mmol), and N-methylmorpholine (ΝMM) (0.3 mL, 2.64 mmol). The mixture was allowed to warm to room temperature and stir overnight. The reaction was quenched with water (100 mL), and the mixture was extracted with CH2Cl2 (4 × 25 mL). The combined organic layers were washed with 5% aqueous HCl and saturated aqueous ΝaHCO3, dried over anhydrous MgSO4, filtered, and concentrated to give a yellow oil. Water was added and the resultant gummy precipitate was extracted with ether (3 × 25 mL). The organic layer was dried (anhydrous MgSO4), filtered, and concentrated to afford the title compound (202 mg) as a white foam. B. (1S,2S,3R,5S)-Pinanediol β-(1-Naphthyl)-L-alanine- L-leucine boronate trifluoroacetate salt
To a solution of the product of Example 1A (930 mg, 1.38 mmol) in CH2Cl2 (10 mL) at 0°C was added trifluoroacetic acid (5 mL) and thioanisole (1 mL). The reaction mixture was allowed to warm to room temperature. After 4 h, the reaction mixture was concentrated to dryness and dried in vacuo. The residue was used in the next reaction without further purification. C. (1S,2S,3R,5S)-Pinanediol N-(4-morpholine)carbonyl- β-(1-naphthyl)-L-alanine-L-leucine boronate 4-Morpholinecarbonyl chloride (50 mL, 0.42 mmol) and triethylamine
(150 mL, 1.08 mmol) were added to a solution of the product of Example 1B (0.25 g, 0.36 mmol) in CH2Cl2 (6 mL). After 24 h, additional morpholinecarbonyl chloride (50 mL) and triethylamine (150 mL) were added. After 2 days total reaction time, the reaction mixture was diluted with EtOAc, washed with 1N HCl and saturated aqueous ΝaHCO3, dried over MgSO4, filtered, and concentrated. Purification by flash chromatography (elution with 1 :2 EtOAc/hexanes and 4:4:1 hexanes/EtOAc/MeOH) afforded the title compound (124 mg).
D. N-(4-Morpholine)carbonyl-β-(1-naphthyl)- L-alanine-L-leucine boronic acid
To a stirred solution of the product of Example 1C (124 mg, 0.21 mmol) in acetone (10 mL) was added aqueous NH4OAc (0.1 N, 5 mL, 1.0 mmol), followed by ΝaIO4 (120 mg, 0.21 mmol). The reaction mixture was stirred at room temperature for 72 h, and then the acetone was evaporated. The aqueous layer was acidified to pH 3 with 1N HCl and extracted with EtOAc (3 × 20 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. The residue was purified by flash chromatography (elution with 1 :1 hexane/EtOAc, 2:2:1 hexanes/EtOAc/MeOH, and 1 :1 :few drops MeOH:EtOAc:HOAc) to give the title compound (29 mg).
Example 2: N-Cbz-L-Leucine-L-leucine boronic acid [MG-274] A. (1S,2S,3R,5S)-Pinanediol N-Cbz-L-leucine-L-leucine boronate
B enzotri azo l- 1 -y loxytri s(di methyl ami no)phosphoni um hexafluorophosphate (BOP reagent, 827 mg, 1.87 mmol) was added in one portion to a mixture of (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt (595 mg, 1.58 mmol), N-Cbz-L-leucine (500 mg, 1.87 mmol) in acetonitrile (30 mL) at room temperature. The mixture was stirred at room temperature for
2 hours. The reaction was quenched with brine (50 mL) and the mixture was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with aqueous 5% HCl, saturated aqueous ΝaHCO3, and saturated aqueous NaCl, and then dried (anhydrous MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (elution with 20-30% acetone/hexanes) to afford the title compound (539 mg).
B. N-Cbz-L-Leucine-L-leucine boronic acid
By a procedure analogous to that described in Example 1D, the compound of Example 2A above (539 mg) was deprotected by treatment with sodium metaperiodate (1.2 g, 5.61 mmol) and aqueous NH4OAc (0.1 N, 10 mL, 1.0 mmol) to provide the title compound as a white solid (154 mg). Example 3: β-(1-Naphthyl)-L-alanine-L-leucine boronic acid
hydrochloride salt [MG-302] and β-(1-Naphthyl)-L-alanine- L-leucine boronic acid [MG-303] A. (1S,2S,3R,5S)-Pinanediol β-(1-naphthyl)-L-alanine- L-leucine boronate hydrochloride salt
To a solution of (1S,2S,3 R,5S)-pinanediol β-(1-naphthyI)-L-alanine-L- leucine boronate trifluoroacetate salt (prepared as described in Example 1B, 536 mg, 0.93 mmol) in ether (2 mL) was added 10 mL of 1N HCl. The mixture was sonicated for several minutes. Ether was allowed to slowly evaporate. The resultant crystals were collected, washed with H2O and ether, and dried in vacuo to provide the title compound (300 mg).
B. β-(1-Naphthyl)-L-alanine-L-leucine boronic acid hydrochloride salt; and β-(1-Naphthyl)-L-alanine-L-leucine boronic acid
To the product of Example 3 A (290 mg, 0.58 mmol) in a mixture of hexane (4 mL), MeOH (4 mL), and 1Ν HCl (1.3 mL) was added i-BuB(OH)2 (71 mg, 0.70 mmol). The reaction mixture was stirred for 72 h at room temperature.
The MeOH-H2O layer was washed with hexanes, and the MeOH was evaporated.
The aqueous solution was made basic with ΝaOH and washed with ether-EtOAc
(1 :1). The aqueous layer was lyophilized to give 640 mg of a yellow solid. The solid was dissolved in MeOH, 4N HCl in 1,4-dioxane was added, and the solution was filtered to remove a white solid. The filtrate was concentrated and the residue was purified by reverse phase HPLC (elution with CH3CΝ-H2O) to afford
45 mg of MG-302 and 10 mg of MG-303. Example 4 N-(4-Morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid [MG-306]
A. N-Boc-O-Benzyl-L-tyrosine
A suspension of O-benzyl-L-tyrosine (3.12 g, 11.5 mmol) in a mixture of 1,4-dioxane (14 mL) and water (14 mL) was treated, in order, with triethylamine
(5.0 mL, 35.9 mmol) and a solution of (Boc)2O (2.86 g, 13.1 mmol) in 1,4-dioxane (12 mL). After 19 h, the reaction mixture was diluted with water (140 mL) and washed with ether. The aqueous layer was acidified with 1N citric acid (35 mL) and extracted with CH2Cl2 (2 × 100 mL). Additional citric acid (15 mL) was added to the aqueous layer, which was again extracted with CH2Cl2 ( 100 mL). The combined organic extracts were dried (MgSO4), filtered, and concentrated to give the crude product (4.5 g), which was used directly in the next reaction.
B. (1S,2S,3R,5S)-Pinanediol N-Boc-(O-benzyl)-L-tyrosine-L- leucine boronate
To a stirred and cold (0°C) solution of (1S,2S,3R,5S)-pinanediol β-(1-naphthyl)-L-alanine-L-leucine boronate trifluoroacetate salt (prepared as described in Example 1B, 3.03 g, 7.98 mmol), N-Boc-O-benzyl-L-tyrosine (2.97 g, 7.99 mmol), and TBTU (3.35 g, 8.84 mmol) in anhydrous DMF (30 mL) was added by syringe pump, at the rate of 1.9 mL/h, DIEA (4.2 mL, 24.1 mmol).
After the addition was complete, the mixture was allowed to warm to room temperature over 30 min, and then it was added dropwise to 30 mL of rapidly stirring water. Additional water was added and the mixture was filtered. The collected solid was dissolved in MeOH, concentrated to near dryness and again added to rapidly stirring water (300 mL). The resultant white solid was collected by suction filtration, washed with water, frozen, and lyophilized to provide the title compound (4.49 g). C. (1S,2S,3R,5S)-Pinanediol (O-benzyl)-L-tyrosine-L-leucine boronate
The product of Example 4B (4.47 g, 7.23 mmol) was dissolved in CH2Cl2 (40 mL) and cooled to 0°C. A solution of 4N H Cl in dioxane (40 mL, 0.16 mol) was added and the reaction mixture was stirred at room temperature for 1.5 h. Concentration afforded a yellow solid, which was triturated with hexane-ether (1 :1, 100 mL). Filtration afforded the title compound (3.65 g) as a pale yellow solid.
D. (1S,2S,3R,5S)-Pinanediol N-(4-morpholine)carbonyl- (O-benzyl)-L-tyrosine-L-leucine boronate
By a procedure analogous to that described in Example 1C, the product of Example 4C (2.53 g, 4.56 mmol) was treated with 4-morpholinecarbonyl chloride (0.75 mL, 6.43 mmol) to provide the title compound (2.35 g) as a pale yellow solid. E. N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid
The product of Example 4D (0.39 g, 0.62 mmol) was deprotected according to the procedure described in Example 3B to provide the title compound (146 mg) as a white solid. Example 5: N-Methyl-N-Cbz-L-leucine-L-leucine boronic acid [MG-268]
A. N-Methyl-N-Cbz-L-leucine
To a solution of N-Cbz-leucine (1.38 g, 5.2 mmol) in THF (15 mL) at 0°C was added methyl iodide (2.5 mL, 40.1 mmol). Sodium hydride (60% dispersion in oil, 0.6 g, 15 mmol) was added cautiously, and the resultant mixture was stirred at room temperature for 24 h. The reaction mixture was diluted with EtOAc (25 mL) and water (2 mL) was added dropwise. The mixture was concentrated to dryness, and the residue was partitioned between ether (15 mL) and water (50 mL). The organic layer was extracted with saturated aqueous NaHCO3 (25 mL), and the combined aqueous extracts were acidified to pH 2 with 3N HCl. The product was extracted with EtOAc (3 × 25 mL), dried over MgSO4, filtered, and concentrated to afford the title compound (1.41 g) as a yellow solid.
B. (1S,2S,3R,5S)-Pinanediol N-methyl-N-Cbz-L-leucine-L-leucine boronate
By a procedure analogous to that described in Example 1 A, the product of Example 5A (85.1 mg, 0.30 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (105 mg, 0.28 mmol) in the presence of EDC (64 mg, 0.33 mmol), HOBT (45 mg, 0.33 mmol), and ΝMM (37 mg, 0.37 mmol) to provide, after purification by flash chromatography (elution with 3:2 hexanes/acetone), the title compound (85 mg).
C. N-Methyl-N-Cbz-L-leucine-L-leucine boronic acid
By a procedure analogous to that described in Example 1D, the product of Example 5B (85 mg, 0.16 mmol) was deprotected by treatment with ΝaIO4 (104 mg, 0.485 mmol) and aqueous NH4OAc (0.1N, 5 mL, 0.5 mmol) in 10 mL of acetone to provide, after purification by flash chromatography (elution with
4:4:2 hexanes/acetone/MeOH), the title compound (21 mg). Example 6 N-(4-Morpholine)carbonyl-β-(6-quinotinyl)-D, L-alanine-L-leucine boronic acid [MG-292]
A. β-(6-Quinolinyl)-D,L-alanine
N-Acetyl β-(6-quinolinyl)-D,L-alanine ethyl ester (728 mg, 2.55 mmol) was heated at reflux in 6N HCl (20 mL). After 20 h, the reaction mixture was concentrated to dryness and the residue was dried in vacuo to provide the title compound, which was used directly in the next reaction.
B. N-Boc-β-(6-Quinolinyl)-D,L-alanine
To the crude product of Example 6A in a stirred mixture of 1,4-dioxane ( 10 mL), water ( 10 mL), and 2N ΝaOH (5 mL) at 0°C was added di-tert-butyl pyrocarbonate (556 mg, 2.55 mmol). The reaction mixture was allowed to warm to room temperature. After 23 h, the reaction mixture was acidified to pH 4 and extracted with EtOAc (3 × 50 mL) and n-BuOH (3 × 50 mL). The combined extracts were concentrated to provide the title compound, which was used directly in the next reaction. C. (1S,2S,3R,5S)-Pinanediol N-Boc-β-(6-quinolinyl)-D, L-alanine-L-leucine boronate
By a procedure analogous to that described in Example 2A, the product of Example 6B was coupled with (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt (943 mg, 2.5 mmol) in the presence of BOP reagent (1.33 g,
3 mmol) and triethylamine (0.37 mL, 2.62 mmol) to provide the title compound
(343 mg). D. (1S,2S,3R,5S)-Pinanediol β- (6-quinolinyl)-D,
L-alanine-L-leucine boronate
The product of Example 6C (343 mg, 0.61 mmol) was treated with trifluoroacetic acid (7 mL) and thioanisole (1 mL) in CH2Cl2 (15 mL) at 0°C, as described in Example 1B, to provide the title compound.
E. (1S,2S,3R,5S)-Pinanediol N-(4-morpholine) carbonyl-β-(6- quinolinyl)-D,L-alanine-L-leucine boronate
The product of Example 6D was coupled with 4-morpholinecarbonyl chloride (0.14 mL, 1.22 mmol) by a procedure analogous to that described in Example 1C to produce the title compound (112 mg). F. N-(4-Morpholine)carbonyl-β-(6-quinolinyl)-D, L-alanine-L-leucine boronate
Deprotection of the product of Example 6E (153 mg, 0.27 mmol) was effected according to the procedure described in Example 3B. Purification by silica gel chromatography (elution with 50:50:10 hexanes/acetone/methanol) afforded the title compound (87 mg). The product was further purified by reverse phase HPLC; 5 mg of the title compound was recovered.
Example 7: N-(4-Morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine methylboronic acid [MG-317]; and N-(4-Morpholine) carbonyl- β-(1-naphthyl)-L-alanine-L-leucine dimethylborane [MG-318]
To a suspension of MG-273 (prepared as described in Example 1, 101.5 mg, 0.23 mmol) in 3 mL of a 2: 1 mixture of Et2O/CH2Cl2 was added
1,3-propanedioI (20.0 mL, 0.28 mmol). The resultant clear solution was stirred for 30 min at room temperature, and then anhydrous MgSO4 was added. Stirring was continued for an additional 30 min. and then the mixture was filtered through a cotton plug and then through a 0.2 mm PTFE filter. The solution was concentrated, toluene (2 mL) was added, and the mixture was again concentrated to produce a white solid. Anhydrous THF (3 mL) was added, and the resultant solution was cooled to 0°C. MeLi (0.8 mL, 1.12 mmol) was added. After 10 min, the mixture was warmed to room temperature. After 20 min, the light red solution was cooled to 0°C, quenched with a few drops of water, and then diluted with 10 mL of 1N HCl. The colorless solution was extracted with CH2Cl2 (2 × 10 mL), and the combined extract was concentrated to afford a white solid. Purification by flash chromatography (elution with 2-4% MeOH/CHCl3, followed by 10% MeOH/CHCl3) afforded MG-317 ( 17.7 mg) and MG-318 (72.1 mg).
Example 8: N-Benzyl-(3R)-3-dioxyboryl-5-methylhexanamide [MG-342] A. tert-Butyl-(3R)-3-[(1S,2S,3R,5S)-(pinanediyldioxy)boryl]-5- methylhexanoate
A 200-mL round-bottomed flask was charged with anhydrous THF (50 mL) and tert-butyl acetate (0.48 mL, 3.56 mmol). The solution was cooled to
-78°C under nitrogen, and LDA (1.5 M solution in cyclohexane, 2.2 mL, 3.3 mmol) was added by syringe over 8 min. The resultant solution was stirred for 10 min, and then a solution of (1 S,2S,3R,5S)-pinanediol 1-bromo-3-methylbutylboronate (Organometallics 9:3171 (1990)) (1.04 g, 3.15 mmol) in anhydrous THF (15 mL) was added by cannula over 8 min. The reaction mixture was allowed to warm to room temperature and stir overnight. The pale pink solution was concentrated, and the residue was dissolved in 200 mL of ether. The solution was washed with saturated aqueous ΝH4Cl and saturated aqueous NaCl. Concentration gave a clear orange oil, which was purified by flash chromatography (elution with 2-3% EtOAc/hexanes) to afford the title compound (584 mg). B. (3R)-3-[(1S,2S,3R,5S)-(pinanediyldioxy)boryl]-5- methylhexanoic acid
To a solution of the product of Example 8A (323 mg, 0.89 mmol) in CH2Cl2 (8 mL) was added trifluoroacetic acid (2.0 mL, 26 mmol). The resultant mixture was stirred at room temperature for 2 h. The reaction mixture was concentrated and dried overnight under high vacuum to produce a dark brown oil (309.3 mg). C. N-Benzyl-(3R)-3-[(1S,2S,3R,5S)-pinanediyldioxy)boryl]-5- methylhexanamide To a solution of the product of Example 8B (300 mg, 0.9 mmol) and
TBTU (410 mg, 1.08 mmol) in anhydrous acetonitrile (5 mL) was added benzylamine (0.12 mL, 1.10 mmol), followed by diisopropylethylamine (0.50 mL, 2.9 mmol). The reaction mixture was stirred overnight at room temperature, and then was poured into water and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO3 and saturated aqueous NaCl.
Concentration gave a dark brown oil, which was purified by flash chromatography (elution with 20% EtOAc/hexanes) to afford the title compound (232 mg) as a clear, colorless oil.
D. N-Benzyl-(3R)-3-dioxyboryl-5-methylhexanamide The product of Example 8C (223 mg, 0.56 mmol) was deprotected according to the procedure described in Example 3B. Purification by flash chromatography (elution with 5% MeOH/CHCl3) provided a pale yellow oil, which was dissolved in acetonitrile/MeOH. Water was added and the mixture was lyophilized overnight to produce the title compound (108 mg) as a fluffy white solid. Example 9: N-Acetyl-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-L-leucine boronic acid [MG-310]
A. N-Boc-1,2,3,4-Tetrahydro-3-boquinolinecarboxylic acid
A solution of 1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid (855 mg, 4.83 mmol), (Boc)2O (1.37 g, 6.28 mmol), and 1N NaOH (6 mL) in a mixture of t-BuOH (12 mL) and water (12 mL) was stirred overnight at room temperature. The reaction mixture was diluted with water (30 mL) and washed with ether-hexanes (1 :1, 2 × 25 mL). The organic layer was back-extracted with 10% NaHCO3. The combined aqueous layers were carefully acidified to pH 2-3 and extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with water and saturated aqueous NaCl, dried (MgSO4), and concentrated to provide the title compound (1.27 g) as a white solid. B. (1S,2S,3R,SS)-Pinanediol N-Boc-1,2,3,4-tetrahydro-3- isoquinolinecar bonyl-L-leucine boronate To a mixture of (1S,2S,3R,5S)-pinanediol-L-leucine boronate trifluoroacetate salt (1.14 g, 3.03 mmol), N-Boc-1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid (762 mg, 2.75 mmol), and BOP reagent (1.34 g, 3.03 mmol) in DMF (20 mL) was added, over a period of 2 h, DIEA (1.44 mL, 8.25 mmol). The resultant solution was stirred for 1 h after addition was complete. The reaction mixture was poured into water (300 mL) and extracted with EtOAc (3 × 75 mL). The combined organic extracts were washed with dilute aqueous HCl, half-saturated aqueous ΝaHCO3, water, and saturated aqueous NaCl, dried (MgSO4), and concentrated. The residue was purified by flash chromatography (elution with 20% EtOAc-hexanes) to provide the title compound (1.04 g) as a white foamy solid. C. (1S,2S,3R,5S)-Pinanediol 1,2,3,4-tetrahydro-3- isoquinolinecarbonyl-L-leucine boronate hydrochloride salt
The product of Example 9B (755 mg) was dissolved in CH2Cl2 (10 mL) and cooled to 0°C. A solution of 4N H Cl in dioxane (8 mL, 0.03 mol) was added and the reaction mixture was stirred at room temperature. Concentration and trituration with ether-hexanes afforded the title compound (565 mg) as an off-white solid.
D. (1S,2S,3R,5S)-Pinanediol N-acetyl-1,2,3,4-tetrahydro-3- isoquinolinecarbonyl-L-leucine boronate The product of Example 9C (262 mg, 0.59 mmol) was treated at room temperature with Ac2O (0.085 mL, 0.89 mmol) and DIEA (0.18 mL, 1.36 mmol) in CH2Cl2 (5 mL). After 24 h, the reaction mixture was diluted with CH2Cl2 (20 mL), washed with 1N HCl, half-saturated ΝaHCO3, and water, dried (Na2SO4), and concentrated. Purification by flash chromatography (elution with EtOAc-hexanes) afforded the title compound (271 mg) as a white foamy solid. E. N-Acetyl-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-L-leucine boronic acid
By a procedure analogous to that described in Example 3B, the product of Example 9D (226 mg, 0.49 mmol) was deprotected to provide the title compound (131 mg) as a foamy, oily solid. Example 10: N-(4-Morpholine)carbonyl-β-(2-quinolyl)-L-alanine-L-leucine boronic acid [MG-315]
A. Diethyl (2-quinolylmethyl)acetamidomalonate
To a solution of 2(chloromethyl)quinoline monohydrochloride (5.0 g, 23.4 mmol) and diethyl acetamidomalonate (10.1 g, 46.7 mmol) in EtOH (60 mL) was added sodium methoxide (3.78 g, 70 mmol). The reaction mixture was heated at reflux for 6 h. The reaction mixture was cooled, filtered, and concentrated. The residue was dissolved in EtOAc (400 mL) and extracted with cold 4N HCl (3 × 150 mL). The aqueous layer was neutralized with 10N ΝaOH and extracted with EtOAc (3 × 200 mL). The combined organic extract was washed with water, dried (anhydrous MgSO4), filtered, and concentrated to give the title compound (8.3 g).
B. N-Acetyl-β-(2-quinolyl)-D,L-alanine ethyl ester
To a solution of the product of Example 10A (8 g, 22.3 mmol) in EtOH (180 mL) was added 6.1N ΝaOH (6.5 mL, 40 mmol). After 2 h, 1 1.1N HCl (3.6 mL, 40 mmol) was added, and the reaction mixture was concentrated to dryness. The residue was suspended in 1,4-dioxane (200 mL) and the mixture was heated at reflux for 90 min. The reaction mixture was concentrated and the residue was purified by silica gel chromatography (elution with 30-50% acetone-hexanes) to provide to title compound (4.3 g).
C. N-Acetyl-β-(2-quinolyl)-L-alanine
The product of Example 10B (4.3 g, 15 mmol) was treated with Subtilisin Carlsberg (Sigma, 1 1.9 units/mg, 30 mg, 357 units) at room temperature in aqueous ΝaHCO3 (0.2M, 120 mL). After 2 h. the reaction mixture was extracted with CHCl3 (6 × 100 mL). The aqueous layer was concentrated to dryness to provide the title compound (3.5 g), which contained salts.
D. N-Boc-β-(2-Quinolyl)-L-alanine
A solution of the product of Example 10C (3.5 g, ca. 7.4 mmol) in 6N HCl (40 mL) was heated at reflux for 16 h. The solvent was removed and the residue was dried in vacuo.
To this residue was added 1,4-dioxane (20 mL), water (20 mL), and 2N ΝaOH (10 mL, 20 mmol). The solution was cooled to 0°C and di-t-butyl pyrocarbonate (1.6 g, 7.5 mmol) was added. After 1 h at 0°C, the reaction mixture was warmed to room temperature and stirring was continued for 17 h.
The reaction mixture was extracted with CH2Cl2 (100 mL) and n-BuOH (4 × 100 mL). The aqueous layer was acidified and again extracted with w-BuOH. The organic extracts were combined and concentrated to provide the title compound (1-6 g). E. (1S,2S,3R,5S)-Pinanediol N-Boc-β-(2-quinolyl)-L-alanine-L- leucine boronate
By a procedure analogous to that described in Example 2A, the product of Example 10D (0.6 g, 1.9 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (716 mg, 1.9 mmol) in the presence of BOP reagent (0.84 g, 1.9 mmol) and triethylamine (0.27 mL, 1.9 mmol). Purification by silica gel chromatography (elution with 10-30% acetone-hexanes) afforded the title compound (194 mg). F. (1S,2S,3R,5S)-Pinanediol N-(4-morpholine)carbonyl-β- (2-quinolyl)-L-alanine-L-leucine boronate
The product of Example 10E (194 mg) was treated with trifluoroacetic acid (7 mL) and thioanisole (1 mL) as described in Example 1B. The resultant product was condensed with 4-morpholinecarbonyl chloride (568 mg, 3.8 mmol) as described in Example 2C. Purification by silica gel chromatography (elution with 20-50% acetone-hexanes) afforded the title compound (367 mg). G. N-(4-Morpholine)carbonyl-β-(2-quinolyl)-L-alanine-L-leucine boronic acid The product of Example 10F (367 mg, 0.64 mmol) was deprotected according to the procedure described in Example 3B to provide the title compound (222 mg).
Example 11: N-Boc-1,2,3,4-tetrahydro-1-isoquinolinecarboxylic acid
[precursor for the synthesis of MG-310] A. 1,2,3,4-Tetrahydro-1-isoquinolinecarboxylic acid
A solution of 1-isoquinolinecarboxylic acid (1.67 g) in glacial acetic acid (25 mL) was hydrogenated at 60 p.s.i. over PtO2 (270 mg). When the reaction was complete, the mixture was filtered through diatomaceous earth (Celite), washing the solid pad with MeOH, and the filtrate was concentrated to dryness. The resultant white solid was triturated with cold water and filtered to provide the title compound (775 mg). B. N-Boc-1,2,3,4-tetrahydro-1-isoquinolinecarboxylic acid
The product of Example 1 1B (762 mg, 4.3 mmol) was treated with di-tert-butyl pyrocarbonate (1.13 g, 5.17 mmol) according to the procedure described in Example 6B to afford the title compound (886 mg), as a foamy white solid.
Example 12: Diethanolamine N-(4-morpholine)carbonyl-β-(1-naphthyl)-L- alanine-L-leucine boronate [MG-286]
To a solution of N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid (prepared as described in Example 1, 97.4 mg, 0.22 mmol) in CH2Cl2 (4 mL) was added a solution of diethanolamine (25.5 mg, 0.24 mmol) in EtOAc (1 mL). The resultant solution was stirred at room temperature for 0.5 h. Anhydrous Νa2SO4 (1.5 g) was added and stirring was continued for an additional 0.5 h. The reaction mixture was filtered and concentrated, and the crude product was purified by stirring in hot EtOAc (2 mL) and precipitation with hexanes (1 mL). The solid was collected, washed with hexanes, and dried to provide the title compound (106 mg).
Example 13: N-[3-(4-morpholine)carbonyl-2(R)-(1-naphthyl)methyl] propionyl-L-leucine boronic acid [MG-324]
A. 1-Naphthalenecarboxaldehyde To a cold (-78 °C) solution of oxalyl chloride (6.9 mL, 0.079 mol) in dry CH2Cl2 (200 mL) was added dropwise dry DMSO (11.2 mL, 0.158 mol). The mixture was stirred for 10 min, and then a solution of 1 -naphthalenemethanol (10.0 g, 0.063 mol) in dry CH2Cl2 (40 mL) was added over 15 min. The mixture was stirred for 10 min, and then Et3N (44 mL, 0.316 mol) was added slowly. The reaction mixture was allowed to warm to room temperature. After 3.5 h, to the pale yellow heterogeneous mixture was added 10% aqueous citric acid (30 mL) and water (100 mL). The organic phase was washed with water (100 mL) and saturated aqueous NaCl (100 mL), dried (anhydrous MgSO4), filtered, and concentrated. Ether-hexane (1:1) was added, and the mixture was filtered. Concentration provided a pale orange oil (9.7 g).
B. Ethyl 3-(1-naphthyl)propenoate
To a solution of the product of Example 12A (9.7 g, 62 mmol) in CH2Cl2 (150 mL) was added at room temperature (carbethoxymethylene) triphenylphosphorane (25 g, 71 mmol). The resultant mixture was stirred for 1.5 h, and the homogeneous yellow solution was then concentrated to dryness.
Ether-hexane (1 :1) was added, the mixture was filtered, and the filtrate was concentrated to dryness to provide a pale orange oil (15.3 g).
C. Ethyl 3-(1-naphthyl)propionate
The product of Example 12B (15.3 g, 68 mmol) was dissolved in a mixture of EtOAc ( 100 mL) and MeOH ( 10 mL) and hydrogenated at 1 atm. over
10% Pd/C (0.5 g). The reaction was continued for 4 days, replacing the catalyst with fresh catalyst several times. The reaction mixture was filtered and concentrated to provide 13 g of a crude oil.
D. 3-(1-Naphthyl)propionic acid To a solution of the product of Example 12C ( 13 g) in a mixture of THF
(100 mL) and water (25 mL) was added 1N ΝaOH (75 mL, 75 mmol). The brown reaction mixture was stirred at room temperature overnight. The THF was removed, and the aqueous layer was washed with ether (2 × 50 mL). The aqueous layer was acidified to pH 2 with 6N HCl and the precipitated solid was collected, washed with water (100 mL), and lyophilized to give 9.3 g of a pale yellow solid.
E. 3-(1-Naphthyl)propionyl chloride
To a suspension of the product of Example 12D (4.0 g, 20 mmol) in CH2Cl2 (25 mL) at 0°C was added oxalyl chloride (1.9 mL, 22 mmol) and DMF
(0.1 mL). The reaction mixture was warmed to room temperature and then heated with a heat gun. Additional oxalyl chloride (0.5 mL) was added and heating was continued to produce a dark homogeneous mixture. The reaction mixture was concentrated, the residue was redissolved in CH2Cl2-hexane, and the resultant solution was filtered. Concentration afforded 4.9 g of a green liquid.
F. 4 (S)-Isopropyl-3-[3-(1-naphthyl)-1-oxopropyl]-2-oxazolidinone
To a solution of (45)-(-)-4-isopropyl-2-oxazolidinone (2.32 g, 18 mmol) in dry THF (50 mL) at -78°CC was added dropwise n-BuLi (2.5Min hexanes, 8 mL, 20 mmol). The heterogeneous white mixture was stirred at -78°C for 30 min, and then a solution of the product of Example 12E (4.9 g, 20 mmol) in dry
THF (25 mL) was added dropwise over 15-20 min. After 1.5 h, the reaction was quenched by the addition of 1N HCl (25 mL) and saturated aqueous ΝaCl (25 mL). The mixture was stirred at room temperature for 30 min, and then the THF was removed by rotary evaporation. The aqueous layer was extracted with EtOAc, and the combined organic extract was dried (anhydrous MgSO4), filtered, and concentrated. The residue was filtered through a pad of silica gel (elution with 20% EtOAc-hexanes) to provide 2.8 g of a pale pink solid. G. 3-[3-Benzyloxycarbonyl-2(R)-[(1-naphthyl)methyl]-1- oxopropyl]-4(S)-isopropyl-2-oxazolidinone
To a solution of 1,1,1,3,3,3-hexamethyldisilazane (0.75 mL, 3.5 mmol) in dry THF (10 mL) at 0°C was added n-BuLi (2.5Nin hexanes, 1.45 mL, 3.6 mmol). After 10 min, the mixture was cooled to -78°C and a solution of the product of Example 12F (1.0 g, 3.2 mmol) in dry THF (8 mL) was added dropwise. After 30-40 min, benzyl bromoacetate (0.75 mL, 4.8 mmol) was added. The mixture was stirred at -78°C for 1 h, and at 0°C for 5-10 min. The reaction was quenched by the addition of 1N HCl (10 mL), and the solution was extracted with ether. The combined organic extract was washed with saturated aqueous ΝaHCO3 and saturated aqueous NaCl, dried anhydrous MgSO4), filtered and concentrated. The wet solid was triturated with hexane-ether (1 :1), filtered, and dried to give the title compound (0.6 g) as a white solid.
H. 3-[2(R)-(1-naphthyl)methyl]-3-[4(S)-isopropyl-2-oxazolidinoyl] propanoic acid
To the product of Example 12G (600 mg, 1.3 mmol) was added MeOH (15 mL), EtOH (15 mL), EtOAc (5 mL), and CH2Cl2 (5 mL), followed by 10% Pd/C (100 mg). The reaction mixture was hydrogenated under 1 atm. H2. The reaction mixture was filtered and concentrated. The residue was triturated with ether-hexanes, the solvents were removed, and the resultant white solid was dried in vacuo to give 480 mg of the title compound. I. 4(S)-Isopropyl-3-[4-morpholino-2(R)-(1-naphthyl)methyl-1,4- dioxobutyl]-2-oxazolidinone
To a solution of the product of Example 12H (473 mg, 1.28 mmol) in dry THF (25 mL) at 0°C was added dropwise under nitrogen morpholine (130 mL,
1.47 mmol). diethyl pyrocarbonate (240 mL, 1.47 mmol), and triethylamine (220 mL, 1.6 mmol). After 2 h, the solvent was removed in vacuo, and the residue was washed with water and extracted with ether-EtOAc (1 :1). The combined organic extract was dried (anhydrous MgSO4), filtered, and concentrated. The residue was triturated with EtOAc-hexanes to provide the title compound (410 mg). J. 3-(4-morpholine)carbonyl-2(R)-(1-naphthyl)methyl propionic acid
To a solution of the product of Example 121 (400 mg, 0.913 mmol) in a mixture of THF (8 mL) and water (2 mL) at 0°C was added LiOH (80 mg, 1.9 mmol). The reaction mixture was stored at 0°C overnight. The reaction mixture was concentrated to remove THF, 1N ΝaOH (20 mL) was added, and the mixture was washed with CH2Cl2 (15 mL). The aqueous layer was acidified to pH 2 with 1N HCl and extracted with CH2Cl2. The combined organic extract was dried (anhydrous MgSO4), filtered, and concentrated. The residue was triturated with ether-hexanes, and the solvents were removed in vacuo to provide the crude product (240 mg) as a white foam.
K. (1S,2SM,5S)-Pinanedio[N-[3-(4-morpholme)carbonyl-2(R)-(1- naphthyl)methyl]propionyl-L-leucine boronate
To a solution of the product of Example 12J (230 mg, 0.7 mmol) in DMF (8 mL) at 0°C was added (1S,2S,37?,55)-pinanediol leucine boronate trifluoroacetate salt (293 mg, 0.77 mmol) and TBTU (293 mg, (0.77 mmol). To the resultant mixture was added slowly over 1.5 h diisopropylethylamine (365 mL, 2.1 mmol). After addition was complete, the reaction mixture was stirred for 30 min. Water (100 mL) was added, and the precipitated solid was collected, washed with water (50 mL), and lyophilized to provide the title compound (300 mg). L. N-[3-(4-morpholine)carbonyl-2(R)-(1-naphthyl)methyl] propionyl-L-leucine boronic acid
By a procedure analogous to that described in Example 3B, the product of Example 12K (300 mg, 0.522 mmol) was deprotected to provide the title compound (150 mg).
Example 14: trans-4-Phenoxy-L-proline-L-leucine boronic acid [MG-349]
A. N-Carbobenzyloxy-trans-4-hydroxy-L-proline
According to the literature procedure (J. Am. Chem. Soc. 189 (1957)), trans-4-hydroxy-L-proline (5.12 g, 0.039 mol) was treated with benzyl chloroformate (8.5 mL, 0.06 mol) to provide the title compound (6.0 g) as a white solid.
B. N-Carbobenzyloxy-trans-4-hydroxy-L-proline methyl ester
To a solution of the product of Example 13A (1.08 g, 3.75 mmol) in acetonitrile (4 mL) at 0°C was added dropwise DBU (0.62 mL, 4.12 mmol). After 5 min, Mel (0.28 mL, 4.5 mmol) was added. The reaction mixture was allowed to warm to room temperature and stir overnight. The solvent was removed, the residue was dissolved in ether-EtOAc (1:1, 30 mL), and the resultant solution was washed with 1N HCl, dilute aqueous ΝaHCO3, water, and saturated aqueous NaCl. The organic layer was dried (anhydrous MgSO4) and concentrated to provide the title compound (822 mg) as a light yellow oil. C. N-Carbobenzyloxy-trans-4-phenoxy-L-proline methyl ester
To a mixture of the product of Example 13B (495 mg, 1.71 mmol), phenol (193 mg, 2.05 mmol), and triphenylphosphine (537 mg, 2.05 mmol) in THF (7 mL) at 0°C was added over 1 h diethyl azodicarboxylate (0.32 mL, 2.05 mmol). The reaction mixture was allowed to warm to room temperature and stir overnight. The reaction mixture was concentrated, and the residue was dissolved in ether (8 mL) and allowed to stand at 0°C overnight. The solution was decanted and the solids were washed with cold ether. The ethereal solution was concentrated, and the residue was purified by flash chromatography (elution with 10-30% EtOAc-hexanes) to provide the title compound (295 mg).
D. N-Carbobenzyloxy-trans-4-phenoxy-L-proline
The product of Example 13C (285 mg, 0.79 mmol) was dissolved in a mixture of 0.5N aqueous LiOH (20 mL) and MeOH (10 mL), and the resultant solution was stirred at room temperature overnight. The MeOH was removed in vacuo, and the aqueous layer was washed with ether (2 × 20 mL). The aqueous layer was cooled, acidified with 3N HCl, and extracted with EtOAc (3 × 20 mL). The combined organic extract was washed with water and saturated aqueous ΝaCl, dried (anhydrous MgSO4), filtered, and concentrated to provide the title compound (251 mg) as a light yellow solid. E. (1S,2S,3R,5S)-pinanediol N-Carbobenzyloxy-trans-4-phenoxy- L-proline-L-leucine boronate
By a procedure analogous to that described in Example 12K, the product of Example 13D (250 mg, 0.72 mmol) was coupled with (1S,2S,3 R,5S)-pinanediol leucine boronate trifluoroacetate salt (300 mg, 0.79 mmol) in the presence of TBTU (302 mg, 0.79 mmol) to provide the title compound (355 mg) as a white solid.
F. (1S,2S,3R,5S)-pinanediol trans-4-phenoxy-L-proline-L-leucine boronate The product of Example 13E (343 mg) was hydrogenated for 20 h at 1 atm. over 10% Pd/C (45 mg) in EtOH (3 mL). The reaction mixture was filtered through Celite and concentrated to provide the title compound (272 mg).
G. trans-4-Phenoxy-L-proline-L-leucine boronic acid
By a procedure analogous to that described in Example 3B, the product of Example 13F (270 mg, 0.6 mmol) was deprotected to provide the title compound (130 mg) as a white solid.
Example 15: [(3S,5R)-4-[(8-quinolinesulfonyl)amino]- 3-hydroxy-5-(1- naphthyl)pentanoyl]-L-leucine boronic acid
A. (4S,5S)-1-Boc-4-hydroxy-5-(1-naphthyl)-pyrrolidin-2-one To a solution of N-Boc-β-(1-naphthyl)-L-alanine (1.4 g, 4.44 mmol),
2,2-dimethyl-1,3-dioxane-4,6-dione (704 mg, 4.88 mmol), and 4-DMAP (1.25 g, 10.21 mmol) in CH2Cl2 (40 mL) at 0°C was added isopropenyl chloroformate (0.53 mL, 4.8 mmol). The reaction mixture was stirred for 1 h at 0°C and for 2 h at room temperature. The reaction was quenched by the addition of aqueous KHSO4. The organic layer was washed with water, dried (anhydrous MgSO4), filtered, and concentrated. The residue was suspended in EtOAc (30 mL) and heated at reflux for 2 h. The solvent was removed in vacuo.
The residue was dissolved in CH2Cl2-HOAc (10:1, 30 mL), and sodium borohydride (310 mg. 8.21 mmol) was added at 0°C. The mixture was stirred for 1 h at 0°C and for 15 h at room temperature. Water was added, and the organic layer was washed with saturated aqueous NaCl, dried (anhydrous MgSO4), filtered, and concentrated. Purification by silica gel chromatography (elution with 20-30% acetone-hexanes) afforded the title compound (1.24 g).
B. (3S,5R)-4-(tert-butyloxycarbonyl)amino-3-hydroxy-5-(1- naphthyl)pentanoic acid
The product of Example 14B (1.24 g, 3.64 mmol) was dissolved in acetone (15 mL) and aqueous NaOH (1M, 4 mL, 4 mmol) was added. The reaction mixture was stirred at room temperature for 2 h. The mixture was acidified with 10% HCl and extracted with EtOAc (3 × 60 mL). The combined organic extract was washed with water, dried (anhydrous MgSO4), filtered, and concentrated. The residue was purified by silica gel chromatography (elution with 30-50% acetone-hexanes and 70:30: 10 hexane:acetone:methanol) to give the title compound (0.61 g). C. (1S,2S,3R,5S)-Pinanediol [(3S,5R)-4-(tert-butyloxycarbonyl) amino-3-hydroxy-5-(1-naphthyl)pentanoyl]-L-leucine boronate
By a procedure analogous to that described in Example 2, the product of Example 14B (395 mg, 1.1 mmol) was coupled with (1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (415 mg, 1.1 mol) in the presence of BOP reagent (487 mg, 1.1 mmol) to afford the title compound (261 mg).
D. (1S,2S,3R,5S)-Pinanediol [(3S,5R)-4-(8-quinolinesulfonyl) amino-3-hydroxy-5-(1-naphthyl)pentanoyl]-L-leucine boronate
The product of Example 14C (261 mg, 0.43 mmol) was dissolved in CH2Cl2 (10 mL) and treated at 0°C with trifluoroacetic acid (5 mL) and thioanisole (1 mL). After 2 h, solvents were evaporated. The residue was dissolved in CH2Cl2 (10 mL) and cooled to 0°C. 8-Quinolinesulfonyl chloride (98 mg, 0.43 mmol) and triethylamine (0.12 mL, 0.86 mmol) were added. The reaction mixture was stirred at 0°C for 1 h and at room temperature for 15 h. The solvents were removed, water was added, and the product was extracted with EtOAc (3 × 50 mL). The combined organic extract was washed with saturated aqueous NaHCO3 and saturated aqueous NaCl, dried (anhydrous MgSO4), and concentrated. The residue was purified by silica gel chromatography (elution with 20-50% EtOAc-hexanes) to provide the title compound (152 mg). E. [(3S,5R)-4-(8-quinolinesulfonyl)amino-3-hydroxy-5- (1-naphthyl)pentanoyl]-L-leucine boronic acid
The product of Example 14D (152 mg, 0.22 mmol) was deprotected according to the procedure described in Example 3B to provide the title compound (12.7 mg). Example 16: cis-3-Phenyl-D,L-prrline-L-leucine boronic acid hydrochloride salt[MG-359]
A. Diethyl 1-acetyl-4-phenyl-2-pyrrolidinol-5,5-dicarboxylate
Sodium spheres (washed 3 x with hexanes and dried in vacuo; 0.13 g, 5.7 mmol) were added to a solution of diethyl acetimidomalonate (12.2 g, 56.1 mmol) in absolute EtOH under nitrogen. After the sodium had dissolved, the solution was cooled in an ice bath and cinnamaldehyde (7.8 mL, 61.7 mmol) was added dropwise. The bath was removed and the reaction mixture was stirred overnight at room temperature. The solution was adjusted to pH 4 with acetic acid (~ 3 mL). Solvents were evaporated and the residue was purified by silica gel chromatography (elution with EtOAc) to give a yellow solid, which was recrystallized (benzene-hexane) to provide the title compound (14.1 g) as a white solid.
B. Diethyl 1-acetyl-3-phenylpyrrolidine-2,2-dicarboxylate
Trifluoroacetic acid (15.4 mL) was added slowly over 15 min to a solution of the product of Example 15A (7.0 g, 20.1 mmol) and triethylsilane (4.9 mL,
30.8 mmol) in CHCl3 (40 mL). After 3 h, the solvents were evaporated and the residue was dissolved in EtOAc (150 mL), washed with water, 5% aqueous NaHCO3, and saturated aqueous NaCl, dried (anhydrous MgSO ) and concentrated to give 5.9 g of a colorless oil. C. N-Acetyl-3-phenylproline ethyl ester
The product of Example 15B (5.9 g) was dissolved in 0.5N NaOH (200 mL) and the resultant solution was stirred at room temperature for 21 h. The solution was washed with EtOAc (75 mL) and then acidified to pH 2 with 3N HCl. The precipitated solids were extracted with CHCl3. The organic layer was concentrated to give a gummy residue, which was dissolved in toluene (70 mL) and heated at 75°C for 1 h. The solvent was evaporated to provide the title compound (4.2 g) as a light yellow oil.
D. N-Acetyl-trans-3-phenyl-D,L-proline; and N-acetyl-cis-3- phenyl-D,L-proline ethyl ester The product of Example 15C (4.2 g, 16 mmol) was dissolved 1M ΝaOEt in EtOH (100 mL) which contained 2 mL of ethyl trifluoroacetate as a water scavenger, and the resultant solution was heated at reflux for 2 h. The reaction mixture was cooled to room temperature, water (65 mL) was added, and the solution was stirred for 2.5 h. Most of the EtOH was removed by rotary evaporation and the aqueous solution was extracted with CH2Cl2. The aqueous layer was acidified with 3N HCl and extracted with EtOAc. The organic extract was washed with water and saturated aqueous ΝaCl, dried (anhydrous MgSO4), and concentrated. The orange gummy solid was triturated with ether to provide a yellow solid, which was recrystallized (EtOAc-MeOH) to provide the acid (1.91 g) as light yellow crystals. Concentration of the CH2Cl2 extracts afforded the ester (396 mg) as an orange oil.
E. cis-3-Phenyl-D,L-proline hydrochloride salt
The ester obtained in Example 15D (375 mg) was hydrolyzed by heating at reflux in 6N HCl (5 mL) for 17 h. The cooled reaction mixture was washed with EtOAc and the aqueous layer was concentrated to dryness. Recrystallization (MeOH-ether) afforded the title compound (201 mg).
F. N-Boc-cis-3-Phenyl-D,L-proline
The product of Example 15E (189 mg, 0.84 mmol) was dissolved in a mixture of 2NΝaOH (3 mL) and 1,4-dioxane (3 mL). tert-Butyl pyrocarbonate
(218 mg, 1.0 mmol) was added and the reaction mixture was stirred overnight at room temperature. Dioxane was removed by rotary evaporation, water (30 mL) was added, and the mixture was washed with EtOAc. The aqueous phase was cooled to 0°C, acidified with 3N HCl, and extracted with EtOAc. The organic layer was washed with water and saturated aqueous ΝaCl, dried (anhydrous
MgSO4), and concentrated to give the title compound (199 mg). G. (1S,2S,3R,5S)-Pinanediol N-Boc-cis-3-phenyl-D,L-proline-L- leucine boronate
By a procedure analogous to that described in Example 4B, the product of Example 15F (192 mg, 0.66 mmol) was coupled with (1S,2S,3R,5S)pinanediol leucine boronate trifluoroacetate salt (274 mg, 0.73 mmol) in the presence of TBTU (277 mg, 0.73 mmol) to provide the title compound (286 mg).
H. cis-3-Phenyl-D,L-proline-L-leucine boronic acid hydrochloride salt
The product of Example 15G (262 mg) was dissolved in CH2Cl2 (5 mL) and treated at 0°C with 4N HCl-dioxane (4 mL). After 2 h, the reaction mixture was concentrated to dryness, and the residue was treated with isobutylboronic acid (66 mg, 0.64 mmol) according to the procedure described in Example 3B to provide the title compound (71 mg) as a white solid.
Example 17: trans-3-Phenyl-D,L-proline-L-leucine boronic acid hydrochloride salt [MG-363]
A. N-Boc-trans-3-Phenyl-L-proline
By a procedure analogous to that described in Example 1A, N-acetyl- trans-3-phenyl-D,L-proline (prepared as described in Example 15D; 1.5 g, 6.44 mmol) was coupled with (S)-a-methylbenzylamine (0.92 mL, 7.08 mmol) in the presence of EDC (1.26 g, 7.08 mmol) and HOBT 9956 mg, 7.08 mmol). The diastereomeric products were separated by flash chromatography (elution with 1.5-2.5% HOAc-EtOAc). Fractions corresponding to the slower eluting band were concentrated to provide a clear, colorless oil (913 mg).
The oil (900 mg, 2.68 mmol) was dissolved in a mixture of HOAc (7 mL) and 8N HCl and the mixture was heated at reflux for 18 h. The mixture was concentrated to dryness. The residue was dissolved in water (30 mL), washed with EtOAc, and again concentrated to dryness.
The residue was redissolved in 1 :1 water-1,4-dioxane ( 15 mL) and treated with tert-butyl pyrocarbonate (1.13 g, 5.20 mmol) by a procedure analogous to that described in Example 15F to provide the title compound (574 mg) as a white solid.
B. trans-3-Phenyl-L-proline-L-leucine boronic acid hydrochloride salt
By procedures analogous to those described in Examples 15G-H, the product of Example 16A (332 mg, 1.14 mmol) was coupled with
(1S,2S,3R,5S)-pinanediol leucine boronate trifluoroacetate salt (452 mg, 1.20 mmol) and deprotected to provide the title compound (101 mg) as a white solid.
Example 18: Kinetic experiments
Table II summarizes results from kinetic experiments that measured the inhibition of the 20S proteasome by compounds having the formula of compound
(1) or (2). P, AA1, AA2, AA3, and Z1 and Z2 represent the structures present on formula (1) or (2). The protocol for the kinetic assay described in Tables II- V is as described in Rock et αl, Cell 75:761-771 (1994). In these tables, Ki values are reported, which are dissociation constants for the equilibrium that is established when enzyme and inhibitor interact to form the enzyme:inhibitor complex. The reactions were performed using SDS-activated 20S proteasome from rabbit muscle. The substrate used was Suc-LLVY-AMC.
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
In Table III, P, AA1, AA2, AA3, and X are substituents of the general formula: P - AA1 - AA2 - AAX X
Table III demonstrates that dipeptide boronic acids have lower Ki values than the corresponding dipeptide aldehydes.
Figure imgf000094_0001
In Table IV, P, AA1, AA2, AA3, and X are substituents of the general formula: P - AA1 - AA2 - AA3 - X.
Table IV demonstrates the markedly superior selectivity for the 20S proteasome over other proteases, e.g. Cathepsin B, exhibited by the boronic esters/acids as compared to the peptide aldehydes.
Figure imgf000095_0001
The selectivity of boronic acid inhibitors of the proteasome is further demonstrated in Table V.
Figure imgf000096_0001
Example 19: Inhibition of Protein Degradation in C2Cl2 Cells
C2Cl2 cells (a mouse myoblast line) were labelled for 48 hrs with 35S-methionine. The cells were then washed and preincubated for 2 hrs in the same media supplemented with 2mM unlabelled methionine. The media was removed and replaced with a fresh aliquot of the preincubation media containing 50% serum, and a concentration of the compound to be tested. The media was then removed and made up to 10% TCA and centrifuged. The TCA soluble radioactivity was counted. Inhibition of proteolysis was calculated as the percent decrease in TCA soluble radioactivity. From this data, an EC50 for each compound was calculated.
Data for compounds of formula (1) or (2) are presented in Table VI.
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Example 20: MG-273 Inhibits Corticosterone-Induced Cachexia in Rats
Rats were stabilized on a diet free from 3-methylhistidine and then placed in metabolic cages for collection of 24-hour urine samples. After two days of urine collections to determine basal 3-methylhistidine output, the rats were treated with daily subcutaneous injections of corticosterone (100 mg/kg).
Starting on the second day of corticosterone treatment, some of the rats were also treated with MG-273, administered via a subcutaneous osmotic pump at a dose rate of approximately 120 μg/kg body weight/day. Control rats received vehicle only (25% DMSO/75% PEG (200)), administered in a similar fashion. Figure 1 shows that treatment with MG-273 reduced the urinary output of
3-methylhistidine, which was induced in response to corticosterone treatment.
Example 21: MG-273 Inhibits the Activation of NF-κB
This assay was performed as previously described (Palombella, et αl. Cell, 78:773-785 (1994)). MG63 osteosarcoma cells were stimulated by treatment with TNF-α for the designated times. Whole cell extracts were prepared and analyzed by electrophoretic mobility shift assay using the PRDII probe from the human IFN-β gene promoter. Figure 2 shows that NF-κB binding activity was inhibited by pretreatment for 1 hour with MG 273. An aldehyde inhibitor of the proteasome, MG-132 (Cbz-L-Leu-L-Leu-L-Leu-H), also inhibited NF-κB binding activity, whereas MG- 102 (Ac-L-Leu-L-Leu-L-Met-H), which is inactive against the 20S proteasome, did not inhibit NF-κB binding activity.
Example 22: MG-273 Inhibits Expression of Cell Adhesion Molecules on
HUVE Cells
HUVECs in microtiter plates were exposed to the indicated concentrations of inhibitor for 1 hour, prior to the addition of 100 U/mL TNF-α. Cell surface binding assays were performed at 4°C, using saturating concentrations of monoclonal antibodies specific for the cell adhesion molecules (Becton Dickenson) and fluorescent-conjugated F(ab')2 goat anti-murine IgG (Caltag Labs, San Francisco, CA). Fluorescent immunoassays for E-selectin and I-CAM were performed at 4 hours, those for V-CAM at 16 hours. Figure 3 shows that cell -surface expression I-CAM, V-CAM, and E-selectin on TNF-α stimulated HUVECs is significantly inhibited by MG-273 at concentrations of 0.5 μM or above.
Example 23: Boronic Acid Compounds Block the DTH Response in Mice Naive mice were sensitized by the application of 20 μL of a 0.5% (v/v) solution of 2,4-dinitrofluorobenzene in 4:1 acetone/olive oil to both of the rear limb footpads. This procedure is performed on two consecutive days, which are referred to as days 0 and 1.
The efferent phase of the contact sensitivity response was elicited on day 5 by the application of 10 μL of a 0.2% (v/v) solution of 2,4-dinitrofluorobenzene in 4: 1 acetone/olive oil to both sides of the left ear. The contralateral control ear was treated on both sides with 10 μL of vehicle only. The mice were lightly anaesthetized for this procedure by the intraperitoneal (i.p.) injection of a mixture of ketamine (80 mg/kg, Henry Schein) and xylazine (16 mg/kg, Henry Schein).
Test compounds were administered orally as a suspension in 0.5% methylcellulose (4000 centipoises Fisher Scientific) 30 minutes prior to the application of the challenge dose of 2,4-dinitrofluorobenzene to the ears. The dose was delivered in a final volume of 0.5 mL using a 24 gauge 1 inch malleable feeding needle with a 1.25 mm ball tip (Roboz Surgical).
Approximately 18 hours after the challenge, ear swelling was determined by measuring both the control and the experimental ear using a Mitutoyo Digital micrometer. The absolute difference in thickness of the experimental (left) ears vs. the control (right) ears was determined for each treatment group. Efficacy was determined by comparing this difference in thickness to the difference calculated for the vehicle control group. Test results are provided in Table VII.
Figure imgf000103_0001
All publications and U.S. patent applications mentioned hereinabove are hereby incorporated in their entirety by reference.
While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.

Claims

What Is Claimed Is:
A compound having the formula:
Figure imgf000104_0001
and pharmaceutically acceptable salts thereof;
wherein
P is R7-C(O)- or R7-SO2-, where R7 is one of aryl, aralkyl, heteroaryl or heteroarylalkyl, the ring portion of any of which can be optionally substituted, or when P is R7-C(O)-, R7 can also be N-morpholinyl;
B', at each occurrence, is independently one of N or CH;
X1, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-,
-CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B1 is N, then the X1 attached to said B1 is -C(O)-NH-;
X2 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R is hydrogen or alkyl, or R forms together with the adjacent R1, or when
A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R1, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl. a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; R2 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A is 0, 1 , or 2.
2. The compound of claim 1 , wherein:
A is zero;
X is -C(O)-NH-;
R is hydrogen or C1-8alkyl; and
R3 is C1-6alkyl.
3. The compound of claim 2, wherein R3 is C4alkyl.
4. The compound of claim 1, wherein:
P is R7-C(O)- or R7-SO2-, where R7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl. or when P is R7-C(O)-, R7 can also be
N-morpholinyl.
5. The compound of claim 1 , wherein P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl.
6. The compound of claim 5, wherein P is one of
8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl,
2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 2-pyrazinesulfonyl, 3-furancarbonyl, 3-furansulfonyl or N-morpholinecarbonyl.
7. The compound of claim 1 , wherein A is O.
8. The compound of claim 1, wherein B1, at each occurrence, is CH.
9. The compound of claim 8, wherein X1, at each occurrence, is -C(O)-NH-.
10. The compound of claim 9, wherein X2 is -C(O)-NH-.
11. The compound of claim 1 , wherein R is hydrogen or C1-8 alkyl.
12. The compound of claim 1, wherein:
R1, at each occurrence, and R2 and R3 are each independently one of hydrogen, C1-8 alkyl, C3-10 cycloalkyl, C6-10 aryl, a 5-, 6-, 9- or 10- membered heteroaryl group, or -CH2-R5;
R5, in each instance, is one of C^ioaryl, C6-10 ar(C1-6)alkyl,C1-6alk(C6-10)aιyl, C3-10cycloalkyl, C1-8alkoxy, C1-8alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group;
where the ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R1, R2, R3 and R5 can be optionally substituted by one or two substituents independently selected from the group consisting of C1-6alkyl, C3-8cycloalkyl, C1-6alkyl(C3-8)cycloalkyl, C2-8alkenyl, C2-8alkynyl, cyano, amino, C1-6alkylamino, di(C1-6)alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6alkoxy, C6-10aryl, C6-10aryl(C1-6)alkyl, C6-10aryl(C1-6)alkoxy, hydroxy, C1-6alkylthio, C1-6alkylsulfinyl, C1-6alkylsulfonyl, C6-10arylthio, C6-10arylsulfinyl, C6-10arylsulfonyl, C6-10aryl, C1-6alkyl(C6-10)aryl, and halo(C6-10)aryl.
13. The compound of claim 1, wherein R3 is C1-12alkyl.
14. The compound of claim 1, wherein R3 is C1-6alkyl.
15. The compound of claim 1, wherein R3 is C4alkyl.
16. The compound of claim 1, wherein R3 is isobutyl.
17. The compound of claim 1, wherein R2 is one of isobutyl, 1-naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6-quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluorobenzyl, 4-hydroxybenzyl, 4-(2'-pyridylmethoxy)benzyl, 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl.
18. The compound of claim 1, wherein Z1 and Z2 are independently one of C1-6alkyl, hydroxy, C1-6alkoxy, or C6-10aryloxy.
19. The compound of claim 18, wherein Z1 and Z2 are both hydroxy.
20. The compound of claim 1, wherein together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
21. The compound of claim 1, wherein :
P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl;
A is zero;
X2 is -C(O)-NH-;
R is hydrogen or C1-8 alkyl;
R2 and R3 are each independently one of hydrogen, C1-8alkyl, C3-10cycloalkyl, C6-10aryl, C6-10ar(C1-6)alkyl, pyridylmethyl, or quinolinylmethyl; and
Z1 and Z2 are both hydroxy, C1-6alkoxy, or C6-10aryloxy, or together Z1 and
Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
22. The compound of claim 1, wherein:
P is one of 8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl, 2-quinoxalinesulfonyl, 2-pyrazinecarbonyl,
2-pyrazinesulfonyl, 3-pyridinecarbonyl, 3-pyridinesulfonyl, 3-furancarbonyl, 3-furansulfonyl or N-morpholinecarbonyl;
A is zero;
X2 is -C(O)-NH-;
R is hydrogen or C1-8 alkyl;
R3 is isobutyl;
R2 is one of isobutyl, 1 -naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6-quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluorobenzyl, 4-hydroxybenzyl, 4-(2'-pyridylmethoxy)benzyl,
4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl; and
Z1 and Z2 are independently one of hydroxy, C1-6alkoxy, C6-10aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
23. The compound of claim 1, wherein said compound is one of: N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid,
N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,
N-(4-morphoIine)carbonyl-L-tyrosine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid;
or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
24. The compound of claim 23, wherein said compound is
N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid, or an isostere, pharmaceutically acceptable salt or boronate ester thereof.
25. A compound having the formula:
Figure imgf000109_0001
wherein
P is hydrogen or an amino-group-protecting moiety;
B1, at each occurrence, is independently one of N or CH;
X1, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH- -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B1 is N, then the X1 attached to said B' is -C(O)-NH-;
X2 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R is hydrogen or alkyl, or R forms together with the adjacent R1, or when
A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy;
R1 at each occurrence, R2 and R3 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
provided that at least one R1, R2 or R3 is naphthylmethyl, pyridylmethyl or quinolinylmethyl;
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A is 0, 1, or 2;
provided that the compound is other than isovaleryl-phenylalaninenorvaline-[(naphthylmethyl), (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- yl)]methylamide or (3-t-butylsulfonyl)propionyl-norvaline-(1-naphthyl, dihydroxyboryl)methylamide.
26. The compound of claim 25, wherein P is R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-, and
R7 is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R7-C(O)-, then R7 can also be saturated or partially saturated heterocycle.
27. The compound of claim 25, wherein P is R7-C(O)- or R7-SO2-; and
R7 is one of C6-10 aryl, C6-10 ar(C1-6)alkyl, 5- to 10-membered heteroaryl or
5- to 10-membered heteroaryl(C1-6)alkyl, any of which can be optionally substituted, or when P is R7-C(O)-, R7 can also be N-morpholinyl.
28. The compound of claim 25, wherein B1 is CH, and X1 and X2 are each -C(O)-NH-.
29. The compound of claim 25, wherein R1 and R2 are independently selected from the group consisting of alkyl and—CH2—R5, where R5 is one of C6-10 aryl, C1-60 alk(C6-10)aryl, C3-10 cycloalkyl, or a 5-, 6-, 9- or 10-membered heterocycle.
30. The compound of claim 25, wherein A is zero.
31. The compound of claim 25, wherein R2 is quinolinylmethyl.
32. The compound of claim 25, wherein said compound is one of: N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, or N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid; or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
33. A compound having the formula:
Figure imgf000112_0001
and pharmaceutically acceptable salts thereof;
wherein
P is hydrogen or an amino-group-protecting moiety;
B1, at each occurrence, is independently one of Ν or CH;
X1, at each occurrence, is independently one of -C(O)-ΝH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B' is N, then the X1 attached to said B1 is -C(O)-NH-;
X2 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(OXCH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R forms together with the adjacent R1, or when A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy and aryloxy;
when A is 2, the R1 that is not adjacent to N-R is one of hydrogen, alkyl, cycloalkyl. aryl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5; when A is 1 or 2, R2 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5- to 10- membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5;
R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5;
R5, in each instance, is independently one of aryl, aralkyl, alkaryl, cycloalkyl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl;
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A is 0, 1, or 2.
34. The compound of claim 33, wherein the nitrogen-containing ring system is selected from the group consisting of:
Figure imgf000113_0001
35. The compound of claim 33, wherein P is R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-G(O)-, and
R7 is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R7-C(O)-, then R7 can also be saturated or partially saturated heterocycle.
36. The compound of claim 35, wherein P is R7-C(O)- or R7-SO2-; and
R7 is one of C6-10 aryl, C6-10 ar(C1-6)alkyl, 5- to 10-membered heteroaryl or 5- to 10-membered heteroaryl(C1-6)alkyl, any of which can be optionally substituted, or when P is R7-C(O)-, R7 can also be N-morpholinyl.
37. The compound of claim 33, wherein B1 is CH, and X1 and X2 are each -C(O)-NH-.
38. The compound of claim 33, wherein R1 and R2 are independently selected from the group consisting of alkyl and—CH2— R5, where
R5, in each instance, is one of C6-10 aryl, C6-10 ar(C1-6)alkyl,C1-6 alk(C6-10)aryl, C3-10 cycloalkyl, C1-8 alkoxy, C1-8 alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group, where the ring portion of any of said C6-10 aryl, C6-10 ar(C1-6)alkyl,C1-6 alk(C3-10)aryl, or 5-, 6-, 9- or 10- membered heteroaryl can be optionally substituted by one or two substituents independently selected from the group consisting of C1-6 alkyl, C 3-8 cycloalkyl, C 1-6alkyl(C 3-8)cycloalkyl, C 2-8 alkenyl, C2-8 alkynyl, cyano, amino, C1-6 alkylamino, di(C1-6)alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl, C6-10 aryl(C1-6)alkyl, C6-10 aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 arylthio, C6-10 arylsulfinyl, C6-10 arylsulfonyl, C6-10aryl, C1-6alkyl(C6-10)aryl and halo(C6-10)aryl.
39. The compound of claim 33, wherein A is zero.
40. The compound of claim 33, wherein P is hydrogen.
41. The compound of claim 33, wherein:
A is zero;
P is hydrogen;
X2 is -C(O)-NH-;
R forms together with the adjacent R2, a nitrogen-containing ring system selected from the group consisting of:
Figure imgf000115_0001
R3 is C1-6alkyl; and
Z1 and Z2 are both hydroxy, C1-6alkoxy, or C1-6oaryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
42. The compound of claim 33, wherein said compound is
L-proline-L-leucine boronic acid, or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
43. A compound having the formula:
Figure imgf000116_0001
and pharmaceutically acceptable salts thereof;
wherein
P is hydrogen or an amino-group-protecting moiety;
B1, at each occurrence, is independently one of N or CH;
X1, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B1 is N, then the X1 attached to said B1 is -C(O)-NH-;
X2 is one of -C(O)-NH-, -CH(OH)-CH2- -CH(OH)-CH(OH)-, -C(O)-CH2- -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R is hydrogen or alkyl, or R forms together with the adjacent R1, or when
A is zero, forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, aryl, alkoxy and aryloxy;
R1 at each occurrence, R2 and R3 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
provided that at least one R1, R2 or R3 is
Figure imgf000117_0001
where R9 is one of hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl; wherein the alkyl is optionally substituted with one of C1-6 alkyl, halogen monohalo (C1-6) alkyl, and trifluoromethyl; and wherein said cycloalkyl, aryl, aralkyl, heteroaryl and heteroarylalkyl groups can be optionally substituted with one or two of C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C 2-8 alkenyl, C2-8 alkynyl, cyano, amino, C1-6 alkylamino, di(C1-6)alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl, C6-10 aryl(C1 )
-6 alkyl, C6-10 aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 arylthio, C6-10 arylsulfinyl, C6-10 arylsulfonyl, C6-10 aryl, C1-6alkyl(C6-10)aryl, and halo(C6-10)aryl;
A1 and A2 are independently one of hydrogen, halogen, C1-6 alkyl, monohalo(C1-6)alkyl, or trifluoromethyl;
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A is 0, 1 , or 2.
44. The compound of claim 43, wherein P is R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-, and
R7 is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R7-C(O)-, then R7 can also be saturated or partially saturated heterocycle.
45. The compound of claim 43, wherein P is R7-C(O)- or R7-SO2-; and
R7 is one of C6-10 aryl, C6-10 ar(C|^)alkyl, 5- to 10-membered heteroaryl or 5- to 10-membered heteroaryl(C1-6)alkyl, any of which can be optionally substituted, or when P is R7-C(O)-, R7 can also be N-morpholinyl.
46. The compound of claim 43, wherein X1 and X2 are each -C(O)-NH-.
47. The compound of claim 43, wherein one of R1, R2 or R3 is
Figure imgf000118_0001
where
A1 and A2 are independently one of hydrogen, C1-6 alkyl, halogen, monohalo (C1-6) alkyl or trifluoromethyl;
R9 is one of C1-8 alkyl, C3-10 cycloalkyl, C6-10 aryl, C6-10 ar(C1-6)alkyl, a 5- to 10-membered heteroaryl or a 5- to 10-membered heteroaryl(C1-6)alkyl; and the remaining R1, R2 and R3 are independently selected from the group consisting of alkyl and—CH2—R5, where
R5, in each instance, is one of C6-10 aryl, C6-10 ar(C1-6)alkyl,C1-6 alk(C6-10)aryl, C3-10 cycloalkyl, C1-8 alkoxy, C1-8 alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group, where the ring portion of any of said C6- 10 aryl, C6-10 ar(C1-6)alkyl,C1-6 alk(C6-10)aryl, or 5-, 6-, 9- or 10- membered heteroaryl can be optionally substituted by one or two substituents independently selected from the group consisting of C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkyl(C3-8)cycloalkyl, C2-8 alkenyl, C2-8 alkynyl, cyano, amino. C1-6 alkylamino, di(C1-6)alkylamino, benzylamino. dibenzylamino, nitro, carboxy, carbo(C1-6)alkoxy, trifluoromethyl, halogen, C1-6 alkoxy, C6-10 aryl, C6-10 aryl(C1-6)alkyl, C6-10 aryl(C1-6)alkoxy, hydroxy, C1-6 alkylthio, C1-6 alkylsulfinyl, C1-6 alkylsulfonyl, C6-10 arylthio, C6-10 arylsulfinyl, C6-10 arylsulfonyl, C6-10aryl, C1-6 alkyl(C6-10)aryl and halo(C6-10)aryl.
48. The compound of claim 43, wherein A is zero.
49. The compound of claim 43, wherein:
A is zero;
P is one of R7-C(O)-, R7-SO2- R7-NH-C(O)- or R7-O-C(O)-;
R7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R7-C(O)-, R7 can also be N-morpholinyl;
X2 is -C(O)-NH-;
R2 is:
Figure imgf000119_0001
where
A1 and A2 are independently one of hydrogen, C1-6 alkyl, halogen, monohalo (C1-6) alkyl or trifluoromethyl; R9 is one of hydrogen, C1-8alkyl, phenyl, benzyl, phenethyl or pyridylmethyl;
R3 is C1-6alkyl; and
Z1 and Z2 are both hydroxy, C1-6alkoxy, or C6-10aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.
50. The compound of claim 43, wherein said compound is one of: N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, or
N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid; or
isosteres, pharmaceutically acceptable salts or boronate esters thereof.
51. A compound having the formula:
Figure imgf000120_0001
and pharmaceutically acceptable salts thereof;
wherein
A is zero;
P is hydrogen or an amino-group-protecting moiety;
X2 is one of -C(O}-ΝH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OHXCH(OHK -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R is hydrogen or alkyl, or R forms together with the adjacent R2, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, where said ring system can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy;
R2 and R3 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a
5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
Z1 and Z2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z1 and Z2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;
provided that P is not C1-6 alkoxycarbonyl, C1-6 alkylcarbonyl or phenyl(C1-3)alkyl.
52. The compound of claim 51, wherein P is R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(O)-, and
R7 is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, where the ring portion of any of said aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl can be optionally substituted, or when P is R7-C(O)-, then R7 can also be a saturated or partially unsaturated heterocycle.
53. The compound of claim 51 , wherein P is R7-C(O)- or R7-SO2-; and R7 is one of C6-10 aryl, C6-10 ar(C1-6)alkyl, a 5- to 10-membered heteroaryl or a 5- to 10-membered heteroaryl(C1-6)alkyl, any of which can be optionally substituted, or when P is R7-C(O)-, R7 can also be N-morpholinyl.
54. The compound of claim 51, wherein B1 is CH, and X1 and X2 are each -C(O)-NH-.
55. The compound of claim 51, wherein R2 and R3 are independently selected from the group consisting of C1-8 alkyl and—CH2— R5, where R5 is one of C6-10 aryl, C1-6 alk(C6-10)aryl, C6-10 ar(C1-6)alkyl, C3-8 cycloalkyl, or a 5-, 6-, 9- or 10-membered heterocycle.
56. The compound of claim 51, which is N-(3-phenylpropionyl)-L-phenylalanine-L-leucine boronic acid, or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
57. The compound of claim 51, wherein said compound is one of: N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid,
N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, or
N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid; or
isosteres, pharmaceutically acceptable salts or boronate esters thereof.
58. A compound having the formula:
Figure imgf000123_0001
and pharmaceutically acceptable salts thereof;
wherein
Y is one of R8-C(O)-, R8-SO2-, R8-NH-C(O)- or R8-O-C(O)-, where
R8 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R8-C(O)- or R8-SO2-, then R8 can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;
X3 is a covalent bond or -C(O)-CH2-;
R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
Z1 and Z2 are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;
provided that when Y is R8-C(O)-, R8 is other than phenyl, benzyl or C1-3 alkyl.
59. The compound of claim 58, wherein P is R8-C(O)- or R8-SO2-; and R8 is one of C6-10 aryl, C6-10 ar(C1-6)alkyl, or a 5-10 membered heteroaryl, any of which can be optionally substituted, or when P is R8-C(O)-, R8 can also be N-morpholinyl.
60. The compound according to claim 58, wherein Y is one of
Figure imgf000124_0003
where R4 is C6-12 alkyl.
61. A compound having the formula:
Figure imgf000124_0002
and pharmaceutically acceptable salts thereof;
where
Y is
Figure imgf000124_0001
P is one of R7-C(O)-, R7-SO2-, R7-NH-C(O)- or R7-O-C(OX, where
R7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R7-C(O)- or R7-SO2-, R7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle;
X3 is a covalent bond or -C(O)-CH2-;
R1, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; R3 is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R5, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R5, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R6, where W is a chalcogen and R6 is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and
Z1 and Z2 are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O.
62. The compound of claim 61, wherein Y is:
Figure imgf000125_0001
63. A pharmaceutical composition, comprising a compound of claims
1, 25, 33, 43, 51, 58 or 61, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
64. A pharmaceutical composition, comprising a compound of claims 22, 28, 41, 49, 55, 60 and 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
65. A pharmaceutical composition, comprising a compound of claims 23, 32, 42, 50, 56 and 57 or an isostere, pharmaceutically acceptable salt or boronate ester thereof, and a pharmaceutically acceptable carrier or diluent.
66. The pharmaceutical composition of claim 65, wherein said compound is present in an amount effective to inhibit the proteasome function in a mammal.
67. A method of inhibiting the growth of a cancer cell, comprising contacting a cell in need of such inhibiting with an effective growth-inhibiting amount of a compound of claims 1, 25, 33, 43, 51, 58 or 61.
68. A method for reducing the rate of muscle protein degradation in a cell comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:
Figure imgf000126_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-,-C(O)-CH2- -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X'2 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-; R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or
-chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2
69. A method for reducing the activity of NF-κB in a cell, comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:
Figure imgf000128_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH- -CH=CH-, -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-,
-C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl. a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or
-CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1 , or 2.
70. A method for reducing the rate of intracellular protein breakdown, comprising contacting cells in need of said reducing with an effective amount of a proteasome inhibitor of the formula:
Figure imgf000129_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(OXCH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
71. A method for reducing the rate of degradation of p53 protein in a cell, comprising administering to a cell in need of said reducing an effective amount of a proteasome inhibitor of the formula:
Figure imgf000130_0001
or a pharmaceutically acceptable salt thereof;
wherein P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH -NH2-, -CH-CH-, -C(O)-CH2- -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(OXCH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O>-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and A10 is 0, 1, or 2.
72. A method for inhibiting cyclin degradation in a cell, comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:
Figure imgf000132_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-,
-CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then Z11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11. at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl. a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where Rιs is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
73. A method of preventing or treating an inflammatory condition in a patient in need thereof, said method comprising administering to said patient a proteasome inhibitor of the formula:
Figure imgf000133_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-,
-CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH- -CH(OH)-CH2-, -CH(OH)-CH(OH)-,
-C(O)-CH2-, -SO-2-NH-, -SO2--CH2- or -CH(OH)-CH2-C(O)-NH-; R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or
-chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
74. The method of claim 73, wherein said patient has been diagnosed with, or is at risk of developing, a condition selected from the group consisting of tissue rejection, organ rejection, arthritis, an infection, dermatoses, inflammatory bowel disease, and an autoimmune disease.
75. A method for inhibiting antigen presentation in a cell comprising administering to a cell in need thereof an effective amount of a proteasome inhibitor of the formula:
Figure imgf000135_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-,
-C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R1 ', or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or
--CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted, where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z1 1 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
76. A method for inhibiting inducible NF-κB dependent cell adhesion in an animal in need of said inhibiting, comprising administering to said animal an effective amount of a proteasome inhibitor of the formula:
Figure imgf000136_0001
or a pharmaceutically acceptable salt thereof;
wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of-C(O)-NH-, -CH2-NH-, -CH(OH)-CH2- -CH(OH)-CH(OH)-, -CH(OH)-CH2-NH-, -CH=CH-,
-C(O)-CH2-. -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O)-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH-, -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R ,12a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R l3 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R15 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and
Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
77. A method for inhibiting HIV replication in an animal in need of said inhibiting, comprising administering to said animal an effective amount of a proteasome inhibitor of the formula:
Figure imgf000137_0001
or a pharmaceutically acceptable salt thereof: wherein
P10 is hydrogen or an amino-group-protecting moiety;
B11 is independently one of N or CH;
X11, at each occurrence, is independently one of -C(O)-NH-, -CH2-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -CH(OH)-CH -NH2-, -CH=CH- -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-, provided that when B11 is N, then X11 is -C(O)-NH;
X12 is one of -C(O}-NH-, -CH(OH)-CH2-, -CH(OH)-CH(OH)-, -C(O)-CH2-, -SO2-NH- -SO2-CH2- or -CH(OH)-CH2-C(O)-NH-;
R10 is hydrogen or alkyl, or R10 forms together with the adjacent R11, or when A10 is zero, forms together with the adjacent R12, a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;
R11, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;
R12 and R13 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or
-CH2-R15, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,
where R'5 is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; Z11 and Z12 are independently alkyl, hydroxy, alkoxy, aryloxy, or Z11 and Z12 together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and
A10 is 0, 1, or 2.
78. The method of claims 67, 68, 69, 70, 71, 72, 73, 75, 76 or 77 wherein said protesome inhibitor is one of:
N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid, N-(3-pyridine)carbonyI-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,
N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid,
N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid, N-(4-morpholine)carbonyl-(O-benzyI)-L-tyrosine-L-leucine boronic acid, N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, or
N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid; or
isosteres, pharmaceutically acceptable salts or boronate esters thereof.
79. A method for reducing the rate of muscle protein degradation in a cell comprising contacting said cell with a compound of claim 58 or 61.
80. A method for reducing the activity of ΝF-κB in a cell comprising contacting said cell with a compound of claim 58 or 61.
81. A method for reducing the rate of intracellular protein breakdown comprising contacting cells with a compound of claim 58 or 61.
82. A method for reducing the rate of degradation of p53 protein in a cell comprising administering to said cell a compound of claim 58 or 61.
83. A method for inhibiting cyclin degradation in a cell comprising contacting said cell with a compound of claim 58 or 61.
84. A method of preventing or treating an inflammatory condition in a patient in need thereof, said method comprising administering to said patient a compound ofclaim 58 or 61.
85. The method of claim 84, wherein said patient has been diagnosed with, or is at risk of developing, a condition selected from the group consisting of tissue rejection, organ rejection, arthritis, an infection, dermatoses, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and an autoimmune disease.
86. A method for inhibiting the growth of a cancer cell, comprising contacting said cell with a compound of claim 58 or 61.
87. A method for inhibiting antigen presentation in a cell comprising administering to said cell a compound of claim 58 or 61.
88. A method for inhibiting NF-κB dependent cell adhesion in an animal comprising administering to said animal a compound of claim 58 or 61.
89. A method for inhibiting HIV replication in an animal comprising administering to said animal a compound of claim 58 or 61.
PCT/US1995/014117 1994-10-28 1995-10-27 Boronic ester and acid compounds, synthesis and uses WO1996013266A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CA002203936A CA2203936C (en) 1994-10-28 1995-10-27 Boronic ester and acid compounds, synthesis and uses
AT95939670T ATE241631T1 (en) 1994-10-28 1995-10-27 BORONIC ACID AND ESTER COMPOUNDS, THEIR SYSTHESIS AND USES
NZ296717A NZ296717A (en) 1994-10-28 1995-10-27 Boronic ester compound which reduces degradation of proteins
EP95939670A EP0788360B3 (en) 1994-10-28 1995-10-27 Boronic ester and acid compounds, synthesis and uses
DE69530936T DE69530936T3 (en) 1994-10-28 1995-10-27 BORONIC ACID AND ESTER COMPOUNDS, THEIR SYSTHESIS AND USES
DE200412000025 DE122004000025I1 (en) 1994-10-28 1995-10-27 Boronic acid and ester compounds, their system and uses.
JP51483496A JP3717934B2 (en) 1994-10-28 1995-10-27 Boronic esters and boronic acid compounds, synthesis and use
DK05023462T DK1627880T3 (en) 1994-10-28 1995-10-27 Boron ester and acid compounds as well as synthesis and applications
DE1995630936 DE122004000025I2 (en) 1994-10-28 1995-10-27 Boronic acid and ester compounds, their systheses and uses
CH95939670T CH0788360H1 (en) 1994-10-28 1995-10-27 BORONIC ACID AND ESTER COMPOUNDS, THEIR SYNTHESIS AND USES.
DK95939670.6T DK0788360T5 (en) 1994-10-28 1995-10-27 Boronic acid ester and acid compounds, their synthesis and applications
AU41398/96A AU710564B2 (en) 1994-10-28 1995-10-27 Boronic ester and acid compounds, synthesis and uses
FI971746A FI114801B (en) 1994-10-28 1997-04-23 Borester and acid compounds and their synthesis and use
NO19971929A NO310558B1 (en) 1994-10-28 1997-04-25 Boric ester and acid compounds, pharmaceutical compositions and the use of boron compound for the manufacture of medicaments
HK98100951A HK1002059A1 (en) 1994-10-28 1998-02-07 Boronic ester and acid compounds, synthesis and uses
NL300151C NL300151I2 (en) 1994-10-28 2004-05-14 Boronic acid ester and boronic acid compounds, synthetic applications.
FR04C0014C FR04C0014I2 (en) 1994-10-28 2004-05-19
LU91083C LU91083I2 (en) 1994-10-28 2004-06-09 Bortezomib or one of the pharmaceutically acceptable esters, optionally in the form of a pharmaceutically acceptable salt-Velcade.
NO2004004C NO2004004I2 (en) 1994-10-28 2004-08-06 Bortezomib or a pharmaceutically acceptable ester thereof, optionally in the form of a pharmaceutically acceptable salt thereof
FI20041415A FI120974B (en) 1994-10-28 2004-11-03 Boron ester and acid compounds and their use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US33052594A 1994-10-28 1994-10-28
US08/330,525 1994-10-28
US08/442,581 1995-05-16
US08/442,581 US6083903A (en) 1994-10-28 1995-05-16 Boronic ester and acid compounds, synthesis and uses

Publications (1)

Publication Number Publication Date
WO1996013266A1 true WO1996013266A1 (en) 1996-05-09

Family

ID=26987313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/014117 WO1996013266A1 (en) 1994-10-28 1995-10-27 Boronic ester and acid compounds, synthesis and uses

Country Status (25)

Country Link
US (16) US6083903A (en)
EP (4) EP0788360B3 (en)
JP (1) JP3717934B2 (en)
KR (1) KR100398944B1 (en)
CN (2) CN1305475C (en)
AT (3) ATE411324T1 (en)
AU (1) AU710564B2 (en)
CA (2) CA2496538C (en)
CH (1) CH0788360H1 (en)
CY (1) CY2484B1 (en)
DE (5) DE69535866D1 (en)
DK (3) DK1627880T3 (en)
ES (3) ES2254803T3 (en)
FI (2) FI114801B (en)
FR (1) FR04C0014I2 (en)
HK (2) HK1002059A1 (en)
IL (5) IL137726A (en)
LU (1) LU91083I2 (en)
MX (1) MX9703063A (en)
NL (1) NL300151I2 (en)
NO (2) NO310558B1 (en)
NZ (2) NZ296717A (en)
PT (3) PT1312609E (en)
TW (1) TW318850B (en)
WO (1) WO1996013266A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758329A1 (en) * 1997-01-16 1998-07-17 Synthelabo New imidazole-4-butane-boronic acid derivatives
WO1998035691A1 (en) * 1997-02-15 1998-08-20 Proscript, Inc. Treatment of infarcts through inhibition of nf-kappab
WO1999022729A1 (en) * 1997-10-31 1999-05-14 Centre De Recherche Du Centre Hospitalier De L'universite De Montreal The use of proteasome inhibitors for treating cancer, inflammation, autoimmune disease, graft rejection and septic shock
WO1999037666A1 (en) * 1998-01-26 1999-07-29 Cv Therapeutics, Inc. α-KETOAMIDE INHIBITORS OF 20S PROTEASOME
WO1999063998A1 (en) * 1998-06-11 1999-12-16 Institut National De La Sante Et De La Recherche Medicale (Inserm) Novel use of hiv protease inhibiting compounds
EP0982317A1 (en) * 1998-08-26 2000-03-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Bivalent inhibitors of the proteasome
WO2000023614A1 (en) * 1998-10-20 2000-04-27 Millennium Pharmaceuticals, Inc. Method for monitoring proteasome inhibitor drug action
WO2003033507A1 (en) * 2001-10-12 2003-04-24 Kyorin Pharmaceutical Co., Ltd. Benzylmalonic acid derivatives and proteasome inhibitors contaiing the same
WO2003059898A2 (en) * 2002-01-08 2003-07-24 Eisai Co. Ltd. Eponemycin and epoxomicin analogs and uses thereof
US6617171B2 (en) 1998-02-27 2003-09-09 The General Hospital Corporation Methods for diagnosing and treating autoimmune disease
WO2004016253A1 (en) * 2002-08-14 2004-02-26 Janssen Pharmaceutica N.V. Use of nf-kappa b inhibitors for the treatment of mastitis
EP1466917A1 (en) * 2002-09-09 2004-10-13 Trigen Limited Method for making peptide boronic acids and acids obtainable thereby
WO2005097809A3 (en) * 2004-03-30 2006-02-16 Millennium Pharm Inc Synthesis of boronic ester and acid compounds
WO2006077428A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
US7112572B2 (en) 2002-09-09 2006-09-26 Trigen Limited Multivalent metal salts of boronic acids
US7223745B2 (en) 2003-08-14 2007-05-29 Cephalon, Inc. Proteasome inhibitors and methods of using the same
CN100341880C (en) * 2003-02-13 2007-10-10 上海仁虎制药股份有限公司 Boric acid and boric acid ester compound ,their preparing method and use in pharmacy
WO2008044045A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
WO2008044041A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
US7442830B1 (en) 2007-08-06 2008-10-28 Millenium Pharmaceuticals, Inc. Proteasome inhibitors
WO2009019504A1 (en) 2007-08-03 2009-02-12 Summit Corporation Plc Drug combinations for the treatment of duchenne muscular dystrophy
WO2009019505A2 (en) 2007-08-03 2009-02-12 Summit Corporation Plc Drug combinations for the treatment of duchenne muscular dystrophy
WO2009020448A1 (en) * 2007-08-06 2009-02-12 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US7531517B2 (en) 2005-08-10 2009-05-12 4Sc Ag Inhibitors of cancer cell, T-cell and keratinocyte proliferation
US7576206B2 (en) 2003-08-14 2009-08-18 Cephalon, Inc. Proteasome inhibitors and methods of using the same
EP2100899A2 (en) 2004-10-20 2009-09-16 Proteolix, Inc. Compounds for proteasome enzyme inhibition
US7700543B2 (en) * 1997-10-28 2010-04-20 The University Of North Carolina At Chapel Hill Use NF-κB inhibition in combination therapy for cancer
WO2010105008A2 (en) 2009-03-12 2010-09-16 Genentech, Inc. Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents for the treatment of hematopoietic malignancies
WO2010106135A1 (en) 2009-03-20 2010-09-23 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Combined use for the treatment of ovarian carcinoma
WO2010145376A1 (en) * 2009-06-19 2010-12-23 北京大学 Tripeptide boronic acid or boronic ester, preparative method and use thereof
EP2284178A2 (en) 2005-08-10 2011-02-16 4Sc Ag Inhibitors of cancer cell, T-cell and keratinocyte proliferation
WO2011029802A1 (en) 2009-09-08 2011-03-17 F. Hoffmann-La Roche Ag 4-substituted pyridin-3-yl-carboxamide compounds and methods of use
EP2305285A1 (en) 2009-09-29 2011-04-06 Julius-Maximilians-Universität Würzburg Means and methods for treating ischemic conditions
US8071615B2 (en) 2002-03-13 2011-12-06 Janssen Pharmaceutica N.V. Carbonylamino-derivatives as novel inhibitors of histone deacetylase
US8080545B2 (en) 2006-06-19 2011-12-20 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8088741B2 (en) 2004-05-10 2012-01-03 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8114876B2 (en) 2006-01-19 2012-02-14 Janssen Pharmaceutica N.V. Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase
US8114999B2 (en) 2002-03-13 2012-02-14 Janssen Pharmaceutica N.V. Aminocarbonyl-derivatives as novel inhibitors of histone deacetylase
US8129346B2 (en) 2004-04-15 2012-03-06 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
WO2012048745A1 (en) 2010-10-14 2012-04-19 Synthon Bv Process for making bortezomib and intermediates for the process
US8163733B2 (en) 2002-03-13 2012-04-24 Janssen Pharmaceutica N.V. Sulfonylamino-derivatives as novel inhibitors of histone deacetylase
US8198270B2 (en) 2004-04-15 2012-06-12 Onyx Therapeutics, Inc. Compounds for proteasome enzyme inhibition
WO2012133884A1 (en) 2011-03-31 2012-10-04 ナノキャリア株式会社 Pharmaceutical composition containing block copolymer comprising boric acid compound
US8283367B2 (en) 2005-02-11 2012-10-09 Cephalon, Inc. Proteasome inhibitors and methods of using the same
US8367617B2 (en) 2007-10-04 2013-02-05 Onyx Therapeutics, Inc. Crystalline peptide epoxy ketone protease inhibitors and the synthesis of amino acid keto-epoxides
US8501737B2 (en) 2002-03-13 2013-08-06 Janssen Pharmaceutica N.V. Piperazinyl-, piperidinyl- and morpholinyl-derivatives as novel inhibitors of histone deacetylase
US8513218B2 (en) 2010-03-31 2013-08-20 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclopropylethylboronic acid
US8541590B2 (en) 2009-12-22 2013-09-24 Cephalon, Inc. Proteasome inhibitors and processes for their preparation, purification and use
US8664200B2 (en) 2008-09-29 2014-03-04 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclobutylethylboronic acid
WO2014041324A1 (en) * 2012-09-11 2014-03-20 Cipla Limited Process for preparing of bortezamib
EP2733147A1 (en) * 2008-06-17 2014-05-21 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
US8853147B2 (en) 2009-11-13 2014-10-07 Onyx Therapeutics, Inc. Use of peptide epoxyketones for metastasis suppression
WO2015051067A1 (en) 2013-10-03 2015-04-09 Millennium Pharmaceuticals, Inc. Method for the prophylaxis or treatment of systemic lupus erythematosus and/or lupus nephritis
US9051353B2 (en) 2009-03-20 2015-06-09 Onyx Therapeutics, Inc. Crystalline tripeptide epoxy ketone protease inhibitors
US9114177B2 (en) 2011-11-17 2015-08-25 The University Of Tokyo Block copolymer having phenylboronic acid group introduced therein, and use thereof
EP2910557A1 (en) * 2014-02-20 2015-08-26 Ikerchem, S.L. Enantiopure tetrasubstituted pyrrolidines as scaffolds for proteasome inhibitors and medicinal applications thereof
US9150543B2 (en) 2004-07-28 2015-10-06 Janssen Pharmaceutica N. V. Substituted indolyl alkyl amino derivatives as inhibitors of histone deacetylase
US9205124B2 (en) 2005-11-09 2015-12-08 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
EP2251344B1 (en) 2001-01-25 2016-03-30 THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Formulation of boronic acid compounds
US9309283B2 (en) 2012-07-09 2016-04-12 Onyx Therapeutics, Inc. Prodrugs of peptide epoxy ketone protease inhibitors
US9359398B2 (en) 2010-03-01 2016-06-07 Onyx Therapeutics, Inc. Compounds for immunoproteasome inhibition
US9511109B2 (en) 2008-10-21 2016-12-06 Onyx Therapeutics, Inc. Combination therapy with peptide epoxyketones
EP3120837A1 (en) 2015-07-22 2017-01-25 Stada Arzneimittel Ag Ready-to-use solution of bortezomib
WO2018038687A1 (en) 2016-08-22 2018-03-01 Mustafa Nevzat Ilaç Sanayii A.Ş. Pharmaceutical formulations comprising a bortezomib-cyclodextrin complex
WO2018150386A1 (en) 2017-02-17 2018-08-23 Fresenius Kabi Oncology Ltd. An improved process for the preparation of boronic acid esters
WO2019040680A1 (en) 2017-08-23 2019-02-28 Krzar Life Sciences Immunoproteasome inhibitors and immunosuppressive agent in the treatment of autoimmune disorders
AU2018233007B2 (en) * 2007-08-06 2020-07-23 Takeda Pharmaceutical Company Limited Proteasome inhibitors
US10993960B1 (en) 2014-05-08 2021-05-04 Kawasaki Institute Of Industrial Promotion Pharmaceutical composition
US11241448B2 (en) 2014-05-20 2022-02-08 Millennium Pharmaceuticals, Inc. Methods for cancer therapy
US11267803B2 (en) 2016-06-21 2022-03-08 Orion Ophthalmology LLC Carbocyclic prolinamide derivatives
WO2022123530A1 (en) * 2020-12-10 2022-06-16 주식회사 엘지화학 Boronic acid compound
US11377439B2 (en) 2016-06-21 2022-07-05 Orion Ophthalmology LLC Heterocyclic prolinamide derivatives
US11827656B2 (en) 2017-11-16 2023-11-28 Principia Biopharma Inc. Immunoproteasome inhibitors

Families Citing this family (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083903A (en) * 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
US6838477B2 (en) * 1995-04-12 2005-01-04 President And Fellows Of Harvard College Lactacystin analogs
US6221888B1 (en) * 1997-05-29 2001-04-24 Merck & Co., Inc. Sulfonamides as cell adhesion inhibitors
JP2001517631A (en) * 1997-09-25 2001-10-09 ミレニアム・ファーマシューティカルズ・インコーポレイテッド Proteasome inhibitors, ubiquitin pathway inhibitors, or agents that interfere with NF-κB activation via the ubiquitin proteasome pathway for treating inflammatory and autoimmune diseases
TR200000815T2 (en) * 1997-09-29 2000-12-21 Point Therapeutics Inc. Stimulation of hematopoietic cells in vitro.
DE19802450A1 (en) * 1998-01-23 1999-07-29 Hoechst Marion Roussel De Gmbh New saccharide compounds useful in treating schizophrenia
US6462019B1 (en) 1998-07-10 2002-10-08 Osteoscreen, Inc. Inhibitors of proteasomal activity and production for stimulating bone growth
US6902721B1 (en) 1998-07-10 2005-06-07 Osteoscreen, Inc. Inhibitors of proteasomal activity for stimulating bone growth
US6838436B1 (en) * 1998-07-10 2005-01-04 Osteoscreen Inc. Inhibitors of proteasomal activity for stimulating bone growth
US6979697B1 (en) * 1998-08-21 2005-12-27 Point Therapeutics, Inc. Regulation of substrate activity
US6492333B1 (en) 1999-04-09 2002-12-10 Osteoscreen, Inc. Treatment of myeloma bone disease with proteasomal and NF-κB activity inhibitors
US6890904B1 (en) * 1999-05-25 2005-05-10 Point Therapeutics, Inc. Anti-tumor agents
US6649593B1 (en) * 1999-10-13 2003-11-18 Tularik Inc. Modulators of SREBP processing
US20040039129A1 (en) * 2000-08-16 2004-02-26 Hall Dennis G. Non-pressurized methods for the preparation of conjugrated solid supports for boronic acids
US6919382B2 (en) 2000-08-31 2005-07-19 The Governors Of The University Of Alberta Preparation and uses of conjugated solid supports for boronic acids
PT1326632E (en) * 2000-10-12 2007-01-31 Viromics Gmbh Proteasome inhibitors for the treatment of hepatitis virus infections
US7112588B2 (en) * 2001-05-21 2006-09-26 Alcon, Inc. Use of proteasome inhibitors to treat dry eye disorders
CA2447909C (en) 2001-05-21 2011-04-05 Alcon, Inc. Use of proteasome inhibitors to treat dry eye disorders
DE60209227T2 (en) * 2001-05-30 2006-08-17 Novartis Ag 2 - ((N- (2-AMINO-3- (HETEROARYL- OR -ARYL) PROPIONYL) AMINOACYL) AMINO) -ALKYLBORONIC ACID DERIVATIVES
JPWO2003033506A1 (en) * 2001-10-12 2005-02-03 杏林製薬株式会社 Aminoboranoic acid derivatives and proteasome inhibitors containing the same
WO2003077928A1 (en) * 2002-03-12 2003-09-25 Ariad Pharmaceuticals, Inc. Peptide analogues and uses thereof
US20050203029A1 (en) * 2002-04-05 2005-09-15 Ulrich Schubert Agents for treating <I>flaviviridae</I>infections
WO2003106384A2 (en) * 2002-06-01 2003-12-24 Johns Hopkins University Novel boronic chalcone derivatives and uses thereof
AU2003248921A1 (en) * 2002-07-09 2004-01-23 Point Therapeutics, Inc. Boroproline compound combination therapy
US20050176651A1 (en) * 2002-09-09 2005-08-11 Trigen Limited Peptide boronic acids useful in making salts thereof
US20060084592A1 (en) * 2002-09-09 2006-04-20 Trigen Limited Peptide boronic acid inhibitors
US20050282757A1 (en) * 2002-09-09 2005-12-22 Trigen Limited Peptide boronic acid compounds useful in anticoagulation
US20050119226A1 (en) * 2003-09-09 2005-06-02 Trigen Limited Methods for synthesizing organoboronic compounds and products thereof
CA2497977A1 (en) * 2002-09-20 2004-04-01 Alcon, Inc. Use of cytokine synthesis inhibitors for the treatment of dry eye disorders
MXPA05005923A (en) 2002-12-06 2005-09-21 Millennium Pharm Inc Methods for the identification, assessment, and treatment of patients with proteasome inhibition therapy.
WO2005007211A2 (en) * 2003-07-03 2005-01-27 Medtronic Vascular Inc. Medical devices with proteasome inhibitors for the treatment of restenosis
CA2542886A1 (en) 2003-11-05 2005-05-19 Neelima M. Bhat Enhanced b cell cytotoxicity of cdim binding antibody
US20060052390A1 (en) * 2003-12-24 2006-03-09 Scios, Inc. Treatment of multiple myeloma by p38 MAP kinase and proteasome inhibition
US20050203027A1 (en) * 2004-02-23 2005-09-15 Trustees Of Tufts College Inhibitors of dipeptidylpeptidase IV
GB0405272D0 (en) * 2004-03-09 2004-04-21 Trigen Ltd Compounds
US7371875B2 (en) * 2004-03-12 2008-05-13 Miikana Therapeutics, Inc. Cytotoxic agents and methods of use
AU2016202747B2 (en) * 2004-03-30 2017-11-23 Millennium Pharmaceuticals, Inc. Synthesis of boronic ester and acid compounds
WO2006002422A2 (en) 2004-06-24 2006-01-05 Novartis Vaccines And Diagnostics Inc. Compounds for immunopotentiation
US7842707B2 (en) 2004-07-23 2010-11-30 Nuada, Llc Peptidase inhibitors
BRPI0517057A (en) 2004-11-05 2008-09-30 Palingen Inc composition to induce cell membrane injury; composition for increasing cell membrane injury in a lymphoid cell; composition to permeabilize a cell; composition to induce cell membrane injury in b cells; composition for increasing cell membrane injury induced by a cell membrane injury antibody; method of treating a mammal suffering from a distinct condition due to hyperproliferation of cells; method for killing a cancer cell; method for inducing cell membrane injury in a lymphoid cell in a human patient; method for inducing cell membrane injury; method for permeabilizing a cell; method of purging the bone marrow of malignant b cells from a patient with this need; kit for determining the dose limit for a multipurpose agent that induces injury to the cell membrane in a mammal; kit for determining the dose limit for a cell membrane injury antibody in a mammal; use of a polyvalent cell membrane injury agent; and use of a cell membrane injury antibody
TW200618820A (en) * 2004-11-05 2006-06-16 Alza Corp Liposome formulations of boronic acid compounds
US8017395B2 (en) 2004-12-17 2011-09-13 Lifescan, Inc. Seeding cells on porous supports
US20070098685A1 (en) * 2005-01-19 2007-05-03 Brand Stephen J Methods and kits to treat chronic inflammatory immune diseases by administering a proteasome inhibitor and an interleukin 2 receptor agonist
US20090018146A1 (en) * 2005-01-27 2009-01-15 Research Development Corporation Combination Therapy with Triterpenoid Compounds and Proteasome Inhibitors
ES2872962T3 (en) 2005-02-16 2021-11-03 Anacor Pharmaceuticals Inc Boronophthalides for therapeutic use
EP1863513A2 (en) * 2005-03-11 2007-12-12 The University of North Carolina at Chapel Hill Potent and specific immunoproteasome inhibitors
WO2006119032A1 (en) * 2005-04-29 2006-11-09 Kosan Biosciences Incorporated Method of treating multiple myeloma using 17-aag or 17-ag or a prodrug of either in combination with a proteasome inhibitor
JP5055268B2 (en) 2005-05-18 2012-10-24 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Substituted aminopropenyl piperidine or morpholine derivatives as novel inhibitors of histone deacetylase
AU2006202209B2 (en) * 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
PL1888123T3 (en) * 2005-06-08 2013-06-28 Janssen Biotech Inc A cellular therapy for ocular degeneration
EP1912664A2 (en) * 2005-07-06 2008-04-23 Biodevelops Pharma Entwicklung GmbH Use of a compound for enhancing the expression of membrane proteins on the cell surface
US20070059382A1 (en) * 2005-09-09 2007-03-15 Board Of Regents, Univ. And Comm. College System Of Nevada... Medical treatment of breast cancer with boric acid materials
WO2007067752A2 (en) * 2005-12-08 2007-06-14 Cytokinetics, Inc. Certain compositions and methods of treatment
CN106008571A (en) 2005-12-30 2016-10-12 安纳考尔医药公司 Boron-containing small molecules
US8101616B2 (en) * 2006-01-19 2012-01-24 Janssen Pharmaceutica N.V. Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase
CN101370803B (en) * 2006-01-19 2012-12-12 詹森药业有限公司 Substituted indolyl-alkyl-amino-derivatives as inhibitors of histone deacetylase
PL1981874T3 (en) * 2006-01-19 2009-10-30 Janssen Pharmaceutica Nv Aminophenyl derivatives as novel inhibitors of histone deacetylase
JO2660B1 (en) 2006-01-20 2012-06-17 نوفارتيس ايه جي PI-3 Kinase inhibitors and methods of their use
PE20070978A1 (en) * 2006-02-14 2007-11-15 Novartis Ag HETEROCICLIC COMPOUNDS AS INHIBITORS OF PHOSPHATIDYLINOSITOL 3-KINASES (PI3Ks)
KR101622870B1 (en) 2006-02-16 2016-05-19 아나코르 파마슈티칼스 인코포레이티드 Boron-containing small molecules as anti-inflammatory agents
AR060358A1 (en) * 2006-04-06 2008-06-11 Novartis Vaccines & Diagnostic QUINAZOLINS FOR THE INHIBITION OF PDK 1
US8741643B2 (en) * 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
DE102006026464A1 (en) 2006-06-01 2007-12-06 Virologik Gmbh Innovationszentrum Medizintechnik Und Pharma Pharmaceutical composition for the treatment of viral infections and / or tumors by inhibiting protein folding and protein degradation
WO2007143600A2 (en) * 2006-06-05 2007-12-13 Incyte Corporation Sheddase inhibitors combined with cd30-binding immunotherapeutics for the treatment of cd30 positive diseases
EA020276B1 (en) * 2006-09-15 2014-10-30 Янссен Фармацевтика Нв Histone deacetylase inhibitors with combined activity on class-i and class-iib histone deacetylases in combination with proteasome inhibitors
CA2662432A1 (en) * 2006-09-15 2008-03-20 Janssen Pharmaceutica Nv Combinations of class-i specific histone deacetylase inhibitors with proteasome inhibitors
AU2007221966A1 (en) * 2006-12-08 2008-06-26 Centenary Institute Of Cancer Medicine And Cell Biology Assay for response to proteasome inhibitors
JO3396B1 (en) 2007-06-20 2019-10-20 Anacor Pharmaceuticals Inc Boron-containing small molecules
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
WO2009018453A1 (en) 2007-07-31 2009-02-05 Lifescan, Inc. Differentiation of human embryonic stem cells
EA034601B1 (en) * 2007-08-06 2020-02-25 Милленниум Фармасьютикалз, Инк. Process for producing boronic acids
BRPI0816807A2 (en) * 2007-09-12 2017-05-16 Dr Reddy's Laboratories Inc bortezomib and process for the production thereof
US20090076031A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched bortezomib
US7838673B2 (en) * 2007-10-16 2010-11-23 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US20090110688A1 (en) * 2007-10-24 2009-04-30 Georg Fertig Combination therapy of type ii anti-cd20 antibody with a proteasome inhibitor
CN101878298B (en) * 2007-11-27 2017-08-15 生命扫描有限公司 The differentiation of human embryo stem cell
CN101220048B (en) * 2007-12-14 2012-08-15 江苏先声药物研究有限公司 Method for preparing pinane diol ester under ZnCl2 catalysis
CN101952282A (en) 2007-12-20 2011-01-19 诺瓦提斯公司 Thiazole derivatives used as PI 3 kinase inhibitors
KR101731474B1 (en) 2008-02-21 2017-05-11 얀센 바이오테크 인코포레이티드 Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
MX2010009765A (en) 2008-03-06 2013-07-12 Anacor Pharmaceuticals Inc Boron-containing small molecules as anti-inflammatory agents.
EP2285384A4 (en) * 2008-05-12 2012-04-25 Anacor Pharmaceuticals Inc Boron-containing small molecules
KR101829310B1 (en) 2008-06-30 2018-02-14 얀센 바이오테크 인코포레이티드 Differentiation of pluripotent stem cells
CN101638414B (en) * 2008-07-30 2014-01-08 江苏先声药物研究有限公司 Peptidyl boronic acid, ester compound thereof, preparation method of peptidyl boronic acid and ester compound thereof, and use of peptidyl boronic acid and ester compound thereof
US20100028307A1 (en) * 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
WO2010027975A1 (en) * 2008-09-04 2010-03-11 Anacor Pharmaceuticals, Inc. Boron-containing small molecules
WO2010028005A1 (en) 2008-09-04 2010-03-11 Anacor Pharmaceuticals, Inc. Boron-containing small molecules
WO2010045503A1 (en) * 2008-10-15 2010-04-22 Anacor Pharmaceuticals, Inc. Boron-containing small molecules as anti-protozoal agents
MX349178B (en) 2008-10-31 2017-07-17 Centocor Ortho Biotech Inc Differentiation of human embryonic stem cells to the pancreatic endocrine lineage.
ES2634445T3 (en) 2008-10-31 2017-09-27 Janssen Biotech, Inc. Differentiation of human embryonic stem cells with pancreatic endocrine lineage
JP5719305B2 (en) * 2008-11-20 2015-05-13 ヤンセン バイオテツク,インコーポレーテツド Methods and compositions for cell attachment and culture on a planar support
MX356756B (en) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Pluripotent stem cell culture on micro-carriers.
CN101747354B (en) * 2008-12-04 2014-08-13 江苏先声药物研究有限公司 Dipeptide boronic acids consisting of beta amino acids, ester compounds and preparation methods and uses thereof
PE20120052A1 (en) * 2008-12-17 2012-02-13 Anacor Pharmaceuticals Inc (S) -3-AMINO-METHYL-7- (3-HYDROXY-PROPOXY) -3H-BENZO- [C] [1,2] -OXABOROL-1-OL POLYMORPHES
CA2748921A1 (en) 2009-01-09 2010-08-12 Sun Pharma Advanced Research Company Limited Bortezumib containing pharmaceutical composition
EP3021120A1 (en) 2009-02-20 2016-05-18 Michael P. Lisanti Diagnosis, prognosis, therapeutics and methods for treating neoplastic deiseases comprising determining the level of caveolin-1 in a stromal cell sample
HUE027639T2 (en) * 2009-03-24 2016-11-28 Janssen Pharmaceutica Nv Biomarkers for assessing peripheral neuropathy response to treatment with a proteasome inhibitor
WO2010114768A1 (en) * 2009-03-30 2010-10-07 Cerulean Pharma Inc. Polymer-epothilone conjugates, particles, compositions, and related methods of use
WO2010117668A1 (en) * 2009-03-30 2010-10-14 Cerulean Pharma Inc. Polymer-agent conjugates, particles, compositions, and related methods of use
WO2010114770A1 (en) * 2009-03-30 2010-10-07 Cerulean Pharma Inc. Polymer-agent conjugates, particles, compositions, and related methods of use
CA2763471A1 (en) * 2009-05-27 2010-12-02 Cephalon, Inc. Combination therapy for the treatment of multiple myeloma
EP2270019A1 (en) 2009-06-19 2011-01-05 LEK Pharmaceuticals d.d. New synthetic route for the preparation of alpha-amino boronic esters
EP2280016A1 (en) 2009-07-27 2011-02-02 LEK Pharmaceuticals d.d. New synthetic route for the preparation of alpha-amino boronic esters via substituted alk-1-ynes
CN102803271B (en) 2009-06-19 2016-03-23 力奇制药公司 Hydrogenation haloolefin and the method for not dehalogenation
US8293753B2 (en) 2009-07-02 2012-10-23 Novartis Ag Substituted 2-carboxamide cycloamino ureas
DE102009027754A1 (en) 2009-07-15 2011-05-05 Schubert, Ulrich, Dr. Method for inhibiting the maturation of dendritic cells
RU2540021C2 (en) * 2009-07-20 2015-01-27 Янссен Байотек, Инк. Differentiating human embryonic stem cells
CN103952372B (en) 2009-07-20 2016-10-05 詹森生物科技公司 The differentiation of human embryo stem cell
AU2010276438B2 (en) 2009-07-20 2015-06-11 Janssen Biotech Inc. Differentiation of human embryonic stem cells
EP2458995A1 (en) * 2009-07-28 2012-06-06 Anacor Pharmaceuticals, Inc. Trisubstituted boron-containing molecules
WO2011019618A1 (en) * 2009-08-14 2011-02-17 Anacor Pharmaceuticals, Inc. Boron-containing small molecules as antiprotozoal agents
WO2011022502A1 (en) 2009-08-18 2011-02-24 Georgetown University Boronic acid compositions and methods related to cancer
WO2011022337A1 (en) * 2009-08-19 2011-02-24 Anacor Pharmaceuticals, Inc. Boron-containing small molecules as antiprotozoal agents
US20110124597A1 (en) * 2009-09-25 2011-05-26 Anacor Pharmaceuticals, Inc. Boron containing small molecules
HUE032571T2 (en) 2009-10-01 2017-09-28 Janssen Pharmaceutica Nv Proteasome inhibitors for treating cancer
US9346834B2 (en) 2009-10-20 2016-05-24 Anacor Pharmaceuticals, Inc. Boron-containing small molecules as antiprotozoal agents
US8461134B2 (en) * 2009-11-11 2013-06-11 Anacor Pharmaceuticals, Inc. Boron-containing small molecules
WO2011079017A2 (en) 2009-12-23 2011-06-30 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
WO2011079018A2 (en) 2009-12-23 2011-06-30 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
US20110178287A1 (en) 2010-01-19 2011-07-21 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutic delivery
WO2011094450A1 (en) 2010-01-27 2011-08-04 Anacor Pharmaceuticals, Inc Boron-containing small molecules
CN102791851B (en) 2010-03-01 2017-07-14 詹森生物科技公司 The method of cell of the purifying derived from multipotential stem cell
KR101530942B1 (en) * 2010-03-18 2015-06-23 이노파르마, 인코포레이티드 Stable bortezomib formulations
US8263578B2 (en) 2010-03-18 2012-09-11 Innopharma, Inc. Stable bortezomib formulations
US8623911B2 (en) 2010-03-19 2014-01-07 Anacor Pharmaceuticals, Inc. Boron-containing small molecules as anti-protozoal agent
CA2793959C (en) 2010-03-25 2019-06-04 Oregon Health & Science University Cmv glycoproteins and recombinant vectors
AU2013204868B2 (en) * 2010-03-31 2016-10-13 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclopropylethylboronic acid
AU2011245630B2 (en) 2010-04-07 2014-07-03 Onyx Therapeutics, Inc. Crystalline peptide epoxyketone immunoproteasome inhibitor
CN101812026B (en) * 2010-04-12 2013-08-28 亚邦医药股份有限公司 Method for synthesizing bortezomib
EP2560647B1 (en) 2010-04-19 2016-04-13 Niiki Pharma Inc. Combination therapy with a proteasome inhibitor and a gallium complex
WO2011139379A2 (en) 2010-05-06 2011-11-10 Duke University A method of treating patients undergoing protein replacement therapy, gene replacement therapy, or other therapeutic modalities
EP3498825A1 (en) 2010-05-12 2019-06-19 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
EP2571525A4 (en) 2010-05-18 2016-04-27 Cerulean Pharma Inc Compositions and methods for treatment of autoimmune and other diseases
AR082418A1 (en) 2010-08-02 2012-12-05 Novartis Ag CRYSTAL FORMS OF 1- (4-METHYL-5- [2- (2,2,2-TRIFLUORO-1,1-DIMETHYL-Ethyl) -PIRIDIN-4-IL] -TIAZOL-2-IL) -AMIDE OF 2 -AMIDA OF THE ACID (S) -PIRROLIDIN-1,2-DICARBOXILICO
MX355340B (en) 2010-08-31 2018-04-16 Janssen Biotech Inc Differentiation of human embryonic stem cells.
SG187947A1 (en) 2010-08-31 2013-03-28 Janssen Biotech Inc Differentiation of pluripotent stem cells
WO2012030539A2 (en) 2010-08-31 2012-03-08 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
CN103140228A (en) 2010-09-07 2013-06-05 阿纳科制药公司 Benzoxaborole derivatives for treating bacterial infections
US9126997B1 (en) 2010-09-07 2015-09-08 Northwestern University Synergistic effect of glucocorticoid receptor agonists in combination with proteosome inhibitors for treating leukemia and myeloma
EP2624818B1 (en) 2010-10-05 2017-04-05 Fresenius Kabi USA, LLC Bortezomib formulations stabilised with boric acid
TW201309700A (en) 2011-01-31 2013-03-01 Novartis Ag Novel heterocyclic derivatives
TW201309303A (en) * 2011-03-03 2013-03-01 Cephalon Inc Proteasome inhibitor for the treatment of lupus
WO2012135528A2 (en) 2011-03-29 2012-10-04 Texas Tech University System Galectin-3c combination therapy for human cancer
AU2012267786B2 (en) 2011-06-10 2017-08-03 Oregon Health & Science University CMV glycoproteins and recombinant vectors
JP5944986B2 (en) * 2011-06-22 2016-07-05 セファロン、インク. Proteasome inhibitors and processes for their preparation, purification, and use
US8481655B2 (en) 2011-07-27 2013-07-09 Wacker Chemical Corporation Copper complexes of amino-functional organosilicon compounds and their use
AU2012294493B2 (en) 2011-08-11 2017-02-23 Janssen Pharmaceutica Nv Predictors for cancer treatment
WO2013021032A1 (en) 2011-08-11 2013-02-14 Janssen Pharmaceutica Nv Histone deacetylase inhibitors in combination with proteasome inhibitors and dexamethasone
CA2844086A1 (en) 2011-08-19 2013-02-28 Glaxo Group Limited Benzofuran compounds for the treatment of hepatitis c virus infections
HRP20221320T1 (en) 2011-08-30 2023-01-06 Trustees Of Tufts College Fap-activated proteasome inhibitors for treating solid tumors
AU2012216792A1 (en) 2011-09-12 2013-03-28 International Aids Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing HIV-1 proteins by broadly neutralizing antibodies
US9402894B2 (en) 2011-10-27 2016-08-02 International Aids Vaccine Initiative Viral particles derived from an enveloped virus
JP6238900B2 (en) 2011-10-28 2017-11-29 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Biomarkers of response to NAE inhibitors
MX340452B (en) 2011-10-28 2016-07-08 Novartis Ag Novel purine derivatives and their use in the treatment of disease.
EP2776586B1 (en) 2011-11-11 2018-03-07 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
EP2776043B1 (en) 2011-11-11 2018-02-21 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
RU2705001C2 (en) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Differentiation of human embryonic stem cells into single-hormonal insulin-positive cells
US9732101B2 (en) 2012-01-18 2017-08-15 Wisconsin Alumni Research Foundation Bioreversible boronates for delivery of molecules into cells
US9234048B2 (en) 2012-01-18 2016-01-12 Wisconsin Alumni Research Foundation Boronate-mediated delivery of molecules into cells
JP6215235B2 (en) 2012-01-24 2017-10-18 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. How to treat cancer
US10085987B2 (en) 2012-01-27 2018-10-02 Thomas Jefferson University MCT protein inhibitor-related prognostic and therapeutic methods
JP6335796B2 (en) 2012-02-08 2018-06-06 アイジーエム バイオサイエンシズ インク.Igm Biosciences Inc. CDIM binding protein and use thereof
AU2013227219A1 (en) 2012-03-02 2014-10-23 Dr. Reddy's Laboratories Limited Pharmaceutical compositions comprising boronic acid compounds
JP6383292B2 (en) 2012-03-07 2018-08-29 ヤンセン バイオテツク,インコーポレーテツド Clear media for proliferation and maintenance of pluripotent stem cells
CA2784240C (en) 2012-03-27 2014-07-08 Innopharma, Inc. Stable bortezomib formulations
AU2013263043B2 (en) 2012-05-16 2016-06-16 Novartis Ag Dosage regimen for a PI-3 kinase inhibitor
JP6469003B2 (en) 2012-06-08 2019-02-13 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into pancreatic endocrine cells
EP2679596B1 (en) 2012-06-27 2017-04-12 International Aids Vaccine Initiative HIV-1 env glycoprotein variant
JP2013006855A (en) * 2012-09-03 2013-01-10 Millennium Pharmaceuticals Inc Proteasome inhibitor
JP6486826B2 (en) 2012-10-01 2019-03-20 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Biomarkers and methods for predicting response to inhibitors and uses thereof
WO2014072985A1 (en) 2012-11-06 2014-05-15 Natco Pharma Limited Novel boronic acid derivatives as anti cancer agents
EP2919786A4 (en) 2012-11-16 2016-06-01 Shilpa Medicare Ltd Crystalline bortezomib process
WO2014097306A1 (en) 2012-12-21 2014-06-26 Natco Pharma Limited Stable and pure polymorphic form of bortezomib
BR112015015714A2 (en) 2012-12-31 2017-07-11 Janssen Biotech Inc suspension and agglomeration of human pluripotent cells for differentiation into pancreatic endocrine cells
ES2837763T3 (en) 2012-12-31 2021-07-01 Janssen Biotech Inc Culture of human embryonic stem cells in the air-liquid interface for differentiation into pancreatic endocrine cells
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
ES2942484T3 (en) 2012-12-31 2023-06-01 Janssen Biotech Inc Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators
CA2905751A1 (en) 2013-03-13 2014-10-09 Forma Therapeutics, Inc. Novel compounds and compositions for inhibition of fasn
EP2986619A1 (en) 2013-04-16 2016-02-24 Cipla Limited Process for the preparation of bortezomib mannitol ester
WO2014172627A1 (en) 2013-04-19 2014-10-23 Thomas Jefferson University Caveolin-1 related methods for treating glioblastoma with temozolomide
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
WO2015003146A1 (en) 2013-07-03 2015-01-08 Georgetown University Boronic acid derivatives of resveratrol for activating deacetylase enzymes
EP2848937A1 (en) 2013-09-05 2015-03-18 International Aids Vaccine Initiative Methods of identifying novel HIV-1 immunogens
US10058604B2 (en) 2013-10-07 2018-08-28 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
CN104586776B (en) * 2013-10-30 2017-05-17 扬子江药业集团上海海尼药业有限公司 Preparation taking bortezomib as active composition and preparation method thereof
WO2015076359A1 (en) * 2013-11-21 2015-05-28 国立大学法人北海道大学 Proteasome-inhibiting compound
EP3077823B1 (en) 2013-12-05 2019-09-04 The Broad Institute, Inc. Compositions and methods for identifying and treating cachexia or pre-cachexia
TN2016000179A1 (en) 2013-12-06 2017-10-06 Novartis Ag Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor.
EP3102585B1 (en) 2014-02-03 2021-05-19 Ohio State Innovation Foundation Boronic acid esters and pharmaceutical formulations thereof
CA2949056A1 (en) 2014-05-16 2015-11-19 Janssen Biotech, Inc. Use of small molecules to enhance mafa expression in pancreatic endocrine cells
EP4180041A1 (en) 2014-08-07 2023-05-17 Mayo Foundation for Medical Education and Research Compounds and methods for treating cancer
WO2016050356A1 (en) * 2014-10-01 2016-04-07 Merck Patent Gmbh Boronic acid derivatives
WO2016110870A1 (en) 2015-01-07 2016-07-14 Emcure Pharmaceuticals Limited Pharmaceutical composition of bortezomid
MA41505A (en) 2015-02-11 2017-12-19 Millennium Pharm Inc NEW CRYSTALLINE FORM OF A PROTEASOME INHIBITOR
JP2018510859A (en) 2015-03-17 2018-04-19 レオン−ナノドラッグズ ゲーエムベーハー Nanoparticles containing stabilized boronic acid compounds
US10174292B2 (en) 2015-03-20 2019-01-08 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3072901A1 (en) 2015-03-23 2016-09-28 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
WO2016184793A1 (en) 2015-05-15 2016-11-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for treating a patient with vegfr inhibitor-resistant metastatic renal cell carcinoma
WO2016205790A2 (en) 2015-06-19 2016-12-22 Hanlin Scientific, Inc. Chiral specific boron-containing compounds and their use in treating cancer or amyloidosis
CN106478700B (en) * 2015-08-26 2020-12-29 杭州雷索药业有限公司 Boron-substituted aniline protein kinase inhibitor
CN106588965A (en) * 2015-10-15 2017-04-26 北京大学 Urea peptidomimetic boric acid compound as well as pharmaceutical composition, preparation method and application thereof
MX2018005298A (en) 2015-11-02 2018-06-22 Novartis Ag Dosage regimen for a phosphatidylinositol 3-kinase inhibitor.
EP3389715A4 (en) 2015-12-14 2019-06-12 David K. Thomas Compositions and methods for treating cardiac dysfunction
CN107151255A (en) * 2016-03-06 2017-09-12 复旦大学 Boric acid compound and its production and use
CN107151254A (en) * 2016-03-06 2017-09-12 复旦大学 It is a kind of to be used as boric acid compound of 20S proteasome inhibitors and preparation method thereof
MA45479A (en) 2016-04-14 2019-02-20 Janssen Biotech Inc DIFFERENTIATION OF PLURIPOTENT STEM CELLS IN ENDODERMAL CELLS OF MIDDLE INTESTINE
US11447506B2 (en) 2016-05-09 2022-09-20 Anacor Pharmaceuticals, Inc. Crystal forms of crisaborole in free form and preparation method and use thereof
CN106008572B (en) * 2016-05-23 2018-08-17 成都千禧莱医药科技有限公司 A kind of dipeptide boronic acid compound and preparation method and purposes
JP6681284B2 (en) * 2016-06-23 2020-04-15 信越化学工業株式会社 Method for reducing metal of sugar alcohol compound
JP6223508B2 (en) * 2016-06-27 2017-11-01 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Proteasome inhibitor
WO2018060833A1 (en) 2016-09-27 2018-04-05 Novartis Ag Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib
WO2018073790A1 (en) 2016-10-20 2018-04-26 Pfizer Inc. Therapeutic particles with peptide boronic acid or boronate ester compounds and methods of making and using same
US11584733B2 (en) 2017-01-09 2023-02-21 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
WO2018129533A1 (en) 2017-01-09 2018-07-12 Shuttle Pharmaceuticals, Llc Selective histone deacetylase inhibitors for the treatment of human disease
US11596629B2 (en) 2017-02-28 2023-03-07 Mayo Foundation For Medical Education And Research Compounds and methods for treating cancer
JP2020533382A (en) 2017-09-14 2020-11-19 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited Combination treatment of cancer
JP2018024694A (en) * 2017-10-03 2018-02-15 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Proteasome inhibitor
JP7333321B2 (en) * 2017-11-16 2023-08-24 プリンシピア バイオファーマ インコーポレイテッド immunoproteasome inhibitor
US10537585B2 (en) 2017-12-18 2020-01-21 Dexcel Pharma Technologies Ltd. Compositions comprising dexamethasone
US11407723B2 (en) 2018-01-09 2022-08-09 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
EP3746065A4 (en) 2018-01-29 2022-02-16 Cognos Therapeutics Inc. Intratumoral delivery of bortezomib
TW202003553A (en) 2018-03-15 2020-01-16 美商艾伯維有限公司 ABBV-621 in combination with anti-cancer agents for the treatment of cancer
US11243207B2 (en) 2018-03-29 2022-02-08 Mayo Foundation For Medical Education And Research Assessing and treating cancer
EP3873214A4 (en) 2018-10-29 2022-07-13 Forma Therapeutics, Inc. Solid forms of (4-(2-fluoro-4-(1-methyl-1 h-benzo[d]imidazol-5-yl)benzoyl) piperazin-1-yl)(1-hydroxycyclopropyl)methanone
CN109824756B (en) * 2019-03-19 2022-03-22 山东大学 Phenylalanine derivative containing 4- (benzenesulfonyl) piperazine-2-ketone and preparation method and application thereof
CN114437119A (en) * 2020-10-30 2022-05-06 苏州开拓药业股份有限公司 C-Myc protein inhibitor and preparation method and application thereof
CN116783212A (en) * 2020-12-02 2023-09-19 霍夫曼技术有限责任公司 Compositions and methods for modulating cancer in non-human mammals
US11964993B2 (en) 2021-07-03 2024-04-23 Shilpa Pharma Lifesciences Limited Crystalline bortezomib process
US20230062279A1 (en) 2021-08-12 2023-03-02 Extrovis Ag Pharmaceutical compositions of bortezomib
CN113957441B (en) * 2021-10-29 2024-01-02 光华科学技术研究院(广东)有限公司 Etching solution and preparation method and application thereof
WO2023220641A2 (en) 2022-05-11 2023-11-16 Juno Therapeutics, Inc. Methods and uses related to t cell therapy and production of same
WO2023220655A1 (en) 2022-05-11 2023-11-16 Celgene Corporation Methods to overcome drug resistance by re-sensitizing cancer cells to treatment with a prior therapy via treatment with a t cell therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499082A (en) * 1983-12-05 1985-02-12 E. I. Du Pont De Nemours And Company α-Aminoboronic acid peptides
US5106948A (en) * 1988-05-27 1992-04-21 Mao Foundation For Medical Education And Research Cytotoxic boronic acid peptide analogs
US5169841A (en) * 1987-11-05 1992-12-08 Hoechst Aktiengesellschaft Renin inhibitors

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261868A (en) * 1979-08-08 1981-04-14 Lever Brothers Company Stabilized enzymatic liquid detergent composition containing a polyalkanolamine and a boron compound
US4369183A (en) * 1979-09-06 1983-01-18 Merck & Co., Inc. 2-Pyridyl-1,2-benzisothiazolinone-1,1-dioxides and their use as selective protease inhibitors
US4510130A (en) 1983-05-20 1985-04-09 Genetic Diagnostics Corporation Promoting animal and plant growth with leupeptin
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4537707A (en) * 1984-05-14 1985-08-27 The Procter & Gamble Company Liquid detergents containing boric acid and formate to stabilize enzymes
US4842769A (en) * 1985-07-26 1989-06-27 Colgate-Palmolive Co. Stabilized fabric softening built detergent composition containing enzymes
US4759032A (en) 1987-06-03 1988-07-19 Monsanto Company Electrode seal assembly
US5242904A (en) * 1987-06-05 1993-09-07 The Dupont Merck Pharmaceutical Company Peptide boronic acid inhibitors of trypsin-like proteases
US5250720A (en) * 1987-06-05 1993-10-05 The Dupont Merck Pharmaceutical Company Intermediates for preparing peptide boronic acid inhibitors of trypsin-like proteases
US5187157A (en) * 1987-06-05 1993-02-16 Du Pont Merck Pharmaceutical Company Peptide boronic acid inhibitors of trypsin-like proteases
SE8702550D0 (en) * 1987-06-18 1987-06-18 Anders Grubb CYSTEINPROTEASHEMMARE
EP0374157B1 (en) 1987-06-19 1994-07-06 The Regents Of The University Of California A new class of low calorie protein sweeteners
US4963655A (en) * 1988-05-27 1990-10-16 Mayo Foundation For Medical Education And Research Boron analogs of amino acid/peptide protease inhibitors
DE3827340A1 (en) * 1988-08-12 1990-02-15 Hoechst Ag USE OF (ALPHA) -AMINOBORONIC ACID DERIVATIVES FOR THE PROPHYLAXIS AND TREATMENT OF VIRUS DISEASES
ZA897515B (en) * 1988-10-07 1990-06-27 Merrell Dow Pharma Novel peptidase inhibitors
US4997929A (en) * 1989-01-05 1991-03-05 Synergen, Inc. Purified ciliary neurotrophic factor
US4959179A (en) * 1989-01-30 1990-09-25 Lever Brothers Company Stabilized enzymes liquid detergent composition containing lipase and protease
JP2701932B2 (en) * 1989-04-10 1998-01-21 サントリー株式会社 Protease inhibitor
US5030378A (en) * 1990-01-02 1991-07-09 The Procter & Gamble Company Liquid detergents containing anionic surfactant, builder and proteolytic enzyme
JPH05506777A (en) 1990-03-05 1993-10-07 セファロン、インコーポレーテッド Chymotrypsin-like proteases and their inhibitors
GB9017694D0 (en) * 1990-08-13 1990-09-26 Sandoz Ltd Improvements in or relating to organic chemistry
EP0478050A1 (en) * 1990-09-24 1992-04-01 Unilever N.V. Detergent composition
GB9024129D0 (en) * 1990-11-06 1990-12-19 Thrombosis Research Trust Inhibitors and substrates of thrombin
JP2703408B2 (en) 1990-12-28 1998-01-26 麒麟麦酒株式会社 1,4-benzothiazepine derivatives
WO1992011850A2 (en) * 1990-12-28 1992-07-23 Cortex Pharmaceuticals, Inc. Use of calpain inhibitors in the inhibition and treatment of neurodegeneration
JPH06504547A (en) * 1990-12-28 1994-05-26 ジョージア・テック・リサーチ・コーポレーション Peptide ketoamides, keto acids and ketoesters
ES2085024T3 (en) * 1991-04-30 1996-05-16 Procter & Gamble LIQUID DETERGENTS REINFORCED WITH BORICO-POLYOL ACID COMPLEX TO INHIBIT THE PROTEOLYTIC ENZYME.
EP0511456A1 (en) * 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1992019707A1 (en) * 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with an aryl boronic acid
US5554728A (en) * 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
AU4077193A (en) * 1992-04-16 1993-11-18 Zeneca Limited Alpha-aminoboronic acid peptides and their use as elastase inhibitors
AU3959693A (en) * 1992-04-16 1993-11-18 Zeneca Limited Alpha-aminoboronic acid peptides and their use as elastase inhibitors
ATE149563T1 (en) 1992-08-14 1997-03-15 Procter & Gamble LIQUID DETERGENTS CONTAINING ALPHA-AMINOBORIC ACID
JPH08507754A (en) 1993-02-10 1996-08-20 ザ・プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Role of ATP-ubiquitin-dependent proteolysis in MHC-1-restricted antigen presentation and its inhibitor
US5384410A (en) * 1993-03-24 1995-01-24 The Du Pont Merck Pharmaceutical Company Removal of boronic acid protecting groups by transesterification
DE4311835A1 (en) * 1993-04-07 1994-10-13 Boehringer Ingelheim Int Method for inhibiting gene transcription
US5424904A (en) 1993-10-04 1995-06-13 Taylor, Sr.; Thomas T. Circuit for electrically controlled intermittent motion
IL111176A0 (en) * 1993-10-07 1994-12-29 Du Pont Merck Pharma Dipeptide boronic acid inhibitors of trypsin-like enzymes and pharmaceutical compositions containing them
US5693617A (en) * 1994-03-15 1997-12-02 Proscript, Inc. Inhibitors of the 26s proteolytic complex and the 20s proteasome contained therein
US6660268B1 (en) * 1994-03-18 2003-12-09 The President And Fellows Of Harvard College Proteasome regulation of NF-KB activity
US5574017A (en) 1994-07-05 1996-11-12 Gutheil; William G. Antibacterial agents
US6083903A (en) * 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
US5550262A (en) * 1994-11-14 1996-08-27 Cephalon, Inc. Multicatalytic protease inhibitors
US5614649A (en) 1994-11-14 1997-03-25 Cephalon, Inc. Multicatalytic protease inhibitors
DK2251344T3 (en) * 2001-01-25 2016-05-09 Us Of America Represented By The Secretary Dept Of Health And Human Services Formulation of boronic acid
RS62738B1 (en) * 2004-03-30 2022-01-31 Millennium Pharm Inc Synthesis of boronic ester and acid compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499082A (en) * 1983-12-05 1985-02-12 E. I. Du Pont De Nemours And Company α-Aminoboronic acid peptides
US5169841A (en) * 1987-11-05 1992-12-08 Hoechst Aktiengesellschaft Renin inhibitors
US5106948A (en) * 1988-05-27 1992-04-21 Mao Foundation For Medical Education And Research Cytotoxic boronic acid peptide analogs

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758329A1 (en) * 1997-01-16 1998-07-17 Synthelabo New imidazole-4-butane-boronic acid derivatives
WO1998035691A1 (en) * 1997-02-15 1998-08-20 Proscript, Inc. Treatment of infarcts through inhibition of nf-kappab
US6271199B2 (en) 1997-02-15 2001-08-07 Millennium Pharmaceuticals, Inc. Treatment of infarcts
US7700545B2 (en) * 1997-10-28 2010-04-20 The University Of North Carolina At Chapel Hill Use of NF-κB inhibition in combination therapy for cancer
US7700543B2 (en) * 1997-10-28 2010-04-20 The University Of North Carolina At Chapel Hill Use NF-κB inhibition in combination therapy for cancer
US7700073B2 (en) * 1997-10-28 2010-04-20 The University Of North Carolina At Chapel Hill Use of NF-κB inhibition in combination therapy for cancer
WO1999022729A1 (en) * 1997-10-31 1999-05-14 Centre De Recherche Du Centre Hospitalier De L'universite De Montreal The use of proteasome inhibitors for treating cancer, inflammation, autoimmune disease, graft rejection and septic shock
WO1999037666A1 (en) * 1998-01-26 1999-07-29 Cv Therapeutics, Inc. α-KETOAMIDE INHIBITORS OF 20S PROTEASOME
US6781000B1 (en) 1998-01-26 2004-08-24 Cv Theurapeutics, Inc. Alpha-ketoamide inhibitors of 20S proteasome
US6075150A (en) * 1998-01-26 2000-06-13 Cv Therapeutics, Inc. α-ketoamide inhibitors of 20S proteasome
US6773705B1 (en) * 1998-02-27 2004-08-10 General Hospital Corporation Methods for diagnosing and treating autoimmune disease
US6617171B2 (en) 1998-02-27 2003-09-09 The General Hospital Corporation Methods for diagnosing and treating autoimmune disease
FR2779653A1 (en) * 1998-06-11 1999-12-17 Inst Nat Sante Rech Med USE OF PROTEASOME MODULATING COMPOUNDS IN THERAPY
US6506555B1 (en) 1998-06-11 2003-01-14 Institut National De La Sante Et De La Recherche Medicale (Inserm) Use of HIV protease inhibiting compounds
WO1999063998A1 (en) * 1998-06-11 1999-12-16 Institut National De La Sante Et De La Recherche Medicale (Inserm) Novel use of hiv protease inhibiting compounds
EP0982317A1 (en) * 1998-08-26 2000-03-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Bivalent inhibitors of the proteasome
WO2000023614A1 (en) * 1998-10-20 2000-04-27 Millennium Pharmaceuticals, Inc. Method for monitoring proteasome inhibitor drug action
EP2251344B1 (en) 2001-01-25 2016-03-30 THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Formulation of boronic acid compounds
EP3078667B1 (en) 2001-01-25 2018-11-21 The United States of America, represented by the Secretary, Department of Health and Human Services Formulation of boronic acid compounds
EP3078667A1 (en) * 2001-01-25 2016-10-12 The United States of America, represented by the Secretary, Department of Health and Human Services Formulation of boronic acid compounds
WO2003033507A1 (en) * 2001-10-12 2003-04-24 Kyorin Pharmaceutical Co., Ltd. Benzylmalonic acid derivatives and proteasome inhibitors contaiing the same
WO2003059898A3 (en) * 2002-01-08 2004-02-26 Eisai Co Ltd Eponemycin and epoxomicin analogs and uses thereof
WO2003059898A2 (en) * 2002-01-08 2003-07-24 Eisai Co. Ltd. Eponemycin and epoxomicin analogs and uses thereof
US7524883B2 (en) 2002-01-08 2009-04-28 Eisai R&D Management Co., Ltd. Eponemycin and epoxomicin analogs and uses thereof
US8163733B2 (en) 2002-03-13 2012-04-24 Janssen Pharmaceutica N.V. Sulfonylamino-derivatives as novel inhibitors of histone deacetylase
US8501737B2 (en) 2002-03-13 2013-08-06 Janssen Pharmaceutica N.V. Piperazinyl-, piperidinyl- and morpholinyl-derivatives as novel inhibitors of histone deacetylase
US8394831B2 (en) 2002-03-13 2013-03-12 Janssen Pharmaceutica, N.V. Carbonylamino-derivatives as novel inhibitors of histone deacetylase
US8513237B2 (en) 2002-03-13 2013-08-20 Janssen Pharmaceutica N.V. Sulfonylamino-derivatives as novel inhibitors of histone deacetylase
US9150560B2 (en) 2002-03-13 2015-10-06 Janssen Pharmaceutica Nv Inhibitors of histone deacetylase
US9533979B2 (en) 2002-03-13 2017-01-03 Janssen Pharmaceutica Nv Amino-derivatives as novel inhibitors of histone deacetylase
US8916554B2 (en) 2002-03-13 2014-12-23 Janssen Pharmaceutica, N.V. Amino-derivatives as novel inhibitors of histone deacetylase
US8071615B2 (en) 2002-03-13 2011-12-06 Janssen Pharmaceutica N.V. Carbonylamino-derivatives as novel inhibitors of histone deacetylase
US9556161B2 (en) 2002-03-13 2017-01-31 Janssen Pharmaceutica Nv Inhibitors of histone deacetylase
US8114999B2 (en) 2002-03-13 2012-02-14 Janssen Pharmaceutica N.V. Aminocarbonyl-derivatives as novel inhibitors of histone deacetylase
WO2004016253A1 (en) * 2002-08-14 2004-02-26 Janssen Pharmaceutica N.V. Use of nf-kappa b inhibitors for the treatment of mastitis
US7371729B2 (en) 2002-09-09 2008-05-13 Trigen Limited Boronic acid salts useful in parenteral formulations
EP1466917A1 (en) * 2002-09-09 2004-10-13 Trigen Limited Method for making peptide boronic acids and acids obtainable thereby
US7112572B2 (en) 2002-09-09 2006-09-26 Trigen Limited Multivalent metal salts of boronic acids
CN100341880C (en) * 2003-02-13 2007-10-10 上海仁虎制药股份有限公司 Boric acid and boric acid ester compound ,their preparing method and use in pharmacy
US7576206B2 (en) 2003-08-14 2009-08-18 Cephalon, Inc. Proteasome inhibitors and methods of using the same
US8546608B2 (en) 2003-08-14 2013-10-01 Cephalon, Inc. Proteasome inhibitors and methods of using the same
KR101093880B1 (en) * 2003-08-14 2011-12-13 세파론, 인코포레이티드 Proteasome inhibitors and methods of using the same
US7223745B2 (en) 2003-08-14 2007-05-29 Cephalon, Inc. Proteasome inhibitors and methods of using the same
US9233115B2 (en) 2003-08-14 2016-01-12 Millennium Pharmaceuticals Inc. Proteasome inhibitors and methods of using the same
US8058262B2 (en) 2003-08-14 2011-11-15 Cephalon, Inc. Proteasome inhibitors and methods of using the same
US7915236B2 (en) 2003-08-14 2011-03-29 Cephalon, Inc. Proteasome inhibitors and methods of using the same
EP4008721A1 (en) * 2004-03-30 2022-06-08 Millennium Pharmaceuticals, Inc. Synthesis of boronic ester and acid compounds
WO2005097809A3 (en) * 2004-03-30 2006-02-16 Millennium Pharm Inc Synthesis of boronic ester and acid compounds
NO344610B1 (en) * 2004-03-30 2020-02-10 Millennium Pharm Inc Large scale process for the preparation synthesis of boronic acid ester and boronic acid compounds
NO20161350A1 (en) * 2004-03-30 2006-12-22 Millennium Pharm Inc Synthesis of Boronic Acid Esters and Acid Compounds
US10000529B2 (en) 2004-03-30 2018-06-19 Millennium Pharmaceuticals, Inc. Synthesis of boronic ester and acid compounds
EP2377868A1 (en) 2004-03-30 2011-10-19 Millennium Pharmaceuticals, Inc. Synthesis of Bortezomib
EP2377869A1 (en) * 2004-03-30 2011-10-19 Millennium Pharmaceuticals, Inc. Synthesis of Bortezomib
NO338905B1 (en) * 2004-03-30 2016-10-31 Millennium Pharm Inc Process for the preparation of boronic acid esters - compounds and preparations containing the same
US9862745B2 (en) 2004-03-30 2018-01-09 Millennium Pharmaceuticals, Inc. Synthesis of boronic ester and acid compounds
EA012927B1 (en) * 2004-03-30 2010-02-26 Миллениум Фармасьютикалз, Инк. Synthesis of boronic ester and acid compounds
US8324174B2 (en) 2004-04-15 2012-12-04 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8207124B2 (en) 2004-04-15 2012-06-26 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8207125B2 (en) 2004-04-15 2012-06-26 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8129346B2 (en) 2004-04-15 2012-03-06 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8207297B2 (en) 2004-04-15 2012-06-26 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8198270B2 (en) 2004-04-15 2012-06-12 Onyx Therapeutics, Inc. Compounds for proteasome enzyme inhibition
US8207127B2 (en) 2004-04-15 2012-06-26 Onyx Technologies, Inc. Compounds for enzyme inhibition
US8207126B2 (en) 2004-04-15 2012-06-26 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8088741B2 (en) 2004-05-10 2012-01-03 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US9636341B2 (en) 2004-07-28 2017-05-02 Janssen Pharmaceutica N.V. Substituted indolyl alkyl amino derivatives as novel inhibitors of histone deacetylase
US9150543B2 (en) 2004-07-28 2015-10-06 Janssen Pharmaceutica N. V. Substituted indolyl alkyl amino derivatives as inhibitors of histone deacetylase
EP2100899A2 (en) 2004-10-20 2009-09-16 Proteolix, Inc. Compounds for proteasome enzyme inhibition
WO2006077428A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
US8283367B2 (en) 2005-02-11 2012-10-09 Cephalon, Inc. Proteasome inhibitors and methods of using the same
US7531517B2 (en) 2005-08-10 2009-05-12 4Sc Ag Inhibitors of cancer cell, T-cell and keratinocyte proliferation
EP2284179A2 (en) 2005-08-10 2011-02-16 4Sc Ag Inhibitors of cancer cell, T-cell and keratinocyte proliferation
EP2284178A2 (en) 2005-08-10 2011-02-16 4Sc Ag Inhibitors of cancer cell, T-cell and keratinocyte proliferation
US10150794B2 (en) 2005-11-09 2018-12-11 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US9205124B2 (en) 2005-11-09 2015-12-08 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US9205126B2 (en) 2005-11-09 2015-12-08 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US9205125B2 (en) 2005-11-09 2015-12-08 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8114876B2 (en) 2006-01-19 2012-02-14 Janssen Pharmaceutica N.V. Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase
US9078896B2 (en) 2006-01-19 2015-07-14 Janssen Pharmaceutica, N.V. Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase
US8080576B2 (en) 2006-06-19 2011-12-20 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US9657058B2 (en) 2006-06-19 2017-05-23 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8431571B2 (en) 2006-06-19 2013-04-30 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8357683B2 (en) 2006-06-19 2013-01-22 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8080545B2 (en) 2006-06-19 2011-12-20 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
US8765745B2 (en) 2006-06-19 2014-07-01 Onyx Therapeutics, Inc. Compounds for enzyme inhibition
WO2008044045A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
WO2008044041A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
WO2009019505A2 (en) 2007-08-03 2009-02-12 Summit Corporation Plc Drug combinations for the treatment of duchenne muscular dystrophy
EP3251694A1 (en) 2007-08-03 2017-12-06 Summit (Oxford) Limited Drug combinations for the treatment of duchenne muscular dystrophy
WO2009019504A1 (en) 2007-08-03 2009-02-12 Summit Corporation Plc Drug combinations for the treatment of duchenne muscular dystrophy
US8003819B2 (en) 2007-08-06 2011-08-23 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
WO2009020448A1 (en) * 2007-08-06 2009-02-12 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
AU2007357338B2 (en) * 2007-08-06 2014-03-20 Takeda Pharmaceutical Company Limited Proteasome inhibitors
US8530694B2 (en) 2007-08-06 2013-09-10 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US8871745B2 (en) 2007-08-06 2014-10-28 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US7442830B1 (en) 2007-08-06 2008-10-28 Millenium Pharmaceuticals, Inc. Proteasome inhibitors
KR101831674B1 (en) * 2007-08-06 2018-02-23 밀레니엄 파머슈티컬스 인코퍼레이티드 Proteasome inhibitors
EP2527347A1 (en) * 2007-08-06 2012-11-28 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
EA028622B1 (en) * 2007-08-06 2017-12-29 Милленниум Фармасьютикалз, Инк. Proteasome inhibitors
US8772536B2 (en) 2007-08-06 2014-07-08 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
US7687662B2 (en) 2007-08-06 2010-03-30 Millennium Pharmaceuticals, Inc. Proteasome inhibitors
AU2018233007B2 (en) * 2007-08-06 2020-07-23 Takeda Pharmaceutical Company Limited Proteasome inhibitors
TWI511972B (en) * 2007-08-06 2015-12-11 Millennium Pharm Inc Proteasome inhibitors
US8367617B2 (en) 2007-10-04 2013-02-05 Onyx Therapeutics, Inc. Crystalline peptide epoxy ketone protease inhibitors and the synthesis of amino acid keto-epoxides
US8921324B2 (en) 2007-10-04 2014-12-30 Onyx Therapeutics, Inc. Crystalline peptide epoxy ketone protease inhibitors and the synthesis of amino acid keto-epoxides
US8921583B2 (en) 2007-10-04 2014-12-30 Onyx Therapeutics, Inc. Crystalline peptide epoxy ketone protease inhibitors and the synthesis of amino acid keto-epoxides
EP2318419B1 (en) 2008-06-17 2015-04-08 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
EP2730581B1 (en) 2008-06-17 2016-04-27 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
CN107266480A (en) * 2008-06-17 2017-10-20 米伦纽姆医药公司 Boric acid ester compound and its medical composition
US9175017B2 (en) 2008-06-17 2015-11-03 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
US9175018B2 (en) 2008-06-17 2015-11-03 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
EP2733147A1 (en) * 2008-06-17 2014-05-21 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
US8859504B2 (en) 2008-06-17 2014-10-14 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
US10526351B2 (en) 2008-06-17 2020-01-07 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
CN107253966A (en) * 2008-06-17 2017-10-17 米伦纽姆医药公司 Boric acid ester compound and its medical composition
US10604538B2 (en) 2008-06-17 2020-03-31 Millenium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
CN107253975A (en) * 2008-06-17 2017-10-17 米伦纽姆医药公司 Boric acid ester compound and its medical composition
US11485746B2 (en) 2008-06-17 2022-11-01 Millennium Pharmaceuticals, Inc. Boronate ester compounds and pharmaceutical compositions thereof
CN107266482A (en) * 2008-06-17 2017-10-20 米伦纽姆医药公司 Boric acid ester compound and its medical composition
US9771381B2 (en) 2008-09-29 2017-09-26 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclobutylethylboronic acid
US10035811B2 (en) 2008-09-29 2018-07-31 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclobutylethylboronic acid
KR101739470B1 (en) 2008-09-29 2017-05-24 밀레니엄 파머슈티컬스 인코퍼레이티드 Derivatives of 1-amino-2-cyclobutylethylboronic acid
US8664200B2 (en) 2008-09-29 2014-03-04 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclobutylethylboronic acid
US9511109B2 (en) 2008-10-21 2016-12-06 Onyx Therapeutics, Inc. Combination therapy with peptide epoxyketones
USRE47954E1 (en) 2008-10-21 2020-04-21 Onyx Therapeutics, Inc. Combination therapy with peptide epoxyketones
US10596222B2 (en) 2008-10-21 2020-03-24 Onyx Therapeutics, Inc. Combination therapy with peptide epoxyketones
WO2010105008A2 (en) 2009-03-12 2010-09-16 Genentech, Inc. Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents for the treatment of hematopoietic malignancies
US9051353B2 (en) 2009-03-20 2015-06-09 Onyx Therapeutics, Inc. Crystalline tripeptide epoxy ketone protease inhibitors
US9403868B2 (en) 2009-03-20 2016-08-02 Onyx Therapeutics, Inc. Crystalline tripeptide epoxy ketone protease inhibitors
WO2010106135A1 (en) 2009-03-20 2010-09-23 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Combined use for the treatment of ovarian carcinoma
WO2010145376A1 (en) * 2009-06-19 2010-12-23 北京大学 Tripeptide boronic acid or boronic ester, preparative method and use thereof
US9421237B2 (en) 2009-06-19 2016-08-23 Peking University Tripeptide boronic acid or boronic ester, preparative method and use thereof
WO2011029802A1 (en) 2009-09-08 2011-03-17 F. Hoffmann-La Roche Ag 4-substituted pyridin-3-yl-carboxamide compounds and methods of use
EP2305285A1 (en) 2009-09-29 2011-04-06 Julius-Maximilians-Universität Würzburg Means and methods for treating ischemic conditions
WO2011039282A1 (en) 2009-09-29 2011-04-07 Julius-Maximilians-Universität Würzburg Means and methods for treating ischemic conditions
US8853147B2 (en) 2009-11-13 2014-10-07 Onyx Therapeutics, Inc. Use of peptide epoxyketones for metastasis suppression
US8541590B2 (en) 2009-12-22 2013-09-24 Cephalon, Inc. Proteasome inhibitors and processes for their preparation, purification and use
US9359398B2 (en) 2010-03-01 2016-06-07 Onyx Therapeutics, Inc. Compounds for immunoproteasome inhibition
US9023832B2 (en) 2010-03-31 2015-05-05 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclopropylethylboronic acid
US8513218B2 (en) 2010-03-31 2013-08-20 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclopropylethylboronic acid
US8703743B2 (en) 2010-03-31 2014-04-22 Millennium Pharmaceuticals, Inc. Derivatives of 1-amino-2-cyclopropylethylboronic acid
WO2012048745A1 (en) 2010-10-14 2012-04-19 Synthon Bv Process for making bortezomib and intermediates for the process
US8884009B2 (en) 2010-10-14 2014-11-11 Synthon Bv Process for making bortezomib and intermediates for the process
US9561284B2 (en) 2011-03-31 2017-02-07 Nanocarrier Co., Ltd. Pharmaceutical composition containing a block copolymer bound to a boronic acid compound
WO2012133884A1 (en) 2011-03-31 2012-10-04 ナノキャリア株式会社 Pharmaceutical composition containing block copolymer comprising boric acid compound
KR20140038376A (en) 2011-03-31 2014-03-28 나노캬리아 가부시키가이샤 Pharmaceutical composition containing block copolymer comprising boric acid compound
US9114177B2 (en) 2011-11-17 2015-08-25 The University Of Tokyo Block copolymer having phenylboronic acid group introduced therein, and use thereof
US9878047B2 (en) 2012-07-09 2018-01-30 Onyx Therapeutics, Inc. Prodrugs of peptide epoxy ketone protease inhibitors
US9309283B2 (en) 2012-07-09 2016-04-12 Onyx Therapeutics, Inc. Prodrugs of peptide epoxy ketone protease inhibitors
US10682419B2 (en) 2012-07-09 2020-06-16 Onyx Therapeutics, Inc. Prodrugs of peptide epoxy ketone protease inhibitors
US9315542B2 (en) 2012-07-09 2016-04-19 Onyx Therapeutics, Inc. Prodrugs of peptide epoxy ketone protease inhibitors
US9505787B2 (en) 2012-09-11 2016-11-29 Cipla Limited Process for preparing of bortezomib
WO2014041324A1 (en) * 2012-09-11 2014-03-20 Cipla Limited Process for preparing of bortezamib
WO2015051067A1 (en) 2013-10-03 2015-04-09 Millennium Pharmaceuticals, Inc. Method for the prophylaxis or treatment of systemic lupus erythematosus and/or lupus nephritis
EP2910557A1 (en) * 2014-02-20 2015-08-26 Ikerchem, S.L. Enantiopure tetrasubstituted pyrrolidines as scaffolds for proteasome inhibitors and medicinal applications thereof
WO2015124663A1 (en) * 2014-02-20 2015-08-27 Ikerchem, S.L. Enantiopure tetrasubstituted pyrrolidines as scaffolds for proteasome inhibitors and medicinal applications thereof
US10993960B1 (en) 2014-05-08 2021-05-04 Kawasaki Institute Of Industrial Promotion Pharmaceutical composition
US11241448B2 (en) 2014-05-20 2022-02-08 Millennium Pharmaceuticals, Inc. Methods for cancer therapy
EP3120837A1 (en) 2015-07-22 2017-01-25 Stada Arzneimittel Ag Ready-to-use solution of bortezomib
EP4134069A1 (en) 2015-07-22 2023-02-15 STADA Arzneimittel AG Process for the preparation of a bortezomib ester solution
US11267803B2 (en) 2016-06-21 2022-03-08 Orion Ophthalmology LLC Carbocyclic prolinamide derivatives
US11377439B2 (en) 2016-06-21 2022-07-05 Orion Ophthalmology LLC Heterocyclic prolinamide derivatives
US11866422B2 (en) 2016-06-21 2024-01-09 Orion Ophthalmology LLC Carbocyclic prolinamide derivatives
WO2018038687A1 (en) 2016-08-22 2018-03-01 Mustafa Nevzat Ilaç Sanayii A.Ş. Pharmaceutical formulations comprising a bortezomib-cyclodextrin complex
WO2018150386A1 (en) 2017-02-17 2018-08-23 Fresenius Kabi Oncology Ltd. An improved process for the preparation of boronic acid esters
US11667654B2 (en) 2017-02-17 2023-06-06 Fresenius Kabi Oncology Ltd. Process for the preparation of boronic acid esters
WO2019040680A1 (en) 2017-08-23 2019-02-28 Krzar Life Sciences Immunoproteasome inhibitors and immunosuppressive agent in the treatment of autoimmune disorders
US11827656B2 (en) 2017-11-16 2023-11-28 Principia Biopharma Inc. Immunoproteasome inhibitors
WO2022123530A1 (en) * 2020-12-10 2022-06-16 주식회사 엘지화학 Boronic acid compound

Also Published As

Publication number Publication date
NZ296717A (en) 1999-11-29
DE122004000025I1 (en) 2004-09-30
NO971929L (en) 1997-06-12
CN101077875A (en) 2007-11-28
CN101077875B (en) 2011-01-26
US8003791B2 (en) 2011-08-23
IL137726A (en) 2004-08-31
DE122004000025I2 (en) 2006-09-07
US20150072942A1 (en) 2015-03-12
US20110306560A1 (en) 2011-12-15
MX9703063A (en) 1998-07-31
US6066730A (en) 2000-05-23
NO310558B1 (en) 2001-07-23
US8378099B2 (en) 2013-02-19
US20060122390A1 (en) 2006-06-08
FI114801B (en) 2004-12-31
AU710564B2 (en) 1999-09-23
DE69535866D1 (en) 2008-11-27
DK1312609T3 (en) 2006-05-15
US6465433B1 (en) 2002-10-15
ES2314540T3 (en) 2009-03-16
DE69534727D1 (en) 2006-02-02
LU91083I2 (en) 2004-08-09
DE69530936C5 (en) 2007-02-22
AU4139896A (en) 1996-05-23
EP0788360A1 (en) 1997-08-13
CN1305475C (en) 2007-03-21
NO2004004I2 (en) 2007-09-10
KR970706824A (en) 1997-12-01
IL115790A0 (en) 1996-01-19
US6297217B1 (en) 2001-10-02
US20040167332A1 (en) 2004-08-26
FR04C0014I1 (en) 2004-09-17
PT1312609E (en) 2006-05-31
DE69530936T3 (en) 2010-08-26
US20130310320A1 (en) 2013-11-21
US20070282100A1 (en) 2007-12-06
PT788360E (en) 2003-10-31
PT1627880E (en) 2009-01-23
ES2199257T7 (en) 2010-03-31
DE69530936T2 (en) 2004-02-26
US6747150B2 (en) 2004-06-08
FI971746A0 (en) 1997-04-23
ES2254803T3 (en) 2006-06-16
EP0788360B1 (en) 2003-05-28
ATE241631T1 (en) 2003-06-15
IL115790A (en) 2002-12-01
FI20041415A (en) 2004-11-03
EP0788360B3 (en) 2009-08-12
DK0788360T5 (en) 2017-09-18
ES2199257T3 (en) 2004-02-16
HK1087714A1 (en) 2006-10-20
JP3717934B2 (en) 2005-11-16
US7119080B2 (en) 2006-10-10
CY2484B1 (en) 2005-06-03
DE69530936D1 (en) 2003-07-03
KR100398944B1 (en) 2004-06-04
TW318850B (en) 1997-11-01
IL137726A0 (en) 2001-10-31
US6548668B2 (en) 2003-04-15
NL300151I1 (en) 2004-08-02
US20020173488A1 (en) 2002-11-21
US20080132678A1 (en) 2008-06-05
ATE411324T1 (en) 2008-10-15
DE69534727T2 (en) 2006-09-14
DK1627880T3 (en) 2008-12-08
US5780454A (en) 1998-07-14
CA2203936C (en) 2005-04-12
EP1627880A1 (en) 2006-02-22
NL300151I2 (en) 2004-09-01
FI971746A (en) 1997-06-06
US6083903A (en) 2000-07-04
US20030199561A1 (en) 2003-10-23
JPH10510245A (en) 1998-10-06
HK1002059A1 (en) 1998-07-31
IL133831A0 (en) 2001-04-30
US6617317B1 (en) 2003-09-09
LU91083I9 (en) 2018-12-28
EP1312609B1 (en) 2005-12-28
ATE314378T1 (en) 2006-01-15
CA2496538A1 (en) 1996-05-09
DK0788360T3 (en) 2003-09-22
EP1997823A1 (en) 2008-12-03
FR04C0014I2 (en) 2005-05-21
NZ337211A (en) 2000-12-22
US7531526B2 (en) 2009-05-12
CA2496538C (en) 2011-08-02
EP1312609A1 (en) 2003-05-21
CN1168633A (en) 1997-12-24
CA2203936A1 (en) 1996-05-09
NO2004004I1 (en) 2004-08-06
EP0788360A4 (en) 1998-05-06
AU710564C (en) 1996-05-23
CH0788360H1 (en) 2006-03-15
US20090247731A1 (en) 2009-10-01
EP1627880B1 (en) 2008-10-15
NO971929D0 (en) 1997-04-25
FI120974B (en) 2010-05-31
IL133831A (en) 2004-03-28

Similar Documents

Publication Publication Date Title
AU710564C (en) Boronic ester and acid compounds, synthesis and uses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95196590.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 296717

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 971746

Country of ref document: FI

ENP Entry into the national phase

Ref document number: 2203936

Country of ref document: CA

Ref document number: 2203936

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970702789

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995939670

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995939670

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970702789

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995939670

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970702789

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20041415

Country of ref document: FI

WWG Wipo information: grant in national office

Ref document number: 971746

Country of ref document: FI