USRE46562E1 - Vascular image co-registration - Google Patents

Vascular image co-registration Download PDF

Info

Publication number
USRE46562E1
USRE46562E1 US14/727,617 US201514727617A USRE46562E US RE46562 E1 USRE46562 E1 US RE46562E1 US 201514727617 A US201514727617 A US 201514727617A US RE46562 E USRE46562 E US RE46562E
Authority
US
United States
Prior art keywords
image
intravascular
image data
radiopaque marker
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/727,617
Inventor
R. Scott Huennekens
Stephen M. Fry
Blair D. Walker
Jon D. Klingensmith
Nancy Perry Pool
Vincent J. Burgess
William R. Kanz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Image Guided Therapy Corp
Original Assignee
Volcano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volcano Corp filed Critical Volcano Corp
Priority to US14/727,617 priority Critical patent/USRE46562E1/en
Application granted granted Critical
Publication of USRE46562E1 publication Critical patent/USRE46562E1/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4494Means for identifying the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements

Definitions

  • the present invention generally relates to imaging blood vessels. More particularly, the present invention is directed to methods and systems for generating composite displays relating a first image rendered from a first type of data and a second image rendered from a second type of data.
  • a particular example of such composite display comprises an angiogram displayed along-side an IVUS image.
  • vascular diseases including vessel lumen narrowing, usually due to atherosclerotic plaque, can lead to reduced blood flow to a heart muscle, angina (chest pain) and myocardial infarction—a heart attack.
  • interventional treatments of cardiovascular disease are presently available to identify and treat such narrowing of a vessel lumen. Examples of such treatments include balloon angioplasty and/or deployment of stents.
  • Diagnostic imaging is utilized to identify the extent and/or type of blockages within vessels prior to and/or during the treatment of such blockages. Diagnostic imaging enables doctors to ensure proper treatment of diseased vessels and verify the efficacy of such treatment.
  • a first manner of diagnostic imaging involves generating a radiological image of a stream flowing through a blood vessel's lumen from outside the vessel lumen.
  • the purpose of generating an image of such flow is to identify blockages within diseased blood vessels that restrict blood flow.
  • the extent of a vessel's lumen is traditionally imaged using angiography, which involves rendering a two-dimensional view of one or more vessels within a portion of a patient's vasculature through which radiopaque contrast media has been injected.
  • the two-dimensional angiographic image can also be viewed real time by fluoroscopy.
  • the images are potentially captured in various digital media, or in cine angiography (cine).
  • cine angiography though rendering higher quality images of blood vessel lumens, exposes patients to high levels of ionizing radiation.
  • Fluoroscopy generally using substantially less intense radiation than angiography, is used by physicians primarily to visually guide diagnostic and therapeutic catheters or guidewires, including one or more radiopaque markers, through vessels.
  • the radiation intensity during fluoroscopy is typically one-tenth the intensity of radiation to which a patient is exposed during cine angiography.
  • Many catheters have radiopaque markers that are viewable on a fluoroscope, thereby enabling a physician to track the location/path of such catheters as they are inserted within and/or withdrawn from patients.
  • the platinum spring coil of guidewires also serves as a radiopaque marker. The lower radiation intensity of fluoroscopy allows a greater duration of use during a diagnostic/treatment procedure.
  • the first manner of imaging has a number of drawbacks.
  • limited flow of contrast media near vessel walls and extreme variations in vessel cross-sections can result in incomplete filling of the vessel with a sufficient concentration of contrast media.
  • the diameters of vessel segments can be misrepresented in an angiographic image.
  • a left main coronary artery cross-section is often underestimated by angiography. This can be problematic when attempting to judge the significance of a blockage within the vessel or when choosing the size of the treatment balloon or stent. An under-sized balloon or stent will not provide as effective treatment as a properly sized device.
  • a vessel's cross-section is determined by a two-dimensional view which may not accurately represent an actual extent of blood vessel narrowing.
  • angiography is ineffective in determining the target diameter of a vessel with disease along its entire length. For example, since vessels tend to taper in diameter along their length, a uniformly narrowed vessel may appear normal in an angiographic image.
  • angiography does not facilitate differentiating between different types of tissue found in atherosclerotic plaque. For example, in coronary arteries prone to producing a heart attack, necrotic tissue is thought to be more prevalent than purely fibrous tissue. Thus, while providing a good way to identify severe blockages, angiography is not always the best diagnostic imaging tool due to the incomplete nature of the angiographic image data.
  • the second manner of intravascular imaging comprises imaging the vessel itself using a catheter-mounted intravascular probe.
  • Intravascular imaging of blood vessels provides a variety of information about the vessel including: the cross-section of the lumen, the thickness of deposits on a vessel wall, the diameter of the non-diseased portion of a vessel, the length of diseased sections, and the makeup of the atherosclerotic plaque on the wall of the vessel.
  • IVUS intravascular ultrasound
  • MRI magnetic resonance imaging
  • OCT optical coherence tomography
  • thermography catheters and palpography catheters have also been demonstrated to generate vessel image data via intravascular probes.
  • Other catheter modalities include infrared or near-infrared imaging.
  • these intravascular catheter-mounted probes are moved along a vessel in the region where imaging is desired.
  • sets of image data are obtained that, correspond to a series of “slices” or cross-sections of the vessel, the lumen, and surrounding tissue.
  • the catheters include radiopaque markers. Such markers are generally positioned near a distal catheter tip. Therefore, the approximate location of the imaging probe can be discerned by observing the catheterization procedure on either a fluoroscope or angiographic image.
  • imaging catheters are connected to a dedicated console, including specialized signal processing hardware and software, and display. The raw image data is received by the console, processed to render an image including features of concern, and rendered on the dedicated display device.
  • IVUS images used to diagnose/treat vascular disease generally comprise sets of cross-sectional image “slices” of a vessel.
  • a grayscale cross-sectional slice image is rendered, at each of a set of positions along the vessel based upon the intensity of ultrasound echoes received by an imaging probe.
  • Calcium or stent struts, which produce relatively strong echoes, are seen as a lighter shade of gray.
  • Blood or vessel laminae, which produce weaker echoes, are seen as a darker shade of gray.
  • Atherosclerotic tissue is identified as being the portion of a cross-sectional image between an internal elastic lamina (IEL) and an external elastic lamina (EEL).
  • IEL internal elastic lamina
  • EEL external elastic lamina
  • Advanced IVUS images have also been described which perform tissue characterization and denote different types of tissue with a color code.
  • One such modality is described in Vince, U.S. Pat. No. 6,200,268.
  • the other catheters mentioned above display a series of cross-sectional images from which additional information can be obtained.
  • Catheter-mounted probes and in particular, IVUS probes can be configured to render a variety of two and three-dimensional images.
  • a longitudinal planar image can be constructed from a plane which cuts through a “stack” of cross-section “slices”.
  • three-dimensional “fly-through” images can be constructed from information in a series of cross-sectional slices of a vessel. Though these three-dimensional images can be visually spectacular, the two dimensional angiography image remains the primary basis for determining the location of a catheter in a vessel, and the “schematic” reference through which the physician plans and carries out a treatment procedure.
  • an angiographic image provided on a different display monitor than a corresponding IVUS image presents challenges to a obtaining a comprehensive understanding of a state of a diseased vessel.
  • a physician identifies specific structures (e.g. feeder vessels) in cross-sectional images in order to determine a location on a vessel presented on an angiography display that needs to be treated.
  • Coordinating images rendered by two distinct display devices can become cumbersome as the physician refers back and forth between two different screens on two distinct display devices.
  • a known visualization display simultaneously provides an angiogram, an IVUS transverse plane view, and an IVUS longitudinal plane view.
  • a red dot is placed upon the angiogram corresponding to a currently displayed IVUS transverse plane view.
  • a blue line is placed upon the angiogram corresponding to a currently displayed longitudinal plane view.
  • the reference dot and line are only as valuable as the accuracy of the process that registers their positions on the angiogram.
  • a system and method include a single display simultaneously providing a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member.
  • a cursor having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image.
  • the resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
  • FIG. 1 is a schematic illustration of a system for implementing catheter image co-registration
  • FIG. 2 depicts an illustrative angiogram image
  • FIG. 3 depicts an illustrative fluoroscopic image of a radiopaque marker mounted upon a catheter
  • FIG. 4 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image
  • FIG. 5 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest;
  • FIG. 6 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest with a marker positioned at a different location than the view of FIG. 5 ;
  • FIG. 7 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest and a reference mark providing a point of synchronization/calibration of a marker position;
  • FIG. 8 depicts an illustrative catheter distal end including a single cylindrical radiopaque marker band
  • FIG. 9a depicts a radiopaque marker band 900 , suitable for use in an exemplary embodiment, that partially encircles the catheter shaft;
  • FIG. 9b depicts an imaging catheter having two of the radiopaque marker bands of the type depicted in FIG. 9a wherein the two bands are skewed by a quarter rotation along the axis of the catheter;
  • FIG. 9c depicts the imaging catheter of 9 b from a view that looks directly on the full surface of the distal marker band 920 ;
  • FIG. 9d depicts the imaging catheter of 9 c at a view wherein the catheter is axially rotated 90 degrees from the position depicted in FIG. 9c ;
  • FIG. 9e depicts the imaging catheter at a different rotational position from FIG. 9c and FIG. 9d ;
  • FIG. 10 depicts an illustrative display for co-registration of radiological and hemodynamic image information
  • FIG. 11 is a flowchart summarizing a set of steps for rendering and displaying a co-registered view during a data acquisition procedure.
  • FIG. 12 is a flowchart summarizing a set of steps for rendering and displaying a co-registered view during playback of previously acquired image data.
  • a method and system are described by way of example herein below including image data acquisition equipment and data/image processors that generate views on a single display that simultaneously provides positional information and intravascular images associated with a imaging probe (e.g., an IVUS transducer probe) mounted upon a flexible elongate member (e.g, a catheter, guidewire, etc.).
  • a imaging probe e.g., an IVUS transducer probe
  • a flexible elongate member e.g, a catheter, guidewire, etc.
  • FIG. 1 an exemplary system is schematically depicted for carrying out the present invention in the form of co-registration of angiogram/fluoroscopy and intravascular ultrasound images.
  • the radiological and ultrasound image data acquisition sub-systems are generally well known in the art.
  • a patient 10 is positioned upon an angiographic table 12 .
  • the angiographic table 12 is arranged to provide sufficient space for the positioning of an angiography/fluoroscopy unit c-arm 14 in an operative position in relation to the patient 10 on the table 12 .
  • Radiological image data acquired by the angiography/fluoroscopy c-arm 14 passes to an angiography/fluoroscopy processor 18 via transmission cable 16 .
  • the angiography/fluoroscopy processor 18 converts the received radiological image data received via the cable 16 into angiographic/fluoroscopic image data.
  • the angiographic/fluoroscopic (“radiological”) image data is initially stored within the processor 18 .
  • an imaging catheter 20 is inserted within the patient 10 so that its distal end, including a diagnostic probe 22 (in particular an IVUS probe), is in the vicinity of a desired imaging location of a blood vessel.
  • a diagnostic probe 22 in particular an IVUS probe
  • a radiopaque material located near the probe 22 provides indicia of a current location of the probe 22 in a radiological image.
  • the diagnostic probe 22 generates ultrasound waves, receives ultrasound echoes representative of a region proximate the diagnostic probe 22 , and converts the ultrasound echoes to corresponding electrical signals.
  • the corresponding electrical signals are transmitted along the length of the imaging catheter 20 to a proximal connector 24 .
  • IVUS versions of the probe 22 come in a variety of configurations including single and multiple transducer element arrangements.
  • an array of transducers is potentially arranged: linearly along a lengthwise axis of the imaging catheter 20 , curvilinearly about the lengthwise axis of the catheter 20 , circumferentially around the lengthwise axis, etc.
  • the proximal connector 24 of the catheter 20 is communicatively coupled to a catheter image processor 26 .
  • the catheter image processor 26 converts the signals received via the proximal connector 24 into, for example, cross-sectional images of vessel segments. Additionally, the catheter image processor 26 generates longitudinal cross-sectional images corresponding to slices of a blood vessel taken along the blood vessel's length.
  • the IVUS image data rendered by the catheter image processor 26 is initially stored within the processor 26 .
  • the type of diagnostic imaging data acquired by the diagnostic probe 22 and processed by the catheter image processor 26 varies in accordance with alternative embodiments of the invention.
  • the diagnostic probe 22 is equipped with one or more sensors (e.g., Doppler and/or pressure) for providing hemodynamic information (e.g., blood flow velocity and pressure)—also referred to as functional flow measurements.
  • hemodynamic information e.g., blood flow velocity and pressure
  • functional flow measurements are processed by the catheter image processor 26 .
  • image is intended to be broadly interpreted to encompass a variety of ways of representing vascular information including blood pressure, blood flow velocity/volume, blood vessel cross-sectional composition, shear stress throughout the blood, shear stress at the blood/blood vessel wall interface, etc.
  • a co-registration processor 30 receives IVUS image data from the catheter image processor 26 via line 32 and radiological image data from the radiological image processor 18 via line 34 . Alternatively, the communications between the sensors and the processors are carried out via wireless media.
  • the co-registration processor 30 renders a co-registration image including both radiological and IVUS image frames derived from the received image data.
  • indicia e.g., a radiopaque marker artifact
  • the co-registration processor 30 initially buffers angiogram image data received via line 34 from the radiological image processor 18 in a first portion 36 of image data memory 40 .
  • IVUS and radiopaque marker image data received via lines 32 and 34 is stored within a second portion 38 and a third portion 42 , respectively, of the image data memory 40 .
  • the individually rendered frames of stored image data are appropriately tagged (e.g., time stamp, sequence number, etc.) to correlate IVUS image frames and corresponding radiological (radiopaque marker) image data frames.
  • the hemodynamic data is stored within the second portion 38 .
  • markers can be placed on the surface of the patient or within the vicinity of the patient within the field of view of the angiogram/fluoroscope imaging device. The locations of these markers are then used to position the radiopaque marker artifact upon the angiographic image in an accurate location.
  • the co-registration processor 30 renders a co-registration image from the data previously stored within the first portion 36 , second portion 38 and third portion 42 of the image data memory 40 .
  • a particular IVUS image frame/slice is selected from the second portion 38 .
  • the co-registration processor 30 identifies fluoroscopic image data within the third portion 42 corresponding to the selected IVUS image data from the second portion 38 .
  • the co-registration processor 30 superimposes the fluoroscopic image data from the third portion 42 upon the angiogram image frame retrieved from the first portion 36 .
  • the co-registered radiological and IVUS image frames are simultaneously displayed, along-side one another, upon a graphical display device 50 .
  • the co-registered image data frames driving the display device 50 are also stored upon a long-term storage device 60 for later review in a session separate from a procedure that acquired the radiological and IVUS image data stored in the image data memory 40 .
  • a pullback device is incorporated that draws the catheter 20 from the patient at a controlled/measured manner.
  • Such devices are well known in the art. Incorporation of such devices facilitates calculating a current position of the probe 22 within a field of view at points in time when fluoroscopy is not active.
  • the angiography/fluoroscopy processor 18 captures an angiographic “roadmap” image 200 in a desired projection (patient/vessel orientation) and magnification.
  • the image 200 is initially captured by an angiography procedure performed prior to tracking the IVUS catheter to the region of interest within a patient's vasculature.
  • Performing the angiography procedure without the catheter 20 in the vessel provides maximal contrast flow, better vessel filling and therefore a better overall angiogram image.
  • side branches such as side branch 210 and other vasculature landmarks can be displayed and seen clearly on the radiological image portion of a co-registered image displayed upon the graphical display device 50 .
  • the catheter 20 is tracked to its starting position (e.g., a position where an IVUS pullback procedure begins). Typically the catheter 20 is tracked over a previously advanced guidewire (not shown). Thereafter, a fluoroscopic image is obtained. In the image, the catheter radiopaque marker 300 is visualized, but the vessel lumen is not, due to the absence of contrast flow. However, a set of locating markers present in both the angiogram and fluoroscopy images enable proper positioning (superimposing) of the marker image within the previously obtained angiogram image. Other ways of properly positioning the radiopaque marker image within the field of view of the angiogram image will be known to those skilled in the art in view of the teachings herein.
  • the marker artifact can be automatically adjusted (both size and position) on the superimposed image frames to correspond to the approximate position of the transducers.
  • the result of overlaying/superimposing the radiopaque marker artifact upon the angiogram image is depicted, by way of example in an exemplary co-registration image depicted in FIG. 4 .
  • the exemplary co-registration display 401 depicts a selected cross-sectional IVUS image 400 of a vessel.
  • a radiological image 410 is simultaneously displayed along-side the IVUS image 400 on the display 50 .
  • the radiological image 410 includes a marker artifact 420 , generated from radiological image data rendered by a fluoroscope image frame, superimposed on an angiogram background rendered from the first portion 36 of the memory 40 .
  • the fluoroscope image frame corresponds to the current location of the diagnostic probe 22 within a vessel under observation.
  • Precise matching of the field of view represented in both the angiogram and fluoroscope images allows identification of the current position of the IVUS probe corresponding to the displayed IVUS image 400 in the right pane of the co-registered images displayed in FIG. 4 .
  • the composite radiological image 410 is obtained in one step.
  • the original roadmap angiogram image is obtained with the catheter already in its starting position.
  • the angiogram image is reused as the IVUS probe is withdrawn from the vessel.
  • the system also takes heart motion into account when generating/acquiring the radiological and IVUS image data.
  • heart motion is much less a factor and good overlay correlation exists between the angiogram and fluoroscope fields of view.
  • the peak R-wave is selected because it represents end-diastole, during which the heart has the least amount of motion, and thus, a more consistent condition from which to obtain the radiological image data.
  • the peak R-wave is also an easy point in the EKG for the system to detect.
  • the cross-sectional image 400 from the IVUS catheter is displayed in tandem with the enhanced radiological image 410 including both the angiogram background and the superimposed marker artifact 420 .
  • the enhanced radiological image 410 and the cross-sectional IVUS image 400 are displayed close to (e.g., along side) each other on the display 50 , so that the operator can concentrate on the information in the cross-sectional image 400 while virtually simultaneously observing the status of the enhanced radiological image 410 .
  • the simultaneous display of both the composite/enhanced radiological image and the cross-sectional image allows instant awareness of both disease state of a vessel segment and the location of the vessel segment within a patient.
  • Such comprehensive information is not readily discernable in a three dimensional flythrough image or a stacked longitudinal image. Neither flythrough nor stacked images alone allows for the simultaneous appreciation of 1) all of the information in a cross-section, 2) a feel for the shape of the vessel and 3) the location of the cross-section along the length of the vessel.
  • the above-described “co-registration” of enhanced angiographic (including the marker artifact) and intravascular cross-sectional images/information delivers all three of these items in a presentation that is straight forward to an operator with even average visual and spatial abilities.
  • the co-registration display is presented, by way of example, either on an IVUS console display, or the co-registration display is presented on one or more angiographic monitors, either in the room where the procedure is occurring or in a remote location.
  • one monitor over the table in the procedure room allows the attending physician to view the procedure, while at the same time a second consulting physician who has not scrubbed for the case is also able to view the case via a second monitor containing the co-registration display from a separate control room. Control room viewing is also possible without having to wear leaded covering.
  • a single angiogram image is, by way of example, obtained/generated and stored in the first portion 36 of the memory 40 for a given procedure/patient position. If the field of view changes or the patient's position changes, then an updated background angiogram image is generated and stored in the first portion 36 .
  • the background angiogram image is live or continuously updated, for example, at each additional step in which angiography is performed.
  • the projection of the angiogram roadmap/background image portion of the enhanced radiological image 410 is preferably in an orientation and magnification that best displays the entire vessel to be viewed, taking into account the foreshortening that is present in a tortuous/winding vessel.
  • two roadmap images or even two enhanced radiological images 410
  • Such multiple views are provided in the context of biplane angiography.
  • Establishing a position for the marker artifact within the field of the enhanced radiological image, based at least in part upon a radiopaque marker on the imaging catheter 20 is achievable in a variety of ways. Examples, described further herein below include: user-specified points (by clicking at a position near the marker to establish a point); image pattern recognition (automatic identification of a marker's unique signature within a field of view); and combinations of manual and automated calculations of a path.
  • Enhancing the background/roadmap angiogram image to render the image 410 is achieved in a number of different ways.
  • the marker artifact 420 (derived from a fluoroscope image of a radiopaque marker near the probe 22 mounted on the distal end of the catheter 20 ) is superimposed upon/overlays the angiogram/roadmap background of the enhanced radiological image 410 .
  • the live/marker artifact portion of the image 410 requires that fluoroscopy be performed the entire time of catheter movement (e.g. pullback)
  • the marker artifact is displayed on the image 410 only during those periods when the fluoroscope is active. When the fluoroscope is inactive, only the background angiogram is presented on the enhanced image 410 of the display 50 .
  • the co-registration processor 30 calculates an approximate location of the radiopaque marker based upon its last registered position and other indicators of catheter movement (e.g., pullback distance sensors/meters). The approximate location is utilized in place of the radiopaque marker image to render a marker artifact 520 on an enhanced radiological image 510 displayed along-side a corresponding IVUS cross-sectional image 500 within a display 501 .
  • the marker artifact 520 's position is calculated by software/hardware within the co-registration processor 30 from sensor data indicative of a current/changed location of the radiopaque marker within the current image field provided by the current background angiogram image.
  • a visual characteristic e.g., color, symbol, intensity, etc.
  • both the displacement and angular orientation of the marker are determined to render accurate approximations of the current position of the diagnostic probe 22 within a vessel as it acquires data for generating the image 500 .
  • a calculated path 550 / 650 is determined by the co-registration processor 30 within displays 501 / 601 .
  • a marker artifact 520 / 620 is placed on top of the calculated path 550 / 650 .
  • the marker artifact 520 / 620 is superimposed on the angiogram image at a location calculated from non-visual position data (e.g., pullback distance, spatial position sensors, angular orientation sensors, etc.).
  • the cursor can be placed by the system at a distance from the initial location along the calculated path 550 / 650 that represents the product of the pullback rate and the time period. Furthermore, each subsequent time that a fluoroscope is activated and an image of the radiopaque marker is acquired and presented to the co-registration processor 30 , an error between the actual radiopaque marker location and a current calculated marker artifact 520 / 620 location is eliminated by replacing the calculated position by a position calculated by the radiopaque marker image.
  • the error between the corrected position and the calculated location of the marker artifact 520 / 620 is determined.
  • the error/total travel distance ratio is used as a scaling factor to recalculate and adjust all previously calculated/rendered/presented marker artifact overlay positions on the rendered/stored copies of the enhanced radiological image 510 / 610 for the entire preceding period in which the fluoroscope has been inactive.
  • a re-calculation can also update a shape of the calculated path 550 / 560 curve.
  • the calculated path 550 / 650 is shown as a curve that matches the tortuosity of a vessel through which the probe 22 passes—represented by a center line through the displayed vessel.
  • the catheter paths within vessels take a straighter and shorter path than the centerline of a blood vessel when pulled through such vessel. If, however, the catheter is being translated by pushing, instead of pulling, the calculated path 550 / 650 more closely matches the curvature of the vessel, or even exaggerates the tortuosity of the vessel by taking a longer path.
  • a multiplication coefficient (e.g., 1.05 for pushing, 0.95 for pulling) can be introduced when calculating a path based upon this general observation of the path taken by a probe as it is pushed/pulled through a vessel.
  • the path can alternatively be calculated from two different angiographic images taken at different projections (planes). This allows a three dimensional angiographic image, from which a true centerline can be calculated.
  • the operator creates a reference mark 760 at one or more points on a calculated path 750 .
  • the reference mark 760 serves a variety of potential uses.
  • the reference mark 760 potentially serves as a benchmark (location synchronization point) for updating position of a marker artifact 720 within the enhanced radiological image 710 .
  • the co-registration processor 30 waits for manual input of the reference mark 760 location information prior to proceeding with calculations.
  • the user creates the reference mark 760 which coincides with a marker artifact 720 rendered from image data provided by a fluoroscope of a field of view containing a radiopaque marker.
  • the reference mark 760 which potentially persists beyond its initial entry period, is distinguished from the marker artifact 720 which follows the current/estimated position of the probe 22 .
  • the reference mark is used to highlight/mark actual positions of the probe 22 (rendered by a fluoroscope image of a radiopaque marker) as opposed to estimated points on a calculated point (e.g. points on a path e.g., 550 / 560 ) from merely calculated position estimates upon the paths 550 / 560 .
  • the reference mark 760 is used to highlight a particular point of interest during a diagnostic/treatment procedure.
  • a bookmark is placed within a series of cross-sectional images associated with the IVUS image 700 portion of the display 701 . The bookmark allows quick access to a particular archived image frame corresponding to the reference mark 760 in the display 701 .
  • a user interface associated with the displayed images provided in FIGS. 4-7 includes a “slider” control that allows an operator to track through a series of stored frames representing sequentially acquired data along a traversed path within a vessel.
  • the slider control can be a set of arrows on a keyboard, a bar/cursor displayed upon an enhanced radiological image that can be manipulated by an operator, during playback, using a mouse or other user interface device to traverse a vessel segment, etc.
  • a display similar to FIG. 7 is rendered by the co-registration processor 30 during playback of a previous data acquisition session.
  • a cursor similar to the reference mark 760 is displayed during playback on the enhanced radiological image 710 .
  • a user selects and drags the cursor along a path similar to the calculated path 750 .
  • the co-registration processor 30 acquires and presents corresponding co-registered images. The user sequentially proceeds through the stored images using, by way of example, arrow keys, mouse buttons, etc.
  • a single radiopaque marker band 800 is attached to the catheter 820 near an IVUS probe.
  • the radiopaque band 800 includes a proximal edge 802 and a distal edge 804 .
  • the band 800 is cylindrical, with the diameter at the proximal edge 802 equal to the diameter at the distal edge 804 .
  • the band 800 has a known length.
  • the processor 26 Upon connection of the proximal connector 24 of the catheter 20 into an outlet on the catheter image processor 26 (or an interposed patient interface module which is communicatively connected to the processor 26 ), the processor 26 receives identification information from the catheter 20 via EPROM, RFID, optical reader or any other appropriate method for identifying the catheter 20 .
  • the catheter length and diameter dimensions (or dimension ratio) are included in the received identification information.
  • image field information such as magnification and/or projection angle
  • the co-registration processor 30 By identifying four points at the corners of an approximate four-sided polygon of the marker band image, the co-registration processor 30 automatically calculates foreshortening of a vessel in an enhanced radiological image view and the true length of a segment of a calculated path.
  • FIGS. 9a-e a catheter 920 carries two marker bands having a known linear separation distance that facilitates making the calculations described herein above with reference to FIG. 8 .
  • FIG. 9a shows a radiopaque marker band 900 , suitable for use in an exemplary embodiment, that partially encircles the catheter shaft; In the exemplary embodiment, the marker band 900 extends about 180° (one half) of the perimeter of the catheter shaft.
  • the band is potentially made, for example, of 100% Platinum, or 90% Platinum/10% Irridium, Tantalum, Gold or any other radiopaque materials or combinations/amalgams thereof.
  • FIG. 9b shows an imaging catheter 20 having two of the radiopaque marker bands 910 and 920 of the type depicted in FIG. 9a .
  • the proximal band 910 is skewed 90° (a quarter of the circumference of the catheter 20 ) in relation to the distal band 920 .
  • the bands 910 / 920 are shown equally spaced on opposite sides of the diagnostic probe 22 .
  • This catheter 20 also has a guidewire lumen 930 for passing a guidewire, for example a 0.014′′ guidewire.
  • the guidewire exits out the distal guidewire port.
  • the proximal end of the guidewire can exit a proximal port either within the blood vessel (short lumen rapid exchange catheter), within a guiding catheter (long lumen rapid exchange catheter) or outside of the patient (over-the-wire catheter).
  • FIG. 9c shows the imaging catheter 20 from a view that looks directly on the full surface of the distal marker band 920 . Exactly one half of the proximal marker band 910 , skewed by 90 degrees, is seen.
  • An angiography image of the two marker bands when viewed as shown in FIG. 9c reveals band 920 having a thickness that is twice the thickness of the image of the band 910 .
  • an image length “L” of the marker bands 910 / 920 depends on angular position of the portion of the catheter 20 in the image containing the bands 910 / 920 . In a perfect side view, the length L is equal to the actual length of the marker band.
  • Offset O is equal to the difference between the thickness of band 920 and the thickness of band 910 .
  • FIG. 9d an image is taken at a view wherein the catheter 20 is axially rotated 90 degrees from the position depicted in FIG. 9c .
  • the thickness of band 920 is half the thickness of band 910 .
  • the position of the relative positions of the bands 910 / 920 in relation to the axis of the catheter 20 is used to determine the actual angular orientation of the catheter 20 since the offset alone is not enough to establish a current rotational position of the catheter 20 .
  • FIG. 9e is an image of the catheter 20 and bands 910 / 910 at a different rotational position from FIG. 9c and FIG. 9d .
  • the orientation of the catheter can be determined by comparing the relative thicknesses (e.g., the offset, a ratio) of the thickness of images of the bands 910 and 920 .
  • co-registration processor 30 facilitates performing a variety of additional tasks. For example, during a catheter pullback, a commenting functionality incorporated into the processor 30 enables a user to select a “bookmark” button. In response, the co-registration processor 30 attaches a note/comment to a specific cross-section and/or location along a calculated path on an enhanced radiological image.
  • an alternative version of co-registration image scheme incorporates biplane angiography instead of standard, single view angiography images.
  • biplane angiography two radiological projections are simultaneously presented to a user—e.g., two views skewed by 90 degrees on a common axis of rotation.
  • two enhanced radiological images are presented along-side a cross-sectional image.
  • marker artifact (cursor) position is determined by calculations in relation to a known pullback rate, two cursor positions are determined—one on each of the two enhanced radiological images.
  • the foreshortening of the vessel seen on one biplane image is less than the other.
  • the opposite biplane image would have less foreshortening at other periods where a marker artifact is based upon calculations rather than actual fluoroscope images.
  • the errors are calculated independently in the two different biplane images, and corresponding scaling factors are generated for the correction.
  • a derived 3-dimensional road-map is created based on information of the two images from different planes. In this case, the two different planes are the 90° biplane images Locating a marker artifact on a derived 3-D image is calculated from locations of marker artifacts one each of two orthogonal biplane images.
  • an enhanced radiological image can be combined with a longitudinal stack instead of a cross sectional slice—in fact, the enhanced radiological, transverse cross-sectional, and longitudinal cross-sectional images can be displayed together.
  • the enhanced radiological image is presented along-side an IVUS image including both grayscale and color image artifacts that characterizing tissue and deposits within a vessel.
  • the longitudinal IVUS grayscale image and/or the color (Virtual Histology) image are overlaid on the 2-D angiographic image or derived 3-D image.
  • an exemplary co-registration display 1001 rendered by the co-registration processor 30 includes an enhanced radiological image 1010 displayed along-side functional flow measurement values presented in a graph 1000 .
  • functional flow reserve FFR
  • the enhanced radiological image 1010 comprises a marker artifact 1020 superimposed upon an angiogram image.
  • the marker artifact 1020 indicates the point at which the presently displayed functional flow measurements are being presented based upon measurements previously acquired by sensors/transducers on the probe 22 mounted at the distal end of a flexible elongate member such as a guidewire or the catheter 20 .
  • the co-registration image further includes an IVUS cross-sectional image (not depicted) corresponding to the vessel segment indicated by the marker artifact 1020 on the enhanced radiological image 1010 .
  • the display also includes a variety of additional text information associated with the section of the vessel identified by the marker artifact 1020 .
  • Vessel dimensions 1030 specify an approximate diameter and lumen area of a particular cross section indicated by the marker artifact 1020 's current position on the enhanced radiological image 1010 .
  • IVUS information 1040 specify a plaque burden percentage and a total plaque area for a current cross-sectional slice indicated by the marker artifact 1020 .
  • An FFR information 1050 specifies a current FFR value associated with the current location of the marker artifact 1020 . It is noted that the marker artifact 1020 approximates the location of a probe (e.g., probe 22 ) at the time data was acquired to render the presently displayed data values.
  • the location of the marker artifact 1020 is derived from image data provided by a radiopaque element/marker located near a probe mounted upon a flexible elongate member such as probe 22 mounted on a guidewire or catheter 20 .
  • the marker artifact 1020 operates as a slider control that enables a user to sequentially traverse a set of stored data records containing information of the type displayed in FIG. 10 . Furthermore, in the particular example, an FFR value associated with a particular location designated by the marker artifact 1020 is displayed near the marker artifact 1020 . Also, a second slider 1060 is also provided that is linked to the position of marker artifact 1020 and thus moves in synchronism with the marker artifact 1020 . Moving either the slider 1060 or the marker artifact 1020 causes movement of the other.
  • interventional ultrasound imaging such as Intracardiac Echocardiography
  • a steerable catheter with a linear, curvilinear, circumferential or other ultrasonic array at the distal end is placed into or in proximity to the chambers of the heart, and its location is incorporated into an enhanced ultrasound image.
  • an angiogram image is generated and stored within the first portion 36 of image data memory 40 .
  • a single angiogram image can be used to support co-registered display of multiple acquired data sets from the probe 22 as the probe 22 passes within a length of a blood vessel.
  • a visual artifact e.g., marker artifact 420
  • a visual artifact having a position determined at least in part upon a radiopaque marker positioned near the probe 22 on the imaging catheter 20 , is superimposed on the angiogram image.
  • the visual artifact progresses along the angiogram image of the blood vessel thereby providing an approximate location of the probe 22 associated with currently displayed data rendered according to information provided by the probe 22 .
  • an initial calculated path (e.g., path 550 ) is generated by the co-registration processor 30 .
  • This estimation of the path can be generated according to any of a variety of methods including: automated two-dimensional and three-dimensional path calculations; manual path specification; and user assisted automated path calculations (a combination of automated path calculation with user-specified over-rides).
  • the calculated path is superimposed upon the angiogram image generated during step 1100 and represents the projected path of the probe 22 when pullback is commenced of the probe 22 .
  • the operation of the co-registration system is determined by whether the fluoroscope has been activated (providing a live image of a radiopaque marker mounted proximate the probe 22 ). If the fluoroscope is active, then control passes to step 1115 wherein a fluoroscope image (see, e.g., FIG. 3 ) of the radiopaque marker is acquired, timestamped and stored. Thereafter, at step 1120 image data associated with the probe 22 is acquired, timestamped and stored.
  • the image data comprises an IVUS image generated by an ultrasound transducer probe mounted upon the imaging catheter 20 .
  • the co-registration processor 30 superimposes/overlays a marker artifact on the previously stored angiogram image to render the aforementioned enhanced radiological image.
  • the marker artifact derives is position, at least in part, from the previously acquired and stored radiopaque marker position data.
  • the enhanced radiological (e.g., angiogram) image is thereafter stored with the timestamp associated with the radiopaque marker position data during step 1130 .
  • the co-registration processor 30 renders and simultaneously presents on a display/monitor the previously generated enhanced angiogram image and a corresponding probe (IVUS) image.
  • the enhanced angiogram image and the corresponding probe image are displayed along-side one another on the display/monitor. Selection of a corresponding image is based upon a timestamp associated with the selected IVUS probe image.
  • the respective timestamps of the radiological and probe components of the co-registered display need not be identical.
  • a closest match criterion is applied to the selection process. Control then returns to step 1110 for another iteration of the co-registration imaging process.
  • the co-registration processor 30 acquires/registers a pullback rate for the pullback mechanism.
  • image data associated with the probe 22 is acquired, timestamped and stored.
  • the image data comprises an IVUS image generated by an ultrasound transducer probe mounted upon the imaging catheter 20 .
  • the processor 30 determines a time that has elapsed since the previous calculation of the artifact marker position.
  • step 1165 the co-registration processor 30 generates an estimate of a present position of the probe 22 and a corresponding marker artifact position on the enhanced radiological image.
  • the pullback rate and the elapsed time between a previous marker artifact position determination and the present position determination are used to generate a present position estimate for the marker artifact.
  • the co-registration processor 30 superimposes/overlays a marker artifact on the angiogram at the new calculated position based upon the calculated path and the distance calculation rendered during step 1165 .
  • the enhanced radiological (e.g., angiogram) image is stored with the timestamp associated with the calculated marker artifact position data.
  • the resulting enhanced radiological image is utilized to render and present a co-registered display including both the enhanced angiogram image and a corresponding (based upon timestamp) previously stored probe image. Control thereafter returns to step 1110 .
  • step 1200 the co-registration processor 30 initially displays an enhanced radiological image including, for example, an angiogram image, a calculated path, and a cursor/slider mark positioned on the calculated path indicating a location associated with a presently provided image derived from data acquired by the probe 22 at the indicated location on the enhanced radiological image.
  • an enhanced radiological image including, for example, an angiogram image, a calculated path, and a cursor/slider mark positioned on the calculated path indicating a location associated with a presently provided image derived from data acquired by the probe 22 at the indicated location on the enhanced radiological image.
  • a user positions the cursor/slider mark on the calculated path.
  • Such repositioning can occur in any of a number of ways.
  • the user drags and drops the cursor/slider using a mouse.
  • a keyboard input can advance/backup the cursor/slider through a series of previously designated/bookmarked points along the calculated path displayed within the enhanced angiogram image provided during step 1200 .
  • keys can be used to advance the cursor/slider on a record-by-record basis through a set of stored records associated with the progression of the probe 22 along the calculated path.
  • Still other modes of selecting a position of interest on the calculated path and its associated probe 22 (e.g., IVUS) image will be contemplated by those skilled in the art in view of the description provided herein.
  • the co-registration processor 30 accesses a corresponding record within the set of records derived from the data provided by the probe 22 .
  • data sets include cross-sectional IVUS images or alternatively FFR values at specified positions along a blood vessel.
  • a co-registered view is presented wherein the enhanced radiological image, including the calculated path and cursor/slider (derived at least partially from positional information provided by a radiopaque marker during data acquisition), is displayed along-side an image (e.g., an IVUS cross-section) derived from data provided by the probe 22 at a position indicated by the current cursor/slider position within the enhanced radiological image.
  • the steps depicted in FIG. 12 are repeated in response to a detected change in the position of the cursor/slider to update the display to show the new position of the cursor/slider and the corresponding image (e.g. cross-sectional IVUS image) derived from data provided by the probe 22 at the designated cursor/slider position.

Abstract

A system and method for providing a vascular image are disclosed wherein a single composite display simultaneously provides a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.

Description

Notice: More than one reissue application has been filed for U.S. Pat. No. 7,930,014. The reissue applications are U.S. application Ser. No. 13/865,803, filed Apr. 18, 2013, and the present application, which is a continuation reissue of U.S. application Ser. No. 13/865,803.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation reissue of U.S. application Ser. No. 13/865,303, filed on Apr. 18, 2013, which in an application for reissue of U.S. Pat. No. 7,930,014, which claims priority of Huennekens et al. U.S. provisional application Ser. No. 60/642,893 filed on Jan. 11, 2005, entitled “Catheter Image Co- Registration,” and Walker et al. U.S. provisional application Ser. No. 60/694,014 filed on Jun. 24, 2005, entitled “Three-Dimensional Co-Registration For Intravascular Diagnosis and Therapy”, the contents of both of the above-identified provisional applications are expressly incorporated herein by reference in their entirety including the contents and teachings of any references contained therein.
AREA OF THE INVENTION
The present invention generally relates to imaging blood vessels. More particularly, the present invention is directed to methods and systems for generating composite displays relating a first image rendered from a first type of data and a second image rendered from a second type of data. A particular example of such composite display comprises an angiogram displayed along-side an IVUS image.
BACKGROUND OF THE INVENTION
In coronary arteries, vascular diseases including vessel lumen narrowing, usually due to atherosclerotic plaque, can lead to reduced blood flow to a heart muscle, angina (chest pain) and myocardial infarction—a heart attack. A variety of interventional treatments of cardiovascular disease are presently available to identify and treat such narrowing of a vessel lumen. Examples of such treatments include balloon angioplasty and/or deployment of stents. Diagnostic imaging is utilized to identify the extent and/or type of blockages within vessels prior to and/or during the treatment of such blockages. Diagnostic imaging enables doctors to ensure proper treatment of diseased vessels and verify the efficacy of such treatment.
In general, two distinct manners exist for generating diagnostic images for the identification and treatment of cardiovascular disease within a vasculature. A first manner of diagnostic imaging involves generating a radiological image of a stream flowing through a blood vessel's lumen from outside the vessel lumen. The purpose of generating an image of such flow is to identify blockages within diseased blood vessels that restrict blood flow. The extent of a vessel's lumen is traditionally imaged using angiography, which involves rendering a two-dimensional view of one or more vessels within a portion of a patient's vasculature through which radiopaque contrast media has been injected. The two-dimensional angiographic image can also be viewed real time by fluoroscopy. During such procedures, the images are potentially captured in various digital media, or in cine angiography (cine). Cine angiography, though rendering higher quality images of blood vessel lumens, exposes patients to high levels of ionizing radiation.
Fluoroscopy, generally using substantially less intense radiation than angiography, is used by physicians primarily to visually guide diagnostic and therapeutic catheters or guidewires, including one or more radiopaque markers, through vessels. The radiation intensity during fluoroscopy is typically one-tenth the intensity of radiation to which a patient is exposed during cine angiography. Many catheters have radiopaque markers that are viewable on a fluoroscope, thereby enabling a physician to track the location/path of such catheters as they are inserted within and/or withdrawn from patients. The platinum spring coil of guidewires also serves as a radiopaque marker. The lower radiation intensity of fluoroscopy allows a greater duration of use during a diagnostic/treatment procedure. However, due to its greater time of use, the total radiation exposure from fluoroscopy during an interventional treatment procedure can greatly exceed the radiation exposure during a typical cine angiography procedure. Thus, it is incumbent upon a physician to minimize the duration of time that a fluoroscope is used during a diagnostic and/or interventional treatment procedure.
The first manner of imaging, described above, has a number of drawbacks. For example, limited flow of contrast media near vessel walls and extreme variations in vessel cross-sections can result in incomplete filling of the vessel with a sufficient concentration of contrast media. As a consequence, the diameters of vessel segments can be misrepresented in an angiographic image. For example, a left main coronary artery cross-section is often underestimated by angiography. This can be problematic when attempting to judge the significance of a blockage within the vessel or when choosing the size of the treatment balloon or stent. An under-sized balloon or stent will not provide as effective treatment as a properly sized device. Furthermore, in angiography, a vessel's cross-section is determined by a two-dimensional view which may not accurately represent an actual extent of blood vessel narrowing.
Furthermore, to achieve an optimum treatment result, it is important to correctly determine a true target diameter of a native blood vessel—the diameter of a non-diseased blood vessel. However, angiography is ineffective in determining the target diameter of a vessel with disease along its entire length. For example, since vessels tend to taper in diameter along their length, a uniformly narrowed vessel may appear normal in an angiographic image.
Finally, angiography does not facilitate differentiating between different types of tissue found in atherosclerotic plaque. For example, in coronary arteries prone to producing a heart attack, necrotic tissue is thought to be more prevalent than purely fibrous tissue. Thus, while providing a good way to identify severe blockages, angiography is not always the best diagnostic imaging tool due to the incomplete nature of the angiographic image data.
The second manner of intravascular imaging comprises imaging the vessel itself using a catheter-mounted intravascular probe. Intravascular imaging of blood vessels provides a variety of information about the vessel including: the cross-section of the lumen, the thickness of deposits on a vessel wall, the diameter of the non-diseased portion of a vessel, the length of diseased sections, and the makeup of the atherosclerotic plaque on the wall of the vessel.
Several types of catheter systems have been designed to track through a vasculature to image atherosclerotic plaque deposits on vessel walls. These advanced imaging modalities include, but are not limited to, intravascular ultrasound (IVUS) catheters, magnetic resonance imaging (MRI) catheters and optical coherence tomography (OCT) catheters. In addition, thermography catheters and palpography catheters have also been demonstrated to generate vessel image data via intravascular probes. Other catheter modalities that have been proposed include infrared or near-infrared imaging.
In operation, these intravascular catheter-mounted probes are moved along a vessel in the region where imaging is desired. As the probe passes through an area of interest, sets of image data are obtained that, correspond to a series of “slices” or cross-sections of the vessel, the lumen, and surrounding tissue. As noted above, the catheters include radiopaque markers. Such markers are generally positioned near a distal catheter tip. Therefore, the approximate location of the imaging probe can be discerned by observing the catheterization procedure on either a fluoroscope or angiographic image. Typically imaging catheters are connected to a dedicated console, including specialized signal processing hardware and software, and display. The raw image data is received by the console, processed to render an image including features of concern, and rendered on the dedicated display device.
For example, IVUS images used to diagnose/treat vascular disease generally comprise sets of cross-sectional image “slices” of a vessel. A grayscale cross-sectional slice image is rendered, at each of a set of positions along the vessel based upon the intensity of ultrasound echoes received by an imaging probe. Calcium or stent struts, which produce relatively strong echoes, are seen as a lighter shade of gray. Blood or vessel laminae, which produce weaker echoes, are seen as a darker shade of gray.
Atherosclerotic tissue is identified as being the portion of a cross-sectional image between an internal elastic lamina (IEL) and an external elastic lamina (EEL). The ability to see the vessel lumen, and calculate its dimensions, allows the diameters and cross-sectional area of the vessel to be determined more reliably than the limited two-dimensional angiography. Because IVUS does not rely upon dispersing a contrast agent, IVUS is especially useful in generating images of the left main coronary artery as described above. Furthermore, the ability to view the EEL, and calculate its dimensions, allows an IVUS image to render a more reliable determination than angiography, of the correct diameter and length of the balloon or stent to use when restoring proper blood flow to a blocked/diseased vessel. Advanced IVUS images have also been described which perform tissue characterization and denote different types of tissue with a color code. One such modality is described in Vince, U.S. Pat. No. 6,200,268. Like IVUS, the other catheters mentioned above display a series of cross-sectional images from which additional information can be obtained.
Catheter-mounted probes, and in particular, IVUS probes can be configured to render a variety of two and three-dimensional images. In addition to the two-dimensional transverse cross-sectional images discussed above, a longitudinal planar image can be constructed from a plane which cuts through a “stack” of cross-section “slices”. In addition, three-dimensional “fly-through” images can be constructed from information in a series of cross-sectional slices of a vessel. Though these three-dimensional images can be visually impressive, the two dimensional angiography image remains the primary basis for determining the location of a catheter in a vessel, and the “schematic” reference through which the physician plans and carries out a treatment procedure.
In creating the “stack” or “flythrough” images, some assumptions are made by image data processing software in terms of the orientation of each slice to the next. In many cases the compound images, rendered from a series of transverse cross-sectional slices, are rendered in the form of a straight vessel segment. In reality, vessels can curve significantly. In segment visualizations that render straight segments, spatial orientation of each cross-sectional slice in relation to other slices is not measured. In addition, the rotational orientation of a catheter-mounted probe is generally not known due to twisting of the catheter as it passes through a vessel. Therefore, the angular relation between adjacent slices is not generally known. In many cases, these limitations do not significantly effect treatment of a diseased vessel because the typical treatment modalities (balloons, stents) are not circumferentially specific. A balloon, for example, dilates a vessel 360° around a lumen.
In view of the advantages provided by the two above described methods of imaging vessels, many catheter labs use both methods simultaneously to diagnose and treat a patient. However, an angiographic image provided on a different display monitor than a corresponding IVUS image (or the other image rendered by a catheter-mounted probe), presents challenges to a obtaining a comprehensive understanding of a state of a diseased vessel. For example, a physician identifies specific structures (e.g. feeder vessels) in cross-sectional images in order to determine a location on a vessel presented on an angiography display that needs to be treated. Coordinating images rendered by two distinct display devices can become cumbersome as the physician refers back and forth between two different screens on two distinct display devices. In addition, when a video loop of IVUS images is recorded, to be played back later on a machine, a corresponding angiographic image is not recorded in sync with it. Therefore, during playback, the specific cross-section being viewed needs to be compared to the vessel angiography, which is usually on a separate file.
A known visualization display simultaneously provides an angiogram, an IVUS transverse plane view, and an IVUS longitudinal plane view. A red dot is placed upon the angiogram corresponding to a currently displayed IVUS transverse plane view. A blue line is placed upon the angiogram corresponding to a currently displayed longitudinal plane view. The reference dot and line are only as valuable as the accuracy of the process that registers their positions on the angiogram.
SUMMARY OF THE INVENTION
In order to provide a better overall view of vascular systems, in accordance with the present invention, a system and method include a single display simultaneously providing a first view of a patient including an angiogram image and a second view including an intravascular image rendered from information provided by an imaging probe mounted on a distal end of a flexible elongate member. A cursor, having a position derived from image information provided by a radiopaque marker proximate the imaging probe, is displayed within the angiogram image to correlate the position of the imaging probe to a presently displayed intravascular image and thus provide an easily discernable identification of a position within a patient corresponding to a currently displayed intravascular image. The resulting composite display simultaneously provides: an intravascular image that includes information about a vessel that is not available from an angiogram and a current location within a vessel of a source of intravascular image data from which the intravascular image is rendered.
BRIEF DESCRIPTION OF THE DRAWINGS
While the claims set forth the features of the present invention with particularity, the invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawing of which:
FIG. 1 is a schematic illustration of a system for implementing catheter image co-registration;
FIG. 2 depicts an illustrative angiogram image;
FIG. 3 depicts an illustrative fluoroscopic image of a radiopaque marker mounted upon a catheter;
FIG. 4 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image;
FIG. 5 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest;
FIG. 6 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest with a marker positioned at a different location than the view of FIG. 5;
FIG. 7 depicts an illustrative enhanced radiological image along-side a cross-sectional IVUS image wherein the radiological image further includes a calculated path within a vessel of interest and a reference mark providing a point of synchronization/calibration of a marker position;
FIG. 8 depicts an illustrative catheter distal end including a single cylindrical radiopaque marker band;
FIG. 9a depicts a radiopaque marker band 900, suitable for use in an exemplary embodiment, that partially encircles the catheter shaft;
FIG. 9b depicts an imaging catheter having two of the radiopaque marker bands of the type depicted in FIG. 9a wherein the two bands are skewed by a quarter rotation along the axis of the catheter;
FIG. 9c depicts the imaging catheter of 9b from a view that looks directly on the full surface of the distal marker band 920;
FIG. 9d depicts the imaging catheter of 9c at a view wherein the catheter is axially rotated 90 degrees from the position depicted in FIG. 9c;
FIG. 9e depicts the imaging catheter at a different rotational position from FIG. 9c and FIG. 9d;
FIG. 10 depicts an illustrative display for co-registration of radiological and hemodynamic image information;
FIG. 11 is a flowchart summarizing a set of steps for rendering and displaying a co-registered view during a data acquisition procedure; and
FIG. 12 is a flowchart summarizing a set of steps for rendering and displaying a co-registered view during playback of previously acquired image data.
DETAILED DESCRIPTION OF THE DRAWINGS
In accordance with embodiments of the present invention, a method and system are described by way of example herein below including image data acquisition equipment and data/image processors that generate views on a single display that simultaneously provides positional information and intravascular images associated with a imaging probe (e.g., an IVUS transducer probe) mounted upon a flexible elongate member (e.g, a catheter, guidewire, etc.).
Turning initially to FIG. 1, an exemplary system is schematically depicted for carrying out the present invention in the form of co-registration of angiogram/fluoroscopy and intravascular ultrasound images. The radiological and ultrasound image data acquisition sub-systems are generally well known in the art. With regard to the radiological image data, a patient 10 is positioned upon an angiographic table 12. The angiographic table 12 is arranged to provide sufficient space for the positioning of an angiography/fluoroscopy unit c-arm 14 in an operative position in relation to the patient 10 on the table 12. Radiological image data acquired by the angiography/fluoroscopy c-arm 14 passes to an angiography/fluoroscopy processor 18 via transmission cable 16. The angiography/fluoroscopy processor 18 converts the received radiological image data received via the cable 16 into angiographic/fluoroscopic image data. The angiographic/fluoroscopic (“radiological”) image data is initially stored within the processor 18.
With regard to portions of the system associated with acquiring ultrasound image data, an imaging catheter 20, and in particular an IVUS catheter, is inserted within the patient 10 so that its distal end, including a diagnostic probe 22 (in particular an IVUS probe), is in the vicinity of a desired imaging location of a blood vessel. While not specifically identified in FIG. 1, a radiopaque material located near the probe 22 provides indicia of a current location of the probe 22 in a radiological image. By way of example, the diagnostic probe 22 generates ultrasound waves, receives ultrasound echoes representative of a region proximate the diagnostic probe 22, and converts the ultrasound echoes to corresponding electrical signals. The corresponding electrical signals are transmitted along the length of the imaging catheter 20 to a proximal connector 24. IVUS versions of the probe 22 come in a variety of configurations including single and multiple transducer element arrangements. In the case of multiple transducer element arrangements, an array of transducers is potentially arranged: linearly along a lengthwise axis of the imaging catheter 20, curvilinearly about the lengthwise axis of the catheter 20, circumferentially around the lengthwise axis, etc.
The proximal connector 24 of the catheter 20 is communicatively coupled to a catheter image processor 26. The catheter image processor 26 converts the signals received via the proximal connector 24 into, for example, cross-sectional images of vessel segments. Additionally, the catheter image processor 26 generates longitudinal cross-sectional images corresponding to slices of a blood vessel taken along the blood vessel's length. The IVUS image data rendered by the catheter image processor 26 is initially stored within the processor 26.
The type of diagnostic imaging data acquired by the diagnostic probe 22 and processed by the catheter image processor 26 varies in accordance with alternative embodiments of the invention. In accordance with a particular alternative embodiment, the diagnostic probe 22 is equipped with one or more sensors (e.g., Doppler and/or pressure) for providing hemodynamic information (e.g., blood flow velocity and pressure)—also referred to as functional flow measurements. In such alternative embodiments functional flow measurements are processed by the catheter image processor 26. It is thus noted that the term “image” is intended to be broadly interpreted to encompass a variety of ways of representing vascular information including blood pressure, blood flow velocity/volume, blood vessel cross-sectional composition, shear stress throughout the blood, shear stress at the blood/blood vessel wall interface, etc. In the case of acquiring hemodynamic data for particular portions of a blood vessel, effective diagnosis relies upon the ability to visualize a current location of the diagnostic probe 22 within a vasculature while simultaneously observing functional flow metrics indicative of cardiovascular disease. Co-registration of hemodynamic and radiological images facilitates precise treatment of diseased vessels. Alternatively, instead of catheter mounted sensors, the sensors can be mounted on a guidewire, for example a guidewire with a diameter of 0.018″ or less. Thus, in accordance with embodiments of the present invention, not only are a variety of probe types used, but also a variety of flexible elongate members to which such probes are mounted at a distal end (e.g., catheter, guidewire, etc.).
A co-registration processor 30 receives IVUS image data from the catheter image processor 26 via line 32 and radiological image data from the radiological image processor 18 via line 34. Alternatively, the communications between the sensors and the processors are carried out via wireless media. The co-registration processor 30 renders a co-registration image including both radiological and IVUS image frames derived from the received image data. In accordance with an embodiment of the present invention, indicia (e.g., a radiopaque marker artifact) are provided on the radiological images of a location corresponding to simultaneously displayed IVUS image data. The co-registration processor 30 initially buffers angiogram image data received via line 34 from the radiological image processor 18 in a first portion 36 of image data memory 40. Thereafter, during the course of a catheterization procedure IVUS and radiopaque marker image data received via lines 32 and 34 is stored within a second portion 38 and a third portion 42, respectively, of the image data memory 40. The individually rendered frames of stored image data are appropriately tagged (e.g., time stamp, sequence number, etc.) to correlate IVUS image frames and corresponding radiological (radiopaque marker) image data frames. In an embodiment wherein hemodynamic data is acquired rather than IVUS data, the hemodynamic data is stored within the second portion 38.
In addition, additional markers can be placed on the surface of the patient or within the vicinity of the patient within the field of view of the angiogram/fluoroscope imaging device. The locations of these markers are then used to position the radiopaque marker artifact upon the angiographic image in an accurate location.
The co-registration processor 30 renders a co-registration image from the data previously stored within the first portion 36, second portion 38 and third portion 42 of the image data memory 40. By way of example, a particular IVUS image frame/slice is selected from the second portion 38. The co-registration processor 30 identifies fluoroscopic image data within the third portion 42 corresponding to the selected IVUS image data from the second portion 38. Thereafter, the co-registration processor 30 superimposes the fluoroscopic image data from the third portion 42 upon the angiogram image frame retrieved from the first portion 36. Thereafter, the co-registered radiological and IVUS image frames are simultaneously displayed, along-side one another, upon a graphical display device 50. The co-registered image data frames driving the display device 50 are also stored upon a long-term storage device 60 for later review in a session separate from a procedure that acquired the radiological and IVUS image data stored in the image data memory 40.
While not shown in FIG. 1, a pullback device is incorporated that draws the catheter 20 from the patient at a controlled/measured manner. Such devices are well known in the art. Incorporation of such devices facilitates calculating a current position of the probe 22 within a field of view at points in time when fluoroscopy is not active.
Turning to FIG. 2, the angiography/fluoroscopy processor 18 captures an angiographic “roadmap” image 200 in a desired projection (patient/vessel orientation) and magnification. By way of example, the image 200 is initially captured by an angiography procedure performed prior to tracking the IVUS catheter to the region of interest within a patient's vasculature. Performing the angiography procedure without the catheter 20 in the vessel provides maximal contrast flow, better vessel filling and therefore a better overall angiogram image. Thus, side branches such as side branch 210 and other vasculature landmarks can be displayed and seen clearly on the radiological image portion of a co-registered image displayed upon the graphical display device 50.
Turning to FIG. 3, the catheter 20 is tracked to its starting position (e.g., a position where an IVUS pullback procedure begins). Typically the catheter 20 is tracked over a previously advanced guidewire (not shown). Thereafter, a fluoroscopic image is obtained. In the image, the catheter radiopaque marker 300 is visualized, but the vessel lumen is not, due to the absence of contrast flow. However, a set of locating markers present in both the angiogram and fluoroscopy images enable proper positioning (superimposing) of the marker image within the previously obtained angiogram image. Other ways of properly positioning the radiopaque marker image within the field of view of the angiogram image will be known to those skilled in the art in view of the teachings herein. Furthermore, the marker artifact can be automatically adjusted (both size and position) on the superimposed image frames to correspond to the approximate position of the transducers. The result of overlaying/superimposing the radiopaque marker artifact upon the angiogram image is depicted, by way of example in an exemplary co-registration image depicted in FIG. 4.
Turning to FIG. 4 the exemplary co-registration display 401 (including the correlated radiological and IVUS images) depicts a selected cross-sectional IVUS image 400 of a vessel. A radiological image 410 is simultaneously displayed along-side the IVUS image 400 on the display 50. The radiological image 410 includes a marker artifact 420, generated from radiological image data rendered by a fluoroscope image frame, superimposed on an angiogram background rendered from the first portion 36 of the memory 40. The fluoroscope image frame corresponds to the current location of the diagnostic probe 22 within a vessel under observation. Precise matching of the field of view represented in both the angiogram and fluoroscope images (i.e., precise projection and magnification of the two images) allows identification of the current position of the IVUS probe corresponding to the displayed IVUS image 400 in the right pane of the co-registered images displayed in FIG. 4.
Alternatively, the composite radiological image 410 is obtained in one step. In such case, the original roadmap angiogram image is obtained with the catheter already in its starting position. However, once obtained, the angiogram image is reused as the IVUS probe is withdrawn from the vessel.
The system also takes heart motion into account when generating/acquiring the radiological and IVUS image data. By way of example, by acquiring the image data for both the angiogram (background) and the radiopaque marker only during the peak R-wave of the EKG, heart motion is much less a factor and good overlay correlation exists between the angiogram and fluoroscope fields of view. The peak R-wave is selected because it represents end-diastole, during which the heart has the least amount of motion, and thus, a more consistent condition from which to obtain the radiological image data. The peak R-wave is also an easy point in the EKG for the system to detect.
With continued reference to FIG. 4, in an exemplary embodiment when the IVUS catheter 20 begins to image, the cross-sectional image 400 from the IVUS catheter is displayed in tandem with the enhanced radiological image 410 including both the angiogram background and the superimposed marker artifact 420. The enhanced radiological image 410 and the cross-sectional IVUS image 400 are displayed close to (e.g., along side) each other on the display 50, so that the operator can concentrate on the information in the cross-sectional image 400 while virtually simultaneously observing the status of the enhanced radiological image 410.
The simultaneous display of both the composite/enhanced radiological image and the cross-sectional image allows instant awareness of both disease state of a vessel segment and the location of the vessel segment within a patient. Such comprehensive information is not readily discernable in a three dimensional flythrough image or a stacked longitudinal image. Neither flythrough nor stacked images alone allows for the simultaneous appreciation of 1) all of the information in a cross-section, 2) a feel for the shape of the vessel and 3) the location of the cross-section along the length of the vessel. The above-described “co-registration” of enhanced angiographic (including the marker artifact) and intravascular cross-sectional images/information delivers all three of these items in a presentation that is straight forward to an operator with even average visual and spatial abilities. The co-registration display is presented, by way of example, either on an IVUS console display, or the co-registration display is presented on one or more angiographic monitors, either in the room where the procedure is occurring or in a remote location. For example, one monitor over the table in the procedure room allows the attending physician to view the procedure, while at the same time a second consulting physician who has not scrubbed for the case is also able to view the case via a second monitor containing the co-registration display from a separate control room. Control room viewing is also possible without having to wear leaded covering.
With regard to the persistence of the background angiogram (“roadmap”) image portion of the enhanced radiological image 410, a single angiogram image is, by way of example, obtained/generated and stored in the first portion 36 of the memory 40 for a given procedure/patient position. If the field of view changes or the patient's position changes, then an updated background angiogram image is generated and stored in the first portion 36. Alternatively, the background angiogram image is live or continuously updated, for example, at each additional step in which angiography is performed. The projection of the angiogram roadmap/background image portion of the enhanced radiological image 410 is preferably in an orientation and magnification that best displays the entire vessel to be viewed, taking into account the foreshortening that is present in a tortuous/winding vessel. Alternatively, two roadmap images (or even two enhanced radiological images 410) can be used/displayed in place of the one image 410. Such multiple views are provided in the context of biplane angiography.
Establishing a position for the marker artifact within the field of the enhanced radiological image, based at least in part upon a radiopaque marker on the imaging catheter 20 is achievable in a variety of ways. Examples, described further herein below include: user-specified points (by clicking at a position near the marker to establish a point); image pattern recognition (automatic identification of a marker's unique signature within a field of view); and combinations of manual and automated calculations of a path.
Enhancing the background/roadmap angiogram image to render the image 410 is achieved in a number of different ways. As mentioned above, in an illustrative embodiment, the marker artifact 420 (derived from a fluoroscope image of a radiopaque marker near the probe 22 mounted on the distal end of the catheter 20) is superimposed upon/overlays the angiogram/roadmap background of the enhanced radiological image 410. Because the live/marker artifact portion of the image 410 requires that fluoroscopy be performed the entire time of catheter movement (e.g. pullback), in an alternative embodiment, the marker artifact is displayed on the image 410 only during those periods when the fluoroscope is active. When the fluoroscope is inactive, only the background angiogram is presented on the enhanced image 410 of the display 50.
Turning to FIGS. 5 and 6, in embodiments of the invention, when the fluoroscope is inactive, the co-registration processor 30 calculates an approximate location of the radiopaque marker based upon its last registered position and other indicators of catheter movement (e.g., pullback distance sensors/meters). The approximate location is utilized in place of the radiopaque marker image to render a marker artifact 520 on an enhanced radiological image 510 displayed along-side a corresponding IVUS cross-sectional image 500 within a display 501. By way of a particular illustrative example, during periods in which a fluoroscope is inactive, the marker artifact 520's position is calculated by software/hardware within the co-registration processor 30 from sensor data indicative of a current/changed location of the radiopaque marker within the current image field provided by the current background angiogram image. In an embodiment of the invention, a visual characteristic (e.g., color, symbol, intensity, etc.) of the marker artifact 520 is used to distinguish when the fluoroscope is active/inactive and thus indicate whether the marker artifact position is actual/calculated. Furthermore, in more advanced systems, both the displacement and angular orientation of the marker (and thus the diagnostic probe 22) are determined to render accurate approximations of the current position of the diagnostic probe 22 within a vessel as it acquires data for generating the image 500.
With continued reference to FIGS. 5 and 6, a calculated path 550/650 is determined by the co-registration processor 30 within displays 501/601. A marker artifact 520/620 is placed on top of the calculated path 550/650. The marker artifact 520/620 is superimposed on the angiogram image at a location calculated from non-visual position data (e.g., pullback distance, spatial position sensors, angular orientation sensors, etc.). For example, if the initial location of a radiopaque marker within the enhanced radiological image 510/610 is known and the catheter is pulled by an automatic pullback system at a specific rate for a known amount of time, the cursor can be placed by the system at a distance from the initial location along the calculated path 550/650 that represents the product of the pullback rate and the time period. Furthermore, each subsequent time that a fluoroscope is activated and an image of the radiopaque marker is acquired and presented to the co-registration processor 30, an error between the actual radiopaque marker location and a current calculated marker artifact 520/620 location is eliminated by replacing the calculated position by a position calculated by the radiopaque marker image. The error between the corrected position and the calculated location of the marker artifact 520/620 is determined. In an exemplary embodiment, the error/total travel distance ratio is used as a scaling factor to recalculate and adjust all previously calculated/rendered/presented marker artifact overlay positions on the rendered/stored copies of the enhanced radiological image 510/610 for the entire preceding period in which the fluoroscope has been inactive.
Similarly, a re-calculation can also update a shape of the calculated path 550/560 curve. As seen in FIGS. 5 and 6, the calculated path 550/650 is shown as a curve that matches the tortuosity of a vessel through which the probe 22 passes—represented by a center line through the displayed vessel. Alternatively, the catheter paths within vessels take a straighter and shorter path than the centerline of a blood vessel when pulled through such vessel. If, however, the catheter is being translated by pushing, instead of pulling, the calculated path 550/650 more closely matches the curvature of the vessel, or even exaggerates the tortuosity of the vessel by taking a longer path. A multiplication coefficient (e.g., 1.05 for pushing, 0.95 for pulling) can be introduced when calculating a path based upon this general observation of the path taken by a probe as it is pushed/pulled through a vessel. The path can alternatively be calculated from two different angiographic images taken at different projections (planes). This allows a three dimensional angiographic image, from which a true centerline can be calculated.
In accordance with yet another embodiment, represented by the co-registered IVUS image 700 and enhanced radiological image 710 in a display 701 presented in FIG. 7, the operator creates a reference mark 760 at one or more points on a calculated path 750. The reference mark 760 serves a variety of potential uses. By way of example, the reference mark 760 potentially serves as a benchmark (location synchronization point) for updating position of a marker artifact 720 within the enhanced radiological image 710. In the embodiment represented by FIG. 7, the co-registration processor 30 waits for manual input of the reference mark 760 location information prior to proceeding with calculations. The user creates the reference mark 760 which coincides with a marker artifact 720 rendered from image data provided by a fluoroscope of a field of view containing a radiopaque marker. The reference mark 760, which potentially persists beyond its initial entry period, is distinguished from the marker artifact 720 which follows the current/estimated position of the probe 22. Furthermore, in an exemplary embodiment the reference mark is used to highlight/mark actual positions of the probe 22 (rendered by a fluoroscope image of a radiopaque marker) as opposed to estimated points on a calculated point (e.g. points on a path e.g., 550/560) from merely calculated position estimates upon the paths 550/560. In yet other embodiments, the reference mark 760 is used to highlight a particular point of interest during a diagnostic/treatment procedure. A bookmark is placed within a series of cross-sectional images associated with the IVUS image 700 portion of the display 701. The bookmark allows quick access to a particular archived image frame corresponding to the reference mark 760 in the display 701.
In accordance with embodiments of the present invention, a user interface associated with the displayed images provided in FIGS. 4-7 includes a “slider” control that allows an operator to track through a series of stored frames representing sequentially acquired data along a traversed path within a vessel. The slider control can be a set of arrows on a keyboard, a bar/cursor displayed upon an enhanced radiological image that can be manipulated by an operator, during playback, using a mouse or other user interface device to traverse a vessel segment, etc. By way of example, a display similar to FIG. 7 is rendered by the co-registration processor 30 during playback of a previous data acquisition session. A cursor similar to the reference mark 760 is displayed during playback on the enhanced radiological image 710. A user selects and drags the cursor along a path similar to the calculated path 750. As the user drags and drops the cursor along the path, the co-registration processor 30 acquires and presents corresponding co-registered images. The user sequentially proceeds through the stored images using, by way of example, arrow keys, mouse buttons, etc.
It is noted that various catheter marking schemes are contemplated that improve/optimize the co-registration processor 30's calculations of a position of the marker artifact (representing a position within a vessel corresponding to a currently displayed IVUS cross-section image) when the fluoroscope is inactive. Turning to FIG. 8, a single radiopaque marker band 800 is attached to the catheter 820 near an IVUS probe. The radiopaque band 800 includes a proximal edge 802 and a distal edge 804. The band 800 is cylindrical, with the diameter at the proximal edge 802 equal to the diameter at the distal edge 804. In addition, the band 800 has a known length.
Upon connection of the proximal connector 24 of the catheter 20 into an outlet on the catheter image processor 26 (or an interposed patient interface module which is communicatively connected to the processor 26), the processor 26 receives identification information from the catheter 20 via EPROM, RFID, optical reader or any other appropriate method for identifying the catheter 20. In an illustrative embodiment, the catheter length and diameter dimensions (or dimension ratio) are included in the received identification information. In addition, image field information such as magnification and/or projection angle) from the radiological image processor 18 is provided to the co-registration processor 30. By identifying four points at the corners of an approximate four-sided polygon of the marker band image, the co-registration processor 30 automatically calculates foreshortening of a vessel in an enhanced radiological image view and the true length of a segment of a calculated path.
Turning briefly to FIGS. 9a-e, a catheter 920 carries two marker bands having a known linear separation distance that facilitates making the calculations described herein above with reference to FIG. 8. FIG. 9a shows a radiopaque marker band 900, suitable for use in an exemplary embodiment, that partially encircles the catheter shaft; In the exemplary embodiment, the marker band 900 extends about 180° (one half) of the perimeter of the catheter shaft. The band is potentially made, for example, of 100% Platinum, or 90% Platinum/10% Irridium, Tantalum, Gold or any other radiopaque materials or combinations/amalgams thereof.
FIG. 9b shows an imaging catheter 20 having two of the radiopaque marker bands 910 and 920 of the type depicted in FIG. 9a. The proximal band 910 is skewed 90° (a quarter of the circumference of the catheter 20) in relation to the distal band 920. In this embodiment, the bands 910/920 are shown equally spaced on opposite sides of the diagnostic probe 22 . This catheter 20 also has a guidewire lumen 930 for passing a guidewire, for example a 0.014″ guidewire. The guidewire exits out the distal guidewire port. The proximal end of the guidewire can exit a proximal port either within the blood vessel (short lumen rapid exchange catheter), within a guiding catheter (long lumen rapid exchange catheter) or outside of the patient (over-the-wire catheter).
FIG. 9c shows the imaging catheter 20 from a view that looks directly on the full surface of the distal marker band 920. Exactly one half of the proximal marker band 910, skewed by 90 degrees, is seen. An angiography image of the two marker bands, when viewed as shown in FIG. 9c reveals band 920 having a thickness that is twice the thickness of the image of the band 910. Furthermore, an image length “L” of the marker bands 910/920 depends on angular position of the portion of the catheter 20 in the image containing the bands 910/920. In a perfect side view, the length L is equal to the actual length of the marker band. Offset O is equal to the difference between the thickness of band 920 and the thickness of band 910.
In FIG. 9d an image is taken at a view wherein the catheter 20 is axially rotated 90 degrees from the position depicted in FIG. 9c. The thickness of band 920 is half the thickness of band 910. Also, the position of the relative positions of the bands 910/920 in relation to the axis of the catheter 20 is used to determine the actual angular orientation of the catheter 20 since the offset alone is not enough to establish a current rotational position of the catheter 20.
FIG. 9e is an image of the catheter 20 and bands 910/910 at a different rotational position from FIG. 9c and FIG. 9d. The orientation of the catheter can be determined by comparing the relative thicknesses (e.g., the offset, a ratio) of the thickness of images of the bands 910 and 920.
Other controls associated with the co-registration processor 30 facilitate performing a variety of additional tasks. For example, during a catheter pullback, a commenting functionality incorporated into the processor 30 enables a user to select a “bookmark” button. In response, the co-registration processor 30 attaches a note/comment to a specific cross-section and/or location along a calculated path on an enhanced radiological image.
As mentioned above, an alternative version of co-registration image scheme incorporates biplane angiography instead of standard, single view angiography images. In biplane angiography, two radiological projections are simultaneously presented to a user—e.g., two views skewed by 90 degrees on a common axis of rotation. In such systems, two enhanced radiological images are presented along-side a cross-sectional image. During an inactive fluoroscopy period, when marker artifact (cursor) position is determined by calculations in relation to a known pullback rate, two cursor positions are determined—one on each of the two enhanced radiological images. It is expected that at certain periods during which fluoroscopy is inactive, the foreshortening of the vessel seen on one biplane image is less than the other. Depending on the 3-dimensional vessel tortuosity, it is expected that the opposite biplane image would have less foreshortening at other periods where a marker artifact is based upon calculations rather than actual fluoroscope images. The errors are calculated independently in the two different biplane images, and corresponding scaling factors are generated for the correction. As previously mentioned, a derived 3-dimensional road-map is created based on information of the two images from different planes. In this case, the two different planes are the 90° biplane images Locating a marker artifact on a derived 3-D image is calculated from locations of marker artifacts one each of two orthogonal biplane images.
All of the descriptions hereinabove associated with illustrative embodiments using an IVUS catheter are applicable to a variety of alternative types of imaging catheters. Similarly, an enhanced radiological image can be combined with a longitudinal stack instead of a cross sectional slice—in fact, the enhanced radiological, transverse cross-sectional, and longitudinal cross-sectional images can be displayed together. In yet other embodiments, the enhanced radiological image is presented along-side an IVUS image including both grayscale and color image artifacts that characterizing tissue and deposits within a vessel. Additionally, the longitudinal IVUS grayscale image and/or the color (Virtual Histology) image are overlaid on the 2-D angiographic image or derived 3-D image.
The above-described examples of co-registration have primarily addressed IVUS examples. However, as mentioned above, co-registration is alternatively incorporated into functional flow measurement systems that provide hemodynamic image information such as blood flow velocity and pressure. Turning briefly to FIG. 10, an exemplary co-registration display 1001 rendered by the co-registration processor 30 includes an enhanced radiological image 1010 displayed along-side functional flow measurement values presented in a graph 1000. In FIG. 10 functional flow reserve (FFR) is depicted in the graph 1000 as a function of displacement along a length of a blood vessel. The enhanced radiological image 1010 comprises a marker artifact 1020 superimposed upon an angiogram image. The marker artifact 1020 indicates the point at which the presently displayed functional flow measurements are being presented based upon measurements previously acquired by sensors/transducers on the probe 22 mounted at the distal end of a flexible elongate member such as a guidewire or the catheter 20. In yet another illustrative embodiment, the co-registration image further includes an IVUS cross-sectional image (not depicted) corresponding to the vessel segment indicated by the marker artifact 1020 on the enhanced radiological image 1010.
The display also includes a variety of additional text information associated with the section of the vessel identified by the marker artifact 1020. Vessel dimensions 1030 specify an approximate diameter and lumen area of a particular cross section indicated by the marker artifact 1020's current position on the enhanced radiological image 1010. Additionally, IVUS information 1040 specify a plaque burden percentage and a total plaque area for a current cross-sectional slice indicated by the marker artifact 1020. An FFR information 1050 specifies a current FFR value associated with the current location of the marker artifact 1020. It is noted that the marker artifact 1020 approximates the location of a probe (e.g., probe 22) at the time data was acquired to render the presently displayed data values. In accordance with an exemplary embodiment of the present invention, the location of the marker artifact 1020 is derived from image data provided by a radiopaque element/marker located near a probe mounted upon a flexible elongate member such as probe 22 mounted on a guidewire or catheter 20.
By way of example, the marker artifact 1020 operates as a slider control that enables a user to sequentially traverse a set of stored data records containing information of the type displayed in FIG. 10. Furthermore, in the particular example, an FFR value associated with a particular location designated by the marker artifact 1020 is displayed near the marker artifact 1020. Also, a second slider 1060 is also provided that is linked to the position of marker artifact 1020 and thus moves in synchronism with the marker artifact 1020. Moving either the slider 1060 or the marker artifact 1020 causes movement of the other.
Other types of interventional ultrasound imaging, such as Intracardiac Echocardiography are also envisioned that utilize this co-registration system. For example a steerable catheter with a linear, curvilinear, circumferential or other ultrasonic array at the distal end is placed into or in proximity to the chambers of the heart, and its location is incorporated into an enhanced ultrasound image.
Having described exemplary systems embodying the present invention, attention is directed to FIG. 11 that summarizes a set of exemplary steps associated with the operation of the above-described systems. Initially, during step 1100 an angiogram image is generated and stored within the first portion 36 of image data memory 40. A single angiogram image can be used to support co-registered display of multiple acquired data sets from the probe 22 as the probe 22 passes within a length of a blood vessel. A visual artifact (e.g., marker artifact 420) having a position determined at least in part upon a radiopaque marker positioned near the probe 22 on the imaging catheter 20, is superimposed on the angiogram image. As the probe 22 passes within the blood vessel the visual artifact progresses along the angiogram image of the blood vessel thereby providing an approximate location of the probe 22 associated with currently displayed data rendered according to information provided by the probe 22.
Thereafter, during step 1105 an initial calculated path (e.g., path 550) is generated by the co-registration processor 30. This estimation of the path can be generated according to any of a variety of methods including: automated two-dimensional and three-dimensional path calculations; manual path specification; and user assisted automated path calculations (a combination of automated path calculation with user-specified over-rides). The calculated path is superimposed upon the angiogram image generated during step 1100 and represents the projected path of the probe 22 when pullback is commenced of the probe 22.
In an exemplary embodiment, the operation of the co-registration system is determined by whether the fluoroscope has been activated (providing a live image of a radiopaque marker mounted proximate the probe 22). If the fluoroscope is active, then control passes to step 1115 wherein a fluoroscope image (see, e.g., FIG. 3) of the radiopaque marker is acquired, timestamped and stored. Thereafter, at step 1120 image data associated with the probe 22 is acquired, timestamped and stored. In the illustrative example, the image data comprises an IVUS image generated by an ultrasound transducer probe mounted upon the imaging catheter 20.
At step 1125 the co-registration processor 30 superimposes/overlays a marker artifact on the previously stored angiogram image to render the aforementioned enhanced radiological image. The marker artifact derives is position, at least in part, from the previously acquired and stored radiopaque marker position data. The enhanced radiological (e.g., angiogram) image is thereafter stored with the timestamp associated with the radiopaque marker position data during step 1130.
Thereafter, at step 1135 the co-registration processor 30 renders and simultaneously presents on a display/monitor the previously generated enhanced angiogram image and a corresponding probe (IVUS) image. The enhanced angiogram image and the corresponding probe image are displayed along-side one another on the display/monitor. Selection of a corresponding image is based upon a timestamp associated with the selected IVUS probe image. The respective timestamps of the radiological and probe components of the co-registered display need not be identical. In an embodiment of the invention a closest match criterion is applied to the selection process. Control then returns to step 1110 for another iteration of the co-registration imaging process.
Alternatively, if the fluoroscope is inactive during a period wherein a pullback mechanism is drawing the probe 22 through a segment of a vessel of interest, then control passes from step 1110 to step 1150. At 1150 the co-registration processor 30 acquires/registers a pullback rate for the pullback mechanism. At step 1155 image data associated with the probe 22 is acquired, timestamped and stored. In the illustrative example, the image data comprises an IVUS image generated by an ultrasound transducer probe mounted upon the imaging catheter 20. During step 1160 the processor 30 determines a time that has elapsed since the previous calculation of the artifact marker position. In cases where the elapsed time is a constant, this step need not be repeated once the elapsed time constant has been determined. During step 1165 the co-registration processor 30 generates an estimate of a present position of the probe 22 and a corresponding marker artifact position on the enhanced radiological image. By way of example, the pullback rate and the elapsed time between a previous marker artifact position determination and the present position determination are used to generate a present position estimate for the marker artifact.
Thereafter, during step 1170 the co-registration processor 30 superimposes/overlays a marker artifact on the angiogram at the new calculated position based upon the calculated path and the distance calculation rendered during step 1165. During step 1175 the enhanced radiological (e.g., angiogram) image is stored with the timestamp associated with the calculated marker artifact position data. Thereafter, at step 1180 the resulting enhanced radiological image is utilized to render and present a co-registered display including both the enhanced angiogram image and a corresponding (based upon timestamp) previously stored probe image. Control thereafter returns to step 1110.
The above-described steps are associated with providing a co-registered display as an intravascular probe mounted upon a flexible elongate member (e.g., a catheter, guidewire, etc.) progresses along a length of blood vessel. Co-registered displays are also rendered in a playback mode. Turning to FIG. 12, during step 1200 the co-registration processor 30 initially displays an enhanced radiological image including, for example, an angiogram image, a calculated path, and a cursor/slider mark positioned on the calculated path indicating a location associated with a presently provided image derived from data acquired by the probe 22 at the indicated location on the enhanced radiological image.
During step 1205 a user positions the cursor/slider mark on the calculated path. Such repositioning can occur in any of a number of ways. By way of example, the user drags and drops the cursor/slider using a mouse. Alternatively, a keyboard input can advance/backup the cursor/slider through a series of previously designated/bookmarked points along the calculated path displayed within the enhanced angiogram image provided during step 1200. Yet other keys can be used to advance the cursor/slider on a record-by-record basis through a set of stored records associated with the progression of the probe 22 along the calculated path. Still other modes of selecting a position of interest on the calculated path and its associated probe 22 (e.g., IVUS) image will be contemplated by those skilled in the art in view of the description provided herein.
During step 1210 in response to a particular position/timestamp associated with a current position of the cursor/slider on the enhanced radiological image, the co-registration processor 30 accesses a corresponding record within the set of records derived from the data provided by the probe 22. By way of example, such data sets include cross-sectional IVUS images or alternatively FFR values at specified positions along a blood vessel. Thereafter, during step 1215 a co-registered view is presented wherein the enhanced radiological image, including the calculated path and cursor/slider (derived at least partially from positional information provided by a radiopaque marker during data acquisition), is displayed along-side an image (e.g., an IVUS cross-section) derived from data provided by the probe 22 at a position indicated by the current cursor/slider position within the enhanced radiological image. The steps depicted in FIG. 12 are repeated in response to a detected change in the position of the cursor/slider to update the display to show the new position of the cursor/slider and the corresponding image (e.g. cross-sectional IVUS image) derived from data provided by the probe 22 at the designated cursor/slider position.
The structures, techniques, and benefits discussed above are merely exemplary embodiments of the invention. In view of the many possible embodiments to which the principles of this invention may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of invention. For example, while separate processors are shown to carry out particular aspects of the invention, in alternative embodiments the functionality of the multiple processors can be incorporated into a single processor or even distributed among even more processors. Therefore, the invention as described herein contemplates all such embodiments as may come within the scope of the following claims and equivalents thereof.

Claims (63)

What is claimed is:
1. A system for acquisition and co-registered display of intravascular information, comprising:
an imaging flexible elongate member having a proximal end and a distal end;
an imaging probe located near the distal end of the flexible elongate member, and configured to obtain information for generating an image of a vessel;
a radiopaque marker located near the imaging probe;
a first memory for storing angiogram image data;
a second memory for storing intravascular image data derived from information obtained by the imaging probe;
a third memory for storing radiopaque marker image data, distinct from the angiogram image data, the radiopaque marker image data being derived from information obtained from a fluoroscopic imaging device;
a display processor configured to retrieve and combine data from the first memory, the second memory and the third memory, and further configured to render a composite image including:
an enhanced radiological image derived from the angiogram image data comprising a superimposition of at least a portion of the angiogram data and the radiopaque marker image data and providing a location of the radiopaque marker based upon an actual location during active fluoroscopy and an estimated location during inactive fluoroscopy,
an intravascular image element corresponding to the intravascular image data, wherein the enhanced radiological image and the intravascular image element are displayed proximate each other; and
a cursor, displayed upon the enhanced radiological image, indicative of a location of the imaging probe while acquiring data for the intravascular image element presently displayed on the composite image, said cursor having a position that is based at least in part on third data derived from the radiopaque marker image data stored in the third memory;
wherein the display processor is further configured to calculate an error function based on a difference between the estimated location of the radiopaque marker and the actual location of the radiopaque marker and wherein the display processor further configured to utilize the error function to correct the estimated location of the radiopaque marker for the preceding period of inactive fluoroscopy.
2. The system of claim 1 wherein the flexible elongate member is a catheter.
3. The system of claim 1 wherein the imaging probe comprises an ultrasound device.
4. The system of claim 3 wherein the ultrasound device is a side-firing intravascular ultrasound transducer assembly.
5. The system of claim 4 wherein the side-firing intravascular ultrasound transducer assembly comprises an array of transducer elements.
6. The system of claim 5 wherein the array of transducer elements are linearly arranged along a lengthwise axis of the flexible elongate member.
7. The system of claim 5 wherein the array of transducer elements are curvilinearly arranged about a lengthwise axis of the flexible elongate member.
8. The system of claim 5 wherein the array of transducer elements are circumferentially arranged about a lengthwise axis of the flexible elongate member.
9. The system of claim 3 wherein the ultrasound device comprises a Doppler transducer.
10. The system of claim 9 wherein the flexible elongate member comprises a guidewire.
11. The system of claim 1 wherein the flexible elongate member is a guidewire and the imaging probe comprises a pressure sensor.
12. The system of claim 1 wherein the radiopaque marker comprises a cylindrical marker band.
13. The system of claim 1 wherein the radiopaque marker comprises at least one partially complete cylindrical marker band.
14. The system of claim 13 wherein the radiopaque marker comprises two semi-cylindrical marker bands.
15. The system of claim 14 wherein the two semi-cylindrical marker bands are skewed in relation to one another along a lengthwise axis of the flexible elongate member.
16. The system of claim 15 wherein the display processor further comprises an orientation determination function for determining a relative orientation of the imaging probe within the vessel based upon at least a relative size and position of the two semi-cylindrical marker bands in relation to one another.
17. The system of claim 1 wherein the third data is derived from user-specified points.
18. The system of claim 1 wherein the third data is derived by automated processes that determine a position of the radiopaque marker within a field of view.
19. The system of claim 18 wherein the automated processes utilize image pattern recognition to determine the position.
20. The system of claim 1 wherein the third data is derived from a combination of manual user input and automated calculations.
21. The system of claim 20 wherein the automated calculations include determination of a predicted path of the imaging probe.
22. The system of claim 1 wherein the display processor further comprises a bookmark function enabling a user to designate particular images of interest in a stored set of images containing at least the intravascular image element.
23. The system of claim 1 wherein the enhanced radiological image includes a calculated path of the imaging probe.
24. The system of claim 1 wherein the display processor further comprises-a slider function associated with the cursor that enables a user to reposition the cursor to a point of interest on the enhanced radiological image through a user interface control, and in response displays a particular instance of the intravascular image element associated with the point of interest.
25. The system of claim 1, wherein the estimated location is based at least in part on a calculated path of the imaging probe and wherein the calculated path is updated based on the error function that is calculated based on a difference between the estimated location of the radiopaque marker and the actual location of the radiopaque marker.
26. A method for acquiring and displaying intravascular information in a system including an imaging flexible elongate member having a proximal end and a distal end, an imaging probe located near the distal end of the flexible elongate member, and configured to obtain information for generating an image of a vessel, and a radiopaque marker located near the imaging probe, the method comprising the steps of:
storing angiogram image data in a first memory;
storing intravascular image data derived from information obtained by the imaging probe in a second memory;
storing radiopaque marker image data, distinct from the angiogram image data, in a third memory, the radiopaque marker image data being derived from information obtained from a fluoroscopic imaging device;
combining, by a display processor, data retrieved from the first memory, the second memory and the third memory to render a composite image including:
an enhanced radiological image derived from the angiogram image data comprising a superimposition of at least a portion of the angiogram data and the radiopaque marker data and providing a location of the radiopaque marker based upon an actual location during active fluoroscopy and an estimated location during inactive fluoroscopy, and
an intravascular image element corresponding to the intravascular image data, wherein the enhanced radiological image and the intravascular image element are displayed proximate each other; and
displaying a cursor upon the enhanced radiological image, indicative of a location of the imaging probe while acquiring data for the intravascular image element presently displayed on the composite image, said cursor having a position that is based at least in part on third data derived from the radiopaque marker image data previously stored in the third memory;
wherein the estimated location is based on a calculated path of the imaging probe, and wherein an error function is calculated based on a difference between the estimated location of the radiopaque marker and the actual location of the radiopaque marker when active fluoroscopy is resumed after inactive fluoroscopy and wherein the error function is utilized to correct the calculated path.
27. The method of claim 26 wherein the flexible elongate member is a catheter.
28. The method of claim 26 wherein the imaging probe comprises an ultrasound device.
29. The method of claim 28 wherein the ultrasound device comprises a Doppler transducer.
30. The method of claim 26 wherein the flexible elongate member is a guidewire and the imaging probe comprises a pressure sensor.
31. The method of claim 26 wherein the radiopaque marker comprises two semi-cylindrical marker bands that are skewed in relation to one another along a lengthwise axis of the flexible elongate member and wherein the method comprises determining an orientation of the imaging probe based upon at least a relative size and position of the two semi-cylindrical marker bands in relation to one another.
32. The method of claim 26 wherein the third data is derived from user-specified points.
33. The method of claim 26 wherein the third data is derived by automated processes that determine a position of the radiopaque marker within a field of view.
34. The method of claim 26 wherein the third data is derived from a combination of manual user input and automated calculations.
35. The method of claim 34 wherein the automated calculations determine a predicted path of the imaging probe.
36. The method of claim 26 further comprising storing a user-designated set of particular images of interest in a stored set of images containing at least the intravascular image element.
37. The method of claim 26 further comprising incorporating a calculated path of the imaging probe within the enhanced radiological image.
38. The method of claim 26 further comprising providing a slider function associated with the cursor that enables a user to reposition the cursor to a point of interest on the enhanced radiological image through a user interface control, and in response display a particular instance of the intravascular image element associated with the point of interest.
39. The method of claim 26, wherein the calculated path is calculated using a first multiplication coefficient if the imaging probe is being pulled through the vessel and a second multiplication coefficient if the imaging probe is being pushed through the vessel.
40. A system for acquisition and co-registered display of intravascular information, comprising:
an imaging flexible elongate member having a proximal end and a distal end;
an imaging probe located near the distal end of the flexible elongate member, and configured to obtain information for generating an image of a vessel;
a radiopaque marker located near the imaging probe;
a first memory portion for storing angiogram image data;
a second memory portion for storing intravascular image data derived from information obtained by the imaging probe;
a third memory portion for storing radiopaque marker image data, the radiopaque marker image data being derived from information obtained from a fluoroscopic imaging device;
a display processor configured to retrieve and combine data from the first memory portion, the second memory portion and the third memory portion, and further configured to render a composite image including:
an enhanced radiological image derived from the angiogram image data comprising a superimposition of at least a portion of the angiogram data and the radiopaque marker image data and providing a location of the radiopaque marker based upon an actual location during active fluoroscopy and an estimated location during inactive fluoroscopy, wherein an error function is calculated based on a difference between the estimated location of the radiopaque marker and the actual location of the radiopaque marker when active fluoroscopy is resumed after inactive fluoroscopy and wherein the error function is utilized to correct the estimated location of the radiopaque marker for the preceding period of inactive fluoroscopy,
an intravascular image element corresponding to the intravascular image data, wherein the enhanced radiological image and the intravascular image element are displayed proximate each other; and
a cursor, displayed upon the enhanced radiological image, indicative of a location of the imaging probe while acquiring data for the intravascular image element presently displayed on the composite image, said cursor having a position that is based at least in part on third data derived from the radiopaque marker image data stored in the third memory portion.
41. The method of claim 40, wherein the calculated path is calculated using a first multiplication coefficient if the imaging probe is being pulled through the vessel and a second multiplication coefficient if the imaging probe is being pushed through the vessel.
42. The system of claim 40, wherein the imaging flexible elongate member is a catheter.
43. The system of claim 40, wherein the imaging flexible elongate member is a guidewire.
44. The system of claim 40, wherein the imaging probe includes an ultrasound transducer.
45. The system of claim 40, wherein the imaging probe includes a pressure sensor.
46. A system for providing an enhanced image of a vessel, the system comprising:
a processing system in communication with a diagnostic probe and a display, the processing system configured to:
receive angiogram image data of the vessel, wherein the angiogram image data is obtained with contrast flow;
receive fluoroscopic image data of the vessel and the diagnostic probe obtained while the diagnostic probe is positioned within and moved along a length of the vessel, the diagnostic probe including a radiopaque marker;
receive intravascular diagnostic data obtained by the diagnostic probe from within the vessel;
output an enhanced angiographic image of the vessel to the display, the enhanced angiographic image including:
an angiogram of the vessel based on the received angiogram image data; and
a marker indicative of a position of an element of the diagnostic probe along the length of the vessel based on a location of the radiopaque marker in the received fluoroscopic image data,
wherein the marker is superimposed on the angiogram of the vessel based on the location of the radiopaque marker in the received fluoroscopic image data; and
output a visual representation of the intravascular diagnostic data to the display, the visual representation of the intravascular diagnostic data including the intravascular diagnostic data associated with the position of the element of the diagnostic probe along the length of the vessel.
47. The system of claim 46, wherein the fluoroscopic image data is obtained without contrast flow.
48. The system of claim 46, wherein the diagnostic probe is an intravascular imaging probe.
49. The system of claim 48, wherein the intravascular imaging probe is at least one of an intravascular ultrasound (IVUS) probe and an optical coherence tomography (OCT) probe.
50. The system of claim 48, wherein the visual representation of the intravascular diagnostic data is a cross-sectional image of the vessel.
51. The system of claim 46, wherein the diagnostic probe is a hemodynamic intravascular probe.
52. The system of claim 47, wherein the hemodynamic intravascular probe includes at least one of a pressure sensor and a flow sensor.
53. The system of claim 52, wherein the visual representation of the intravascular diagnostic data is a graph of a hemodynamic variable along the length of the vessel.
54. The system of claim 53, wherein the hemodynamic variable is a fractional flow reserve (FFR) value.
55. The system of claim 46, wherein the marker of the enhanced angiographic image is generated by superimposing the fluoroscopic image data onto the angiogram image data.
56. The system of claim 55, wherein superimposing the fluoroscopic image data onto the angiogram image data accounts for an angular orientation of the radiopaque marker.
57. The system of claim 56, wherein the angular orientation of the radiopaque marker is determined by identifying corners of a four-sided polygon of an image of the radiopaque marker in the fluoroscopic image data.
58. The system of claim 56, wherein the diagnostic probe includes at least two radiopaque markers.
59. The system of claim 58, wherein the radiopaque markers have different profiles such that an angular orientation of the diagnostic probe can be determined from an image of the radiopaque markers in the fluoroscopic image data.
60. The system of claim 56, wherein superimposing the fluoroscopic image data onto the angiogram image data further utilizes at least one of: one or more dimensions of the diagnostic probe, image field information for the angiogram image data, and image field information for the fluoroscopic image data.
61. The system of claim 46, wherein the marker operates as a slider control such that as the marker is moved the output visual representation of the intravascular diagnostic data is updated based on the location of the marker and the associated position of the element of the diagnostic probe along the length of the vessel.
62. The system of claim 46, further comprising the diagnostic probe.
63. The system of claim 62, wherein the diagnostic probe is at least one of a catheter or a guidewire.
US14/727,617 2005-01-11 2015-06-01 Vascular image co-registration Expired - Fee Related USRE46562E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/727,617 USRE46562E1 (en) 2005-01-11 2015-06-01 Vascular image co-registration

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US64289305P 2005-01-11 2005-01-11
US69401405P 2005-06-24 2005-06-24
US11/329,609 US7930014B2 (en) 2005-01-11 2006-01-11 Vascular image co-registration
US13/865,803 USRE45534E1 (en) 2005-01-11 2013-04-18 Vascular image co-registration
US14/727,617 USRE46562E1 (en) 2005-01-11 2015-06-01 Vascular image co-registration

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/329,609 Reissue US7930014B2 (en) 2005-01-11 2006-01-11 Vascular image co-registration

Publications (1)

Publication Number Publication Date
USRE46562E1 true USRE46562E1 (en) 2017-10-03

Family

ID=36678153

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/329,609 Ceased US7930014B2 (en) 2005-01-11 2006-01-11 Vascular image co-registration
US13/865,803 Expired - Fee Related USRE45534E1 (en) 2005-01-11 2013-04-18 Vascular image co-registration
US14/727,617 Expired - Fee Related USRE46562E1 (en) 2005-01-11 2015-06-01 Vascular image co-registration

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/329,609 Ceased US7930014B2 (en) 2005-01-11 2006-01-11 Vascular image co-registration
US13/865,803 Expired - Fee Related USRE45534E1 (en) 2005-01-11 2013-04-18 Vascular image co-registration

Country Status (4)

Country Link
US (3) US7930014B2 (en)
EP (2) EP2712553A3 (en)
JP (3) JP5345782B2 (en)
WO (1) WO2006076409A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160206267A1 (en) * 2013-09-26 2016-07-21 Terumo Kabushiki Kaisha Image processing apparatus, image display system, imaging system, image processing method, and program
US10492754B2 (en) * 2015-11-20 2019-12-03 International Business Machines Corporation Real-time cloud-based virtual fractional flow reserve estimation
US10667868B2 (en) 2015-12-31 2020-06-02 Stryker Corporation System and methods for performing surgery on a patient at a target site defined by a virtual object
US11311196B2 (en) 2018-02-23 2022-04-26 Boston Scientific Scimed, Inc. Methods for assessing a vessel with sequential physiological measurements
US11559213B2 (en) 2018-04-06 2023-01-24 Boston Scientific Scimed, Inc. Medical device with pressure sensor
US11666232B2 (en) 2018-04-18 2023-06-06 Boston Scientific Scimed, Inc. Methods for assessing a vessel with sequential physiological measurements
US11850073B2 (en) 2018-03-23 2023-12-26 Boston Scientific Scimed, Inc. Medical device with pressure sensor

Families Citing this family (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177762B2 (en) 1998-12-07 2012-05-15 C. R. Bard, Inc. Septum including at least one identifiable feature, access ports including same, and related methods
US20080051660A1 (en) * 2004-01-16 2008-02-28 The University Of Houston System Methods and apparatuses for medical imaging
US20060242143A1 (en) * 2005-02-17 2006-10-26 Esham Matthew P System for processing medical image representative data from multiple clinical imaging devices
US7947022B2 (en) 2005-03-04 2011-05-24 C. R. Bard, Inc. Access port identification systems and methods
US8029482B2 (en) 2005-03-04 2011-10-04 C. R. Bard, Inc. Systems and methods for radiographically identifying an access port
US9474888B2 (en) 2005-03-04 2016-10-25 C. R. Bard, Inc. Implantable access port including a sandwiched radiopaque insert
US7785302B2 (en) 2005-03-04 2010-08-31 C. R. Bard, Inc. Access port identification systems and methods
US10307581B2 (en) 2005-04-27 2019-06-04 C. R. Bard, Inc. Reinforced septum for an implantable medical device
EP1874393B1 (en) * 2005-04-27 2017-09-06 C.R.Bard, Inc. Infusion apparatuses
EP2939703B1 (en) 2005-04-27 2017-03-01 C. R. Bard, Inc. Infusion apparatuses and related methods
CN100445488C (en) * 2005-08-01 2008-12-24 邱则有 Hollow member for cast-in-situ concrete moulding
JP4835245B2 (en) * 2006-04-19 2011-12-14 株式会社島津製作所 Cardiac diagnostic imaging equipment
DE102006026490B4 (en) * 2006-06-07 2010-03-18 Siemens Ag Radiotherapy device with angiography CT device
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8068920B2 (en) 2006-10-03 2011-11-29 Vincent A Gaudiani Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor
US20080147086A1 (en) * 2006-10-05 2008-06-19 Marcus Pfister Integrating 3D images into interventional procedures
EP2628443B1 (en) 2006-11-08 2021-05-12 Lightlab Imaging, Inc. Opto-acoustic imaging device
US9265912B2 (en) 2006-11-08 2016-02-23 C. R. Bard, Inc. Indicia informative of characteristics of insertable medical devices
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
US9129359B2 (en) 2006-11-10 2015-09-08 Covidien Lp Adaptive navigation technique for navigating a catheter through a body channel or cavity
US20080154137A1 (en) * 2006-11-22 2008-06-26 Celine Pruvot Method, system, and computer product for separating coronary lumen, coronary vessel wall and calcified plaque in an intravascular ultrasound view
US7890155B2 (en) * 2007-01-04 2011-02-15 Siemens Medical Solutions Usa, Inc. Feature emphasis and contextual cutaways for image visualization
AU2008207265B2 (en) * 2007-01-19 2013-08-01 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US9968256B2 (en) 2007-03-08 2018-05-15 Sync-Rx Ltd. Automatic identification of a tool
US20220031270A1 (en) * 2007-03-08 2022-02-03 Sync-Rx, Ltd Identification an dpresentation of device-tovessel relative motion
US8542900B2 (en) * 2007-03-08 2013-09-24 Sync-Rx Ltd. Automatic reduction of interfering elements from an image stream of a moving organ
JP5639764B2 (en) 2007-03-08 2014-12-10 シンク−アールエックス,リミティド Imaging and tools for use with moving organs
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US11197651B2 (en) 2007-03-08 2021-12-14 Sync-Rx, Ltd. Identification and presentation of device-to-vessel relative motion
US10716528B2 (en) * 2007-03-08 2020-07-21 Sync-Rx, Ltd. Automatic display of previously-acquired endoluminal images
US11064964B2 (en) * 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US8023707B2 (en) * 2007-03-26 2011-09-20 Siemens Aktiengesellschaft Evaluation method for mapping the myocardium of a patient
JP5305609B2 (en) * 2007-04-04 2013-10-02 株式会社東芝 X-ray imaging apparatus and fluoroscopic road map image creation program
EP2036494A3 (en) * 2007-05-07 2009-04-15 Olympus Medical Systems Corp. Medical guiding system
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US9579496B2 (en) 2007-11-07 2017-02-28 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
FR2926384B1 (en) * 2008-01-10 2010-01-15 Gen Electric METHOD FOR PROCESSING INTERVENTIONAL RADIOLOGY IMAGES AND ASSOCIATED IMAGING SYSTEM.
US20090306520A1 (en) * 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5508401B2 (en) * 2008-06-05 2014-05-28 コーニンクレッカ フィリップス エヌ ヴェ Ultrasound imaging of extended field of view by guided EFOV scanning
ES2450391T3 (en) 2008-06-19 2014-03-24 Sync-Rx, Ltd. Progressive progress of a medical instrument
EP2138095A1 (en) * 2008-06-25 2009-12-30 BrainLAB AG Method for determining the position of a medical instrument in a body
US8187187B2 (en) * 2008-07-16 2012-05-29 Siemens Medical Solutions Usa, Inc. Shear wave imaging
US20100063400A1 (en) 2008-09-05 2010-03-11 Anne Lindsay Hall Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
EP2160978A1 (en) 2008-09-05 2010-03-10 General Electric Company Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
US8478387B2 (en) * 2008-10-14 2013-07-02 Lightlab Imaging, Inc. Methods for stent strut detection and related measurement and display using optical coherence tomography
BRPI0919890B8 (en) 2008-10-31 2019-09-24 Bard Inc C R access port to provide subcutaneous access to a patient, and force injectable access port
US8932271B2 (en) 2008-11-13 2015-01-13 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US11890443B2 (en) 2008-11-13 2024-02-06 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US11064903B2 (en) * 2008-11-18 2021-07-20 Sync-Rx, Ltd Apparatus and methods for mapping a sequence of images to a roadmap image
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US10362962B2 (en) 2008-11-18 2019-07-30 Synx-Rx, Ltd. Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US9974509B2 (en) * 2008-11-18 2018-05-22 Sync-Rx Ltd. Image super enhancement
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
US8317713B2 (en) * 2009-01-09 2012-11-27 Volcano Corporation Ultrasound catheter with rotatable transducer
CN102365653B (en) * 2009-03-27 2015-02-25 皇家飞利浦电子股份有限公司 Improvements to medical imaging
US20110178395A1 (en) * 2009-04-08 2011-07-21 Carl Zeiss Surgical Gmbh Imaging method and system
US9019305B2 (en) * 2009-04-10 2015-04-28 Siemens Medical Solutions Usa, Inc. Method of visualization of contrast intensity change over time in a DSA image
EP2434943B1 (en) 2009-05-28 2013-05-01 Koninklijke Philips Electronics N.V. Re-calibration of pre-recorded images during interventions using a needle device
US20100305442A1 (en) * 2009-05-29 2010-12-02 Boston Scientific Scimed, Inc. Systems and methods for implementing a data management system for catheter-based imaging systems
US8909323B2 (en) * 2009-08-06 2014-12-09 Siemens Medical Solutions Usa, Inc. System for processing angiography and ultrasound image data
WO2011038044A2 (en) 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods
EP2480122B1 (en) * 2009-09-23 2018-01-10 Lightlab Imaging, Inc. Systems of in-vivo blood clearing in a lumen
US20180344174A9 (en) * 2009-09-23 2018-12-06 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
DE102009043069A1 (en) 2009-09-25 2011-04-07 Siemens Aktiengesellschaft Visualization method and imaging system
WO2011038305A2 (en) 2009-09-25 2011-03-31 Volcano Corporation Device and method for determining the likelihood of a patient having a clinical event or a clinically silent event based on ascertained physiological parameters
US8295912B2 (en) * 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
WO2011062750A1 (en) 2009-11-17 2011-05-26 C. R. Bard, Inc. Overmolded access port including anchoring and identification features
US10238361B2 (en) * 2009-12-09 2019-03-26 Koninklijke Philips N.V. Combination of ultrasound and x-ray systems
DE102010012621A1 (en) * 2010-03-24 2011-09-29 Siemens Aktiengesellschaft Method and device for automatically adapting a reference image
US8639008B2 (en) 2010-04-20 2014-01-28 Athero Point, LLC Mobile architecture using cloud for data mining application
US8708914B2 (en) 2010-06-07 2014-04-29 Atheropoint, LLC Validation embedded segmentation method for vascular ultrasound images
US8313437B1 (en) 2010-06-07 2012-11-20 Suri Jasjit S Vascular ultrasound intima-media thickness (IMT) measurement system
US8485975B2 (en) 2010-06-07 2013-07-16 Atheropoint Llc Multi-resolution edge flow approach to vascular ultrasound for intima-media thickness (IMT) measurement
US8805043B1 (en) 2010-04-02 2014-08-12 Jasjit S. Suri System and method for creating and using intelligent databases for assisting in intima-media thickness (IMT)
US8532360B2 (en) * 2010-04-20 2013-09-10 Atheropoint Llc Imaging based symptomatic classification using a combination of trace transform, fuzzy technique and multitude of features
US8494794B2 (en) 2010-06-13 2013-07-23 Angiometrix Corporation Methods and systems for determining vascular bodily lumen information and guiding medical devices
US8798712B2 (en) 2010-06-13 2014-08-05 Angiometrix Corporation Methods and systems for determining vascular bodily lumen information and guiding medical devices
JP5641792B2 (en) * 2010-06-24 2014-12-17 株式会社東芝 MEDICAL IMAGE DIAGNOSIS DEVICE AND METHOD FOR CONTROLLING MEDICAL IMAGE DIAGNOSIS DEVICE
US8565859B2 (en) * 2010-06-29 2013-10-22 Siemens Aktiengesellschaft Method and system for image based device tracking for co-registration of angiography and intravascular ultrasound images
JP6099562B2 (en) * 2010-07-29 2017-03-22 シンク−アールエックス,リミティド Combined use of intraluminal data and extraluminal imaging
US8315812B2 (en) * 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
CN103237503B (en) 2010-09-10 2017-09-05 阿西斯特医疗系统有限公司 The apparatus and method searched for for medical image
US8634896B2 (en) * 2010-09-20 2014-01-21 Apn Health, Llc 3D model creation of anatomic structures using single-plane fluoroscopy
CN103118601B (en) * 2010-09-30 2015-11-25 皇家飞利浦电子股份有限公司 Traceable imaging device and imaging tool is utilized to carry out the detection of bifurcated
EP2637727B1 (en) 2010-11-09 2024-02-07 Opsens Inc. Guidewire with internal pressure sensor
US20120130242A1 (en) * 2010-11-24 2012-05-24 Boston Scientific Scimed, Inc. Systems and methods for concurrently displaying a plurality of images using an intravascular ultrasound imaging system
EP2468207A1 (en) 2010-12-21 2012-06-27 Renishaw (Ireland) Limited Method and apparatus for analysing images
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
USD682416S1 (en) 2010-12-30 2013-05-14 C. R. Bard, Inc. Implantable access port
USD676955S1 (en) 2010-12-30 2013-02-26 C. R. Bard, Inc. Implantable access port
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US8761469B2 (en) * 2011-01-03 2014-06-24 Volcano Corporation Artifact management in rotational imaging
US9107639B2 (en) * 2011-03-15 2015-08-18 Medicinsk Bildteknik Sverige Ab System for synchronously visualizing a representation of first and second input data
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
CN103959043B (en) * 2011-05-31 2016-11-02 光学实验室成像公司 Multi-mode imaging system, equipment and method
US9504588B2 (en) 2011-06-05 2016-11-29 The Research Foundation For The State University Of New York System and method for simulating deployment configuration of an expandable device
JP6099640B2 (en) 2011-06-23 2017-03-22 シンク−アールエックス,リミティド Lumen background sharpening
US9247906B2 (en) 2011-06-28 2016-02-02 Christie Digital Systems Usa, Inc. Method and apparatus for detection of catheter location for intravenous access
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US20140229883A1 (en) * 2011-09-30 2014-08-14 Kenta Tsukijishin Diagnostic x-ray imaging equipment and x-ray image display method
US8831321B1 (en) 2011-11-07 2014-09-09 Lightlab Imaging, Inc. Side branch detection methods, systems and devices
TWI482613B (en) 2011-12-27 2015-05-01 Ind Tech Res Inst Signal analysis method, method for analyzing ultrasound image, and ultrasound imaging system using the same
CN104272348B (en) * 2012-02-03 2017-11-17 皇家飞利浦有限公司 For the imaging device and method being imaged to object
AU2012200735C1 (en) 2012-02-08 2013-01-24 Cook Medical Technologies Llc Orientation markers for endovascular delivery system
US10064595B2 (en) 2012-04-24 2018-09-04 Siemens Healthcare Gmbh System for coregistration of optical coherence tomography and angiographic X-ray image data
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
CA2899735A1 (en) * 2012-05-21 2013-11-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
JP6134789B2 (en) 2012-06-26 2017-05-24 シンク−アールエックス,リミティド Image processing related to flow in luminal organs
WO2014001948A2 (en) * 2012-06-28 2014-01-03 Koninklijke Philips N.V. C-arm trajectory planning for optimal image acquisition in endoscopic surgery
EP3298959B2 (en) 2012-08-03 2022-09-28 Philips Image Guided Therapy Corporation Devices and systems for assessing a vessel
CN104582572B (en) * 2012-08-16 2018-04-13 东芝医疗系统株式会社 Image processing apparatus, medical diagnostic imaging apparatus and blood pressure monitor
CN105142506A (en) 2012-08-27 2015-12-09 波士顿科学国际有限公司 Pressure-sensing medical devices and medical device systems
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
CN104717924A (en) * 2012-10-05 2015-06-17 皇家飞利浦有限公司 Medical imaging system and method for providing an enhanced X-ray image
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
EP2904671B1 (en) 2012-10-05 2022-05-04 David Welford Systems and methods for amplifying light
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US10792012B2 (en) 2012-11-19 2020-10-06 Lightlab Imaging, Inc. Interface devices, systems and methods for multimodal probes
JP6419425B2 (en) * 2012-11-29 2018-11-07 キヤノンメディカルシステムズ株式会社 Blood flow function testing apparatus and X-ray diagnostic apparatus
CN108836280B (en) 2012-12-12 2021-04-30 光学实验室成像公司 Method and device for automatically determining the contour of a vessel lumen
JP6322210B2 (en) 2012-12-13 2018-05-09 ボルケーノ コーポレイション Devices, systems, and methods for targeted intubation
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
CA2895770A1 (en) * 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
JP2016511644A (en) * 2012-12-21 2016-04-21 ジェイソン スペンサー, Catheter orientation marker
CA2896006A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
WO2014099763A1 (en) 2012-12-21 2014-06-26 Jason Spencer System and method for graphical processing of medical data
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
JP6363095B2 (en) * 2012-12-21 2018-07-25 ボルケーノ コーポレイション Processing system and method of operating the processing system
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US8913084B2 (en) * 2012-12-21 2014-12-16 Volcano Corporation Method and apparatus for performing virtual pullback of an intravascular imaging device
WO2014099914A1 (en) * 2012-12-21 2014-06-26 Paul Hoseit System and method for flush-triggered imaging
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9091628B2 (en) 2012-12-21 2015-07-28 L-3 Communications Security And Detection Systems, Inc. 3D mapping with two orthogonal imaging views
EP2934653B1 (en) 2012-12-21 2018-09-19 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10642953B2 (en) 2012-12-26 2020-05-05 Philips Image Guided Therapy Corporation Data labeling and indexing in a multi-modality medical imaging system
US10799209B2 (en) 2012-12-26 2020-10-13 Philips Image Guided Therapy Corporation Measurement navigation in a multi-modality medical imaging system
WO2014105717A1 (en) 2012-12-28 2014-07-03 Volcano Corporation Synthetic aperture image reconstruction system in a patient interface module (pim)
WO2014106186A1 (en) 2012-12-31 2014-07-03 Volcano Corporation Devices, systems, and methods for assessment of vessels
EP2943127A4 (en) * 2013-01-08 2016-09-14 Volcano Corp Method for focused acoustic computed tomography (fact)
KR102146851B1 (en) * 2013-02-08 2020-08-21 삼성전자주식회사 Diagnosis supporting apparatus and method by providing effective diagnosis information, and diagnosis system
CN104797186B (en) * 2013-03-06 2016-10-12 奥林巴斯株式会社 Endoscopic system
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
CN105103163A (en) 2013-03-07 2015-11-25 火山公司 Multimodal segmentation in intravascular images
US9173591B2 (en) 2013-03-08 2015-11-03 Lightlab Imaging, Inc. Stent visualization and malapposition detection systems, devices, and methods
US9351698B2 (en) 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
EP2967391A4 (en) * 2013-03-12 2016-11-02 Donna Collins Systems and methods for diagnosing coronary microvascular disease
US9439793B2 (en) 2013-03-12 2016-09-13 Cook Medical Technologies Llc Extension for iliac branch delivery device and methods of using the same
EP4091536A1 (en) * 2013-03-12 2022-11-23 Lightlab Imaging, Inc. Vascular data processing and image registration methods
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10130501B2 (en) 2013-03-12 2018-11-20 Cook Medical Technologies Llc Delivery device with an extension sheath and methods of using the same
US20140275996A1 (en) * 2013-03-12 2014-09-18 Volcano Corporation Systems and methods for constructing an image of a body structure
US20140276085A1 (en) * 2013-03-13 2014-09-18 Volcano Corporation Coregistered intravascular and angiographic images
EP2967488B1 (en) 2013-03-13 2021-06-16 Jinhyoung Park System for producing an image from a rotational intravascular ultrasound device
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US9833221B2 (en) * 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
EP2968854B1 (en) 2013-03-15 2019-04-24 Boston Scientific Scimed, Inc. Pressure sensing guidewire
US9271663B2 (en) * 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
WO2014143816A1 (en) * 2013-03-15 2014-09-18 Volcano Corporation Devices, systems, and methods for preservation of arteriovenous access sites
US20160067005A1 (en) * 2013-03-15 2016-03-10 Volcano Corporation Pressure wire detection and communication protocol for use with medical measurement systems
US9986967B2 (en) * 2013-03-15 2018-06-05 Volcano Corporation Distal protection systems and methods with pressure and ultrasound features
CN105246411B (en) * 2013-04-03 2019-10-18 皇家飞利浦有限公司 Intervene x-ray system
WO2014167511A1 (en) * 2013-04-12 2014-10-16 Koninklijke Philips N.V. Shape sensed ultrasound probe for fractional flow reserve simulation
AU2014268473A1 (en) 2013-05-22 2015-12-24 Boston Scientific Scimed, Inc. Pressure sensing guidewire systems including an optical connector cable
US10779775B2 (en) 2013-06-26 2020-09-22 Corindus, Inc. X-ray marker guided automated guide wire or working catheter advancement
US11229490B2 (en) 2013-06-26 2022-01-25 Corindus, Inc. System and method for monitoring of guide catheter seating
EP3021758A4 (en) * 2013-07-19 2017-03-15 Volcano Corporation Devices, systems, and methods for assessment of vessels
CN105578952B (en) 2013-07-26 2019-03-19 波士顿科学国际有限公司 Minimize the FFR sensing head design of the pressure unbalance loading as caused by stress
WO2015023789A1 (en) 2013-08-14 2015-02-19 Boston Scientific Scimed, Inc. Medical device systems including an optical fiber with a tapered core
WO2015044979A1 (en) * 2013-09-26 2015-04-02 テルモ株式会社 Information processing device, imaging system, information processing method and program
US9775523B2 (en) 2013-10-14 2017-10-03 Boston Scientific Scimed, Inc. Pressure sensing guidewire and methods for calculating fractional flow reserve
JP6782634B2 (en) * 2013-10-25 2020-11-11 ボルケーノ コーポレイション A system for providing information on blood vessels to assist in assessing a patient's blood vessels
EP2873371B1 (en) * 2013-11-13 2022-12-21 Pie Medical Imaging BV Method and system for registering intravascular images
US20150157197A1 (en) * 2013-12-09 2015-06-11 Omer Aslam Ilahi Endoscopic image overlay
DE102014200326A1 (en) * 2014-01-10 2015-07-16 Siemens Aktiengesellschaft A method of supporting navigation of a medical instrument
CN105899141A (en) * 2014-01-10 2016-08-24 火山公司 Detecting endoleaks associated with aneurysm repair
US9539090B2 (en) * 2014-01-16 2017-01-10 Cook Medical Technologies Llc Transaortic valve access device
US9955878B2 (en) 2014-02-03 2018-05-01 Volcano Corporation Intravascular devices, systems, and methods having a core wire with embedded conductors
US10932679B2 (en) 2014-03-18 2021-03-02 Boston Scientific Scimed, Inc. Pressure sensing guidewires and methods of use
US10213182B2 (en) 2014-03-26 2019-02-26 Volcano Corporation Devices, systems, and methods for assessing a vessel utilizing angled flow-sensing elements
US10441754B2 (en) 2014-03-26 2019-10-15 Volcano Corporation Intravascular devices, systems, and methods having a core wire formed of multiple materials
CN106489152A (en) * 2014-04-10 2017-03-08 Sync-Rx有限公司 Graphical analysis in the case of it there is medical supply
JP6378363B2 (en) 2014-04-17 2018-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Self-cleaning optical connector
WO2015167997A1 (en) * 2014-04-30 2015-11-05 Stryker Corporation Implant delivery system and method of use
WO2015171480A1 (en) * 2014-05-06 2015-11-12 Koninklijke Philips N.V. Devices, systems, and methods for vessel assessment
US9754082B2 (en) 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
EP3151739B1 (en) 2014-06-04 2020-01-22 Boston Scientific Scimed, Inc. Pressure sensing guidewire systems with reduced pressure offsets
US9848799B2 (en) * 2014-06-25 2017-12-26 Biosense Webster (Israel) Ltd Real-time generation of MRI slices
CN106535746B (en) 2014-07-11 2021-02-19 皇家飞利浦有限公司 Devices, systems, and methods for vascular treatment
US10542954B2 (en) * 2014-07-14 2020-01-28 Volcano Corporation Devices, systems, and methods for improved accuracy model of vessel anatomy
WO2016008809A1 (en) 2014-07-15 2016-01-21 Koninklijke Philips N.V. Devices, systems, and methods and associated display screens for assessment of vessels with multiple sensing components
WO2016014991A1 (en) 2014-07-24 2016-01-28 Lightlab Imaging, Inc. Stent and vessel visualization and diagnostic systems, devices, and methods
US9782129B2 (en) 2014-08-01 2017-10-10 Boston Scientific Scimed, Inc. Pressure sensing guidewires
CN107148239B (en) * 2014-09-11 2020-03-31 皇家飞利浦有限公司 Bedside controllers for vascular assessment and associated devices, systems, and methods
US10499813B2 (en) * 2014-09-12 2019-12-10 Lightlab Imaging, Inc. Methods, systems and apparatus for temporal calibration of an intravascular imaging system
WO2016070041A1 (en) * 2014-10-31 2016-05-06 Zelina Fluency, Inc. Electronic health record hanging protocol and display for an integrated clinical course
JP6692809B2 (en) 2014-11-14 2020-05-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Percutaneous Coronary Intervention Planning Interface and Related Devices, Systems, and Methods
WO2016075601A1 (en) 2014-11-14 2016-05-19 Koninklijke Philips N.V. Percutaneous coronary intervention (pci) planning interface with pressure data and vessel data and associated devices, systems, and methods
JP6550463B2 (en) 2014-12-05 2019-07-24 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for pressure sensing and method of manufacturing the same
WO2016092390A1 (en) 2014-12-08 2016-06-16 Koninklijke Philips N.V. Interactive physiologic data and intravascular imaging data and associated devices, systems, and methods
WO2016092420A1 (en) * 2014-12-08 2016-06-16 Koninklijke Philips N.V. Devices, systems, and methods for vessel assessment and intervention recommendation
EP3229688B1 (en) * 2014-12-08 2020-10-28 Koninklijke Philips N.V. Device and method to recommend diagnostic procedure based on co-registered angiographic image and physiological information measured by intravascular device
JP2017536213A (en) * 2014-12-08 2017-12-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Automated identification and classification of intravascular lesions
JP6789944B2 (en) * 2014-12-08 2020-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Interactive cardiac test data and related devices, systems, and methods
AU2015360265B2 (en) 2014-12-12 2020-08-27 Desmond Adler Systems and methods to detect and display endovascular features
US10105107B2 (en) 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
GB2555012B (en) * 2015-03-17 2020-09-09 Synaptive Medical Barbados Inc Method and device for registering surgical images
JP6865691B2 (en) * 2015-04-20 2021-04-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dual lumen diagnostic catheter
US10675006B2 (en) * 2015-05-15 2020-06-09 Siemens Medical Solutions Usa, Inc. Registration for multi-modality medical imaging fusion with narrow field of view
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US10140712B2 (en) 2015-05-17 2018-11-27 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10646198B2 (en) 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
JP6707320B2 (en) * 2015-06-01 2020-06-10 キヤノンメディカルシステムズ株式会社 Image processing apparatus and X-ray diagnostic apparatus
WO2016207762A1 (en) 2015-06-25 2016-12-29 Koninklijke Philips N.V. Interactive intravascular procedure training and associated devices, systems, and methods
JP6867385B2 (en) 2015-07-25 2021-04-28 ライトラボ・イメージング・インコーポレーテッド Intravascular data visualization method
EP3307382A1 (en) * 2015-08-24 2018-04-18 Boston Scientific Neuromodulation Corporation Systems and methods for determining orientation of an electrical stimulation lead
CN108471963B (en) 2015-09-29 2022-03-01 帝国改革有限公司 Devices, systems and methods for coronary intervention assessment, planning and treatment based on desired results
WO2017063963A1 (en) * 2015-10-14 2017-04-20 Koninklijke Philips N.V. Apparatus for characterizing a vessel wall
WO2017087821A2 (en) 2015-11-18 2017-05-26 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
EP3376941A1 (en) 2015-11-18 2018-09-26 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
CN115998310A (en) 2015-11-23 2023-04-25 光学实验室成像公司 Detection and verification of shadows in intravascular images
JP2017131348A (en) 2016-01-26 2017-08-03 テルモ株式会社 Image display device, control method thereof, and radiopaque marker detection method
JP6866310B2 (en) * 2016-01-26 2021-04-28 テルモ株式会社 Image display device and its control method
EP3419514B1 (en) 2016-02-23 2023-08-23 Boston Scientific Scimed, Inc. Pressure sensing guidewire systems including an optical connector cable
ES2908571T3 (en) 2016-04-14 2022-05-03 Lightlab Imaging Inc Identification of branches of a blood vessel
WO2017201026A1 (en) 2016-05-16 2017-11-23 Lightlab Imaging, Inc. Intravascular absorbable stent detection and diagnostic methods and systems
US10806516B2 (en) * 2016-06-20 2020-10-20 General Electric Company Virtual 4D stent implantation path assessment
EP3474750B1 (en) * 2016-06-22 2020-09-16 Sync-RX, Ltd. Estimating the endoluminal path of an endoluminal device along a lumen
CN109475343A (en) * 2016-08-01 2019-03-15 深圳迈瑞生物医疗电子股份有限公司 Ultrasonic elasticity measures display methods and system
US11883107B2 (en) 2016-09-28 2024-01-30 Lightlab Imaging, Inc. Stent planning systems and methods using vessel representation obtained via intravascular probe by determining stent effectiveness score and fractional flow reserve
US10842589B2 (en) 2017-03-21 2020-11-24 Canon U.S.A., Inc. Method for displaying an anatomical image of a coronary artery on a graphical user interface
EP3384850A1 (en) * 2017-04-05 2018-10-10 Koninklijke Philips N.V. Method and apparatus for physiological functional parameter determination
US11058385B2 (en) * 2017-07-26 2021-07-13 Canon U.S.A., Inc. Method for evaluating cardiac motion using an angiography image
EP4151147A1 (en) 2017-08-03 2023-03-22 Boston Scientific Scimed, Inc. Systems for assessing fractional flow reserve
WO2019048270A1 (en) * 2017-09-07 2019-03-14 Koninklijke Philips N.V. Automatic normalization of intravascular devices
EP3461416A1 (en) * 2017-09-28 2019-04-03 Koninklijke Philips N.V. Guiding an intravascular us catheter
US10621748B2 (en) 2017-10-03 2020-04-14 Canon U.S.A., Inc. Detecting and displaying stent expansion
US11571129B2 (en) 2017-10-03 2023-02-07 Canon U.S.A., Inc. Detecting and displaying stent expansion
CN111356406A (en) 2017-10-06 2020-06-30 埃默里大学 Method and system for determining hemodynamic information for one or more arterial segments
CN111918614B (en) * 2018-03-29 2024-01-16 泰尔茂株式会社 Image processing apparatus and image display method
US11382516B2 (en) 2018-06-08 2022-07-12 Canon U.S.A., Inc. Apparatuses, methods, and storage mediums for lumen and artifacts detection in one or more images, such as in optical coherence tomography images
US11406334B2 (en) 2018-08-31 2022-08-09 Philips Image Guided Therapy Corporation Intravascular device movement speed guidance and associated devices, systems, and methods
US11648397B1 (en) 2018-10-12 2023-05-16 Vincent Gaudiani Transcoronary sinus pacing of posteroseptal left ventricular base
US11577075B1 (en) 2018-10-12 2023-02-14 Vincent A. Gaudiani Transcoronary sinus pacing of his bundle
WO2020084039A1 (en) 2018-10-26 2020-04-30 Koninklijke Philips N.V. Intraluminal ultrasound navigation guidance and associated devices, systems, and methods
CN112996445A (en) 2018-10-26 2021-06-18 皇家飞利浦有限公司 Velocity determination for intraluminal ultrasound imaging and associated devices, systems, and methods
WO2020084031A1 (en) 2018-10-26 2020-04-30 Koninklijke Philips N.V. Intraluminal ultrasound directional guidance and associated devices, systems, and methods
DE102018220758B4 (en) * 2018-11-30 2023-02-16 Siemens Healthcare Gmbh Device and method for controlling an X-ray machine
JP2020110513A (en) * 2019-01-17 2020-07-27 株式会社日立製作所 Radiation imaging apparatus, image processing method, and image processing program
US20200375576A1 (en) * 2019-06-01 2020-12-03 Philips Image Guided Therapy Corporation Co-registration systems and methods fo renhancing the quality of intravascular images
EP4031008A1 (en) * 2019-09-19 2022-07-27 Lightlab Imaging, Inc. Systems and methods of combined imaging
US20220346756A1 (en) 2019-09-23 2022-11-03 Philips Image Guided Therapy Corporation Co-registration of intravascular and extravascular imaging for extravascular image with intravascular tissue morphology
GB2588102B (en) * 2019-10-04 2023-09-13 Darkvision Tech Ltd Surface extraction for ultrasonic images using path energy
WO2021089810A1 (en) * 2019-11-06 2021-05-14 Philips Image Guided Therapy Corporation Co-registration of intravascular data and multi-segment vasculature, and associated devices, systems, and methods
US20230045488A1 (en) 2020-01-06 2023-02-09 Philips Image Guided Therapy Corporation Intraluminal imaging based detection and visualization of intraluminal treatment anomalies
WO2021180501A1 (en) 2020-03-10 2021-09-16 Koninklijke Philips N.V. Intraluminal image visualization with adaptive scaling and associated systems, methods, and devices
WO2021185604A1 (en) 2020-03-17 2021-09-23 Koninklijke Philips N.V. Self expanding stent system with imaging
EP3884868A1 (en) 2020-03-26 2021-09-29 Pie Medical Imaging BV Method and system for registering intra-object data with extra-object data
WO2021213927A1 (en) * 2020-04-21 2021-10-28 Philips Image Guided Therapy Corporation Automated control of intraluminal data acquisition and associated devices, systems, and methods
US20230334677A1 (en) 2020-09-29 2023-10-19 Philips Image Guided Therapy Corporation Computed tomography-based pathway for co-registration of intravascular data and blood vessel metrics with computed tomography-based three-dimensional model
WO2022069254A1 (en) 2020-09-29 2022-04-07 Koninklijke Philips N.V. Co-registration of intravascular data with angiography-based roadmap image at arbitrary angle, and associated systems, devices, and methods
WO2022069303A2 (en) 2020-09-29 2022-04-07 Philips Image Guided Therapy Corporation Mapping between computed tomography and angiography for co-registration of intravascular data and blood vessel metrics with computed tomography-based three-dimensional model
WO2022238276A1 (en) 2021-05-13 2022-11-17 Koninklijke Philips N.V. Pathway modification for coregistration of extraluminal image and intraluminal data
EP4337098A1 (en) * 2021-05-13 2024-03-20 Koninklijke Philips N.V. Coregistration reliability with extraluminal image and intraluminal data
EP4337100A1 (en) 2021-05-13 2024-03-20 Koninklijke Philips N.V. Preview of intraluminal ultrasound image along longitudinal view of body lumen
WO2022238274A1 (en) * 2021-05-13 2022-11-17 Koninklijke Philips N.V. Automatic measurement of body lumen length between bookmarked intraluminal data based on coregistration of intraluminal data to extraluminal image
EP4337096A1 (en) * 2021-05-13 2024-03-20 Koninklijke Philips N.V. Coregistration of intraluminal data to guidewire in extraluminal image obtained without contrast
EP4337129A1 (en) 2021-05-13 2024-03-20 Koninklijke Philips N.V. Intraluminal treatment guidance from prior extraluminal imaging, intraluminal data, and coregistration
US20230181140A1 (en) 2021-12-11 2023-06-15 Philips Image Guided Therapy Corporation Registration of intraluminal physiological data to longitudinal image body lumen using extraluminal imaging data
WO2023104599A1 (en) 2021-12-11 2023-06-15 Koninklijke Philips N.V. Automatic segmentation and treatment planning for a vessel with coregistration of physiology data and extraluminal data
US20230190227A1 (en) 2021-12-16 2023-06-22 Philips Image Guided Therapy Corporation Plaque burden indication on longitudinal intraluminal image and x-ray image
WO2023110607A1 (en) 2021-12-17 2023-06-22 Koninklijke Philips N.V. Control of laser atherectomy by co-registered intravascular imaging
WO2023110555A1 (en) 2021-12-17 2023-06-22 Koninklijke Philips N.V. Systems, devices, and methods for coregistration of intravascular data to enhanced stent deployment x-ray images
WO2023117721A1 (en) 2021-12-22 2023-06-29 Koninklijke Philips N.V. Intraluminal imaging for reference image frame and target image frame confirmation with deep breathing
WO2023138914A1 (en) 2022-01-24 2023-07-27 Koninklijke Philips N.V. Pulse wave velocity determination using co-registration between intravascular data and extraluminal image, and associated systems, devices, and methods

Citations (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4838879A (en) 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
JPH01204650A (en) 1988-02-09 1989-08-17 Toshiba Corp X-ray image diagnosis device
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US4938220A (en) 1986-08-01 1990-07-03 Advanced Cardiovascular Systems, Inc. Catheter with split tip marker and method of manufacture
US5042486A (en) 1989-09-29 1991-08-27 Siemens Aktiengesellschaft Catheter locatable with non-ionizing field and method for locating same
US5109859A (en) 1989-10-04 1992-05-05 Beth Israel Hospital Association Ultrasound guided laser angioplasty
JPH04246340A (en) 1991-01-31 1992-09-02 Shimadzu Corp X-ray image diagnostic device
US5159931A (en) 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
JPH0584248A (en) 1991-09-30 1993-04-06 Toshiba Corp Diagnostic device for circulatory organ
US5203777A (en) 1992-03-19 1993-04-20 Lee Peter Y Radiopaque marker system for a tubular device
US5207226A (en) * 1991-01-25 1993-05-04 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US5357550A (en) * 1991-09-09 1994-10-18 Kabushiki Kaisha Toshiba Apparatus for diagnosing vascular systems in organism
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5429617A (en) 1993-12-13 1995-07-04 The Spectranetics Corporation Radiopaque tip marker for alignment of a catheter within a body
US5485840A (en) 1994-03-15 1996-01-23 Bauman; Robert P. Method of precise guidance for directional atherectomy using ultrasound
US5540229A (en) 1993-09-29 1996-07-30 U.S. Philips Cororation System and method for viewing three-dimensional echographic data
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5619995A (en) * 1991-11-12 1997-04-15 Lobodzinski; Suave M. Motion video transformation system and method
US5690113A (en) 1996-06-14 1997-11-25 Acuson Corporation Method and apparatus for two dimensional ultrasonic imaging
US5699446A (en) 1993-05-13 1997-12-16 Ge Medical Systems S.A. Method for the acquisition of images of a body by the rotational positioning of a radiology device, notably an angiography device
US5699805A (en) * 1996-06-20 1997-12-23 Mayo Foundation For Medical Education And Research Longitudinal multiplane ultrasound transducer underfluid catheter system
US5709206A (en) 1995-11-27 1998-01-20 Teboul; Michel Imaging system for breast sonography
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
JPH10137238A (en) 1996-11-11 1998-05-26 Shimadzu Corp Medical image processor
US5771895A (en) 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US5840025A (en) 1993-07-20 1998-11-24 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5872861A (en) 1993-07-22 1999-02-16 U.S. Philips Corporation Digital image processing method for automatic detection of stenoses
US5876344A (en) 1997-12-09 1999-03-02 Endosonics Corporation Modular imaging/treatment catheter assembly and method
US5899860A (en) 1996-09-12 1999-05-04 Siemens Elema Ab Method and device for determining the position of a catheter inside the body of a patient
US5921978A (en) 1997-06-20 1999-07-13 Ep Technologies, Inc. Catheter tip steering plane marker
US5954647A (en) 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure
US5957844A (en) 1996-12-03 1999-09-28 Surgical Navigation Specialist Inc. Apparatus and method for visualizing ultrasonic images
US5993390A (en) 1998-09-18 1999-11-30 Hewlett- Packard Company Segmented 3-D cardiac ultrasound imaging method and apparatus
US6014473A (en) 1996-02-29 2000-01-11 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US6024763A (en) 1994-06-08 2000-02-15 Medtronic, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US6035226A (en) 1998-05-22 2000-03-07 Scimed Life Systems, Inc. Systems and methods for assessing stability of an operative instrument inside a body region
US6036682A (en) 1997-12-02 2000-03-14 Scimed Life Systems, Inc. Catheter having a plurality of integral radiopaque bands
US6083167A (en) 1998-02-10 2000-07-04 Emory University Systems and methods for providing radiation therapy and catheter guides
US6095976A (en) 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6148095A (en) * 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US6159225A (en) 1995-10-13 2000-12-12 Transvascular, Inc. Device for interstitial transvascular intervention and revascularization
US6166740A (en) 1994-04-15 2000-12-26 Hewlett Packard Company Method and system for viewing three-dimensional data for a tracked structure
US6190353B1 (en) 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6216029B1 (en) 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6248075B1 (en) 1997-09-26 2001-06-19 Ep Technologies, Inc. Method and apparatus for fixing the anatomical orientation of a displayed ultrasound generated image
US6275724B1 (en) 1998-03-27 2001-08-14 Intravascular Research Limited Medical ultrasonic imaging
US6285903B1 (en) 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US6298261B1 (en) 1997-11-15 2001-10-02 Roke Manor Research Limited Catheter tracking system
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US20010041842A1 (en) 1993-02-01 2001-11-15 Eberle Michael J. Ultrasound transducer assembly
US20020019644A1 (en) 1999-07-12 2002-02-14 Hastings Roger N. Magnetically guided atherectomy
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6374134B1 (en) 1992-08-14 2002-04-16 British Telecommunications Public Limited Company Simultaneous display during surgical navigation
US20020049375A1 (en) 1999-05-18 2002-04-25 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6389104B1 (en) 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US20020099428A1 (en) 2001-01-25 2002-07-25 Leon Kaufman Position-controlled heat delivery catheter
US20020115931A1 (en) * 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6464645B1 (en) * 1997-01-31 2002-10-15 Acuson Corporation Ultrasonic transducer assembly controller
US6471656B1 (en) * 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US6501848B1 (en) 1996-06-19 2002-12-31 University Technology Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images and analytical techniques applied thereto
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6546271B1 (en) 1999-10-01 2003-04-08 Bioscience, Inc. Vascular reconstruction
US6574498B1 (en) 1999-09-16 2003-06-03 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6577889B2 (en) 2000-10-17 2003-06-10 Kabushiki Kaisha Toshiba Radiographic image diagnosis apparatus capable of displaying a projection image in a similar position and direction as a fluoroscopic image
US20030163052A1 (en) 2002-02-27 2003-08-28 Mott Eric V. Connector for interfacing intravascular sensors to a physiology monitor
US6612992B1 (en) 2000-03-02 2003-09-02 Acuson Corp Medical diagnostic ultrasound catheter and method for position determination
US6638222B2 (en) 2000-02-29 2003-10-28 Scimed Life Systems, Inc. RF ablation and ultrasound catheter for crossing chronic total occlusions
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US20030220555A1 (en) 2002-03-11 2003-11-27 Benno Heigl Method and apparatus for image presentation of a medical instrument introduced into an examination region of a patent
US20030231789A1 (en) 2002-06-18 2003-12-18 Scimed Life Systems, Inc. Computer generated representation of the imaging pattern of an imaging device
US6673018B2 (en) 2001-08-31 2004-01-06 Ge Medical Systems Global Technology Company Llc Ultrasonic monitoring system and method
US6718054B1 (en) 1999-06-23 2004-04-06 Massachusetts Institute Of Technology MRA segmentation using active contour models
US6719700B1 (en) 2002-12-13 2004-04-13 Scimed Life Systems, Inc. Ultrasound ranging for localization of imaging transducer
US20040097805A1 (en) 2002-11-19 2004-05-20 Laurent Verard Navigation system for cardiac therapies
US20040114146A1 (en) 2002-12-13 2004-06-17 Scimed Life Systems, Inc. Method and apparatus for orienting a medical image
US20040138548A1 (en) 2003-01-13 2004-07-15 Mediguide Ltd. Method and system for registering a medical situation associated with a first coordinate system, in second coordinate system using an MPS system
US6775404B1 (en) 1999-03-18 2004-08-10 University Of Washington Apparatus and method for interactive 3D registration of ultrasound and magnetic resonance images based on a magnetic position sensor
US6785571B2 (en) 2001-03-30 2004-08-31 Neil David Glossop Device and method for registering a position sensor in an anatomical body
WO2004075756A1 (en) 2003-02-25 2004-09-10 Philips Intellectual Property & Standards Gmbh Intravascular imaging
US6805132B2 (en) 2002-08-06 2004-10-19 Scimed Life Systems, Inc. Performing ultrasound ranging in the presence of ultrasound interference
US20040236206A1 (en) * 2003-04-11 2004-11-25 Georgios Sakas Combining first and second image data of an object
US6831644B2 (en) 2001-06-29 2004-12-14 Ge Medical Systems Global Technology Company Llc Method and device for displaying the deployment of an endovascular prosthesis
US20040254463A1 (en) * 2003-05-30 2004-12-16 The Regents Of The University Of California Radial reflection diffraction tomography
US20050096647A1 (en) 2003-09-12 2005-05-05 Minnow Medical, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
CA2449080A1 (en) 2003-11-13 2005-05-13 Centre Hospitalier De L'universite De Montreal - Chum Apparatus and method for intravascular ultrasound image segmentation: a fast-marching method
US6895267B2 (en) 2001-10-24 2005-05-17 Scimed Life Systems, Inc. Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US6896657B2 (en) 2003-05-23 2005-05-24 Scimed Life Systems, Inc. Method and system for registering ultrasound image in three-dimensional coordinate system
US20050113685A1 (en) 2003-11-21 2005-05-26 Michael Maschke Medical system for examination or treatment
US6923768B2 (en) 2002-03-11 2005-08-02 Siemens Aktiengesellschaft Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated
US20050203369A1 (en) 2004-03-01 2005-09-15 Scimed Life Systems, Inc. Method of catheter tracking using image information
US6970733B2 (en) 1997-08-01 2005-11-29 Scimed Life Systems, Inc. System and method for electrode localization using ultrasound
US6970734B2 (en) 2002-12-02 2005-11-29 Boston Scientific Scimed, Inc. Flexible marker bands
US20060036167A1 (en) * 2004-07-03 2006-02-16 Shina Systems Ltd. Vascular image processing
US7052463B2 (en) * 2002-09-25 2006-05-30 Koninklijke Philips Electronics, N.V. Method and apparatus for cooling a contacting surface of an ultrasound probe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970884B2 (en) * 1991-05-01 1999-11-02 オリンパス光学工業株式会社 Probe device for vascular elasticity measurement
US5857974A (en) * 1997-01-08 1999-01-12 Endosonics Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
JP4248050B2 (en) * 1998-09-08 2009-04-02 株式会社東芝 X-ray computed tomography system
US6190653B1 (en) * 1998-09-18 2001-02-20 The United States Of America As Represented By The Secretary Of Agriculture Chemical attractants for moths
US6645147B1 (en) * 1998-11-25 2003-11-11 Acuson Corporation Diagnostic medical ultrasound image and system for contrast agent imaging
US6200268B1 (en) 1999-09-10 2001-03-13 The Cleveland Clinic Foundation Vascular plaque characterization
AU1013001A (en) * 1999-10-26 2001-05-08 Cedara Software Corp. Catheter with radiopaque markers for 3d position tracking
JP4838449B2 (en) * 2001-07-16 2011-12-14 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment

Patent Citations (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4838879A (en) 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
US4938220A (en) 1986-08-01 1990-07-03 Advanced Cardiovascular Systems, Inc. Catheter with split tip marker and method of manufacture
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
JPH01204650A (en) 1988-02-09 1989-08-17 Toshiba Corp X-ray image diagnosis device
US5159931A (en) 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
US5042486A (en) 1989-09-29 1991-08-27 Siemens Aktiengesellschaft Catheter locatable with non-ionizing field and method for locating same
US5109859A (en) 1989-10-04 1992-05-05 Beth Israel Hospital Association Ultrasound guided laser angioplasty
US5207226A (en) * 1991-01-25 1993-05-04 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
JPH04246340A (en) 1991-01-31 1992-09-02 Shimadzu Corp X-ray image diagnostic device
US5357550A (en) * 1991-09-09 1994-10-18 Kabushiki Kaisha Toshiba Apparatus for diagnosing vascular systems in organism
JPH0584248A (en) 1991-09-30 1993-04-06 Toshiba Corp Diagnostic device for circulatory organ
US5619995A (en) * 1991-11-12 1997-04-15 Lobodzinski; Suave M. Motion video transformation system and method
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5203777A (en) 1992-03-19 1993-04-20 Lee Peter Y Radiopaque marker system for a tubular device
US6374134B1 (en) 1992-08-14 2002-04-16 British Telecommunications Public Limited Company Simultaneous display during surgical navigation
US20010041842A1 (en) 1993-02-01 2001-11-15 Eberle Michael J. Ultrasound transducer assembly
US5699446A (en) 1993-05-13 1997-12-16 Ge Medical Systems S.A. Method for the acquisition of images of a body by the rotational positioning of a radiology device, notably an angiography device
US5840025A (en) 1993-07-20 1998-11-24 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5872861A (en) 1993-07-22 1999-02-16 U.S. Philips Corporation Digital image processing method for automatic detection of stenoses
US5540229A (en) 1993-09-29 1996-07-30 U.S. Philips Cororation System and method for viewing three-dimensional echographic data
US5429617A (en) 1993-12-13 1995-07-04 The Spectranetics Corporation Radiopaque tip marker for alignment of a catheter within a body
US5485840A (en) 1994-03-15 1996-01-23 Bauman; Robert P. Method of precise guidance for directional atherectomy using ultrasound
US6166740A (en) 1994-04-15 2000-12-26 Hewlett Packard Company Method and system for viewing three-dimensional data for a tracked structure
US6024763A (en) 1994-06-08 2000-02-15 Medtronic, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5954647A (en) 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6216029B1 (en) 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US6190353B1 (en) 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6159225A (en) 1995-10-13 2000-12-12 Transvascular, Inc. Device for interstitial transvascular intervention and revascularization
US5709206A (en) 1995-11-27 1998-01-20 Teboul; Michel Imaging system for breast sonography
US5771895A (en) 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US6360027B1 (en) 1996-02-29 2002-03-19 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6014473A (en) 1996-02-29 2000-01-11 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6102865A (en) 1996-02-29 2000-08-15 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6201900B1 (en) 1996-02-29 2001-03-13 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6132376A (en) 1996-02-29 2000-10-17 Acuson Corporation Multiple ultrasonic image registration system, method and transducer
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US5690113A (en) 1996-06-14 1997-11-25 Acuson Corporation Method and apparatus for two dimensional ultrasonic imaging
US6501848B1 (en) 1996-06-19 2002-12-31 University Technology Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images and analytical techniques applied thereto
US5699805A (en) * 1996-06-20 1997-12-23 Mayo Foundation For Medical Education And Research Longitudinal multiplane ultrasound transducer underfluid catheter system
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5899860A (en) 1996-09-12 1999-05-04 Siemens Elema Ab Method and device for determining the position of a catheter inside the body of a patient
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
JPH10137238A (en) 1996-11-11 1998-05-26 Shimadzu Corp Medical image processor
US5957844A (en) 1996-12-03 1999-09-28 Surgical Navigation Specialist Inc. Apparatus and method for visualizing ultrasonic images
US6464645B1 (en) * 1997-01-31 2002-10-15 Acuson Corporation Ultrasonic transducer assembly controller
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US6152878A (en) 1997-06-19 2000-11-28 Medinol Ltd. Intravascular ultrasound enhanced image and signal processing
US6095976A (en) 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US5921978A (en) 1997-06-20 1999-07-13 Ep Technologies, Inc. Catheter tip steering plane marker
US6970733B2 (en) 1997-08-01 2005-11-29 Scimed Life Systems, Inc. System and method for electrode localization using ultrasound
US6148095A (en) * 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US6248075B1 (en) 1997-09-26 2001-06-19 Ep Technologies, Inc. Method and apparatus for fixing the anatomical orientation of a displayed ultrasound generated image
US6298261B1 (en) 1997-11-15 2001-10-02 Roke Manor Research Limited Catheter tracking system
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6036682A (en) 1997-12-02 2000-03-14 Scimed Life Systems, Inc. Catheter having a plurality of integral radiopaque bands
US5876344A (en) 1997-12-09 1999-03-02 Endosonics Corporation Modular imaging/treatment catheter assembly and method
US6273858B1 (en) * 1998-02-10 2001-08-14 Emory University Systems and methods for providing radiation therapy and catheter guides
US6083167A (en) 1998-02-10 2000-07-04 Emory University Systems and methods for providing radiation therapy and catheter guides
US6275724B1 (en) 1998-03-27 2001-08-14 Intravascular Research Limited Medical ultrasonic imaging
US6035226A (en) 1998-05-22 2000-03-07 Scimed Life Systems, Inc. Systems and methods for assessing stability of an operative instrument inside a body region
US6285903B1 (en) 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US5993390A (en) 1998-09-18 1999-11-30 Hewlett- Packard Company Segmented 3-D cardiac ultrasound imaging method and apparatus
US6775404B1 (en) 1999-03-18 2004-08-10 University Of Washington Apparatus and method for interactive 3D registration of ultrasound and magnetic resonance images based on a magnetic position sensor
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US20020049375A1 (en) 1999-05-18 2002-04-25 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6718054B1 (en) 1999-06-23 2004-04-06 Massachusetts Institute Of Technology MRA segmentation using active contour models
US6471656B1 (en) * 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US20020019644A1 (en) 1999-07-12 2002-02-14 Hastings Roger N. Magnetically guided atherectomy
US6574498B1 (en) 1999-09-16 2003-06-03 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6546271B1 (en) 1999-10-01 2003-04-08 Bioscience, Inc. Vascular reconstruction
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6638222B2 (en) 2000-02-29 2003-10-28 Scimed Life Systems, Inc. RF ablation and ultrasound catheter for crossing chronic total occlusions
US6612992B1 (en) 2000-03-02 2003-09-02 Acuson Corp Medical diagnostic ultrasound catheter and method for position determination
US6389104B1 (en) 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6577889B2 (en) 2000-10-17 2003-06-10 Kabushiki Kaisha Toshiba Radiographic image diagnosis apparatus capable of displaying a projection image in a similar position and direction as a fluoroscopic image
US20020099428A1 (en) 2001-01-25 2002-07-25 Leon Kaufman Position-controlled heat delivery catheter
US20020115931A1 (en) * 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6785571B2 (en) 2001-03-30 2004-08-31 Neil David Glossop Device and method for registering a position sensor in an anatomical body
US6831644B2 (en) 2001-06-29 2004-12-14 Ge Medical Systems Global Technology Company Llc Method and device for displaying the deployment of an endovascular prosthesis
US6673018B2 (en) 2001-08-31 2004-01-06 Ge Medical Systems Global Technology Company Llc Ultrasonic monitoring system and method
US6895267B2 (en) 2001-10-24 2005-05-17 Scimed Life Systems, Inc. Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US20030163052A1 (en) 2002-02-27 2003-08-28 Mott Eric V. Connector for interfacing intravascular sensors to a physiology monitor
US20030220555A1 (en) 2002-03-11 2003-11-27 Benno Heigl Method and apparatus for image presentation of a medical instrument introduced into an examination region of a patent
US6923768B2 (en) 2002-03-11 2005-08-02 Siemens Aktiengesellschaft Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated
US20030231789A1 (en) 2002-06-18 2003-12-18 Scimed Life Systems, Inc. Computer generated representation of the imaging pattern of an imaging device
US6805132B2 (en) 2002-08-06 2004-10-19 Scimed Life Systems, Inc. Performing ultrasound ranging in the presence of ultrasound interference
US7052463B2 (en) * 2002-09-25 2006-05-30 Koninklijke Philips Electronics, N.V. Method and apparatus for cooling a contacting surface of an ultrasound probe
US20040097805A1 (en) 2002-11-19 2004-05-20 Laurent Verard Navigation system for cardiac therapies
US6970734B2 (en) 2002-12-02 2005-11-29 Boston Scientific Scimed, Inc. Flexible marker bands
US20040114146A1 (en) 2002-12-13 2004-06-17 Scimed Life Systems, Inc. Method and apparatus for orienting a medical image
US6719700B1 (en) 2002-12-13 2004-04-13 Scimed Life Systems, Inc. Ultrasound ranging for localization of imaging transducer
US20040138548A1 (en) 2003-01-13 2004-07-15 Mediguide Ltd. Method and system for registering a medical situation associated with a first coordinate system, in second coordinate system using an MPS system
WO2004075756A1 (en) 2003-02-25 2004-09-10 Philips Intellectual Property & Standards Gmbh Intravascular imaging
US20040236206A1 (en) * 2003-04-11 2004-11-25 Georgios Sakas Combining first and second image data of an object
US6896657B2 (en) 2003-05-23 2005-05-24 Scimed Life Systems, Inc. Method and system for registering ultrasound image in three-dimensional coordinate system
US20040254463A1 (en) * 2003-05-30 2004-12-16 The Regents Of The University Of California Radial reflection diffraction tomography
US20050096647A1 (en) 2003-09-12 2005-05-05 Minnow Medical, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
CA2449080A1 (en) 2003-11-13 2005-05-13 Centre Hospitalier De L'universite De Montreal - Chum Apparatus and method for intravascular ultrasound image segmentation: a fast-marching method
US20050113685A1 (en) 2003-11-21 2005-05-26 Michael Maschke Medical system for examination or treatment
US20050203369A1 (en) 2004-03-01 2005-09-15 Scimed Life Systems, Inc. Method of catheter tracking using image information
US20060036167A1 (en) * 2004-07-03 2006-02-16 Shina Systems Ltd. Vascular image processing

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
Cavaye, D., Tabbara, M., Kopchok, G., Laas, T., White, R., "Three Dimensional Vascular Ultrasound Imaging", The American Surgeon, 1991, pp. 751-755, vol. 57, No. 12, Lippincott, Philadelphia, U.S.A.
Chen, S., Carroll, J., "3-D Reconstruction of Coronary Arterial Tree to Optimize Angiographic Visualization", IEEE Transactions on Medical Imaging, 2000, pp. 318-336, vol. 19, No. 4, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Chen, S., Carroll, J., Messenger, J., "Quantitative Analysis of Reconstructed 3-D Coronary Arterial Tree and Intracoronary Devices", IEEE Transactions on Medical Imaging, 2002, pp. 724-740, vol. 21, No. 7, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Chen, S., Metz, C., "Improved Determination of Biplane Imaging Geometry from Two Projection Images and Its Application to Three-Dimensional Reconstruction of Coronary Trees", Medical Physics, 1997, pp. 633-654, vol. 24, No. 5, American Institute of Physics, New York, U.S.A.
Cothren, R., Shekhar, R., Tuzcu, E., Nissen, S., Cornhill, J., Vince, D., "Three-Dimensional Reconstruction of the Coronary Artery Wall by Image Fusion of Intravascular ultrasound and Bi-Plane Angiography", International Journal of Cardiac Imaging, 2000, pp. 69-85, vol. 16, No. 2, Nijhoff, Boston, U.S.A.
Dictionary of Cancer Terms, http://www.cancer.gov/Templates/db.sub.--alpha.aspx?CdrID=46530. *
Dorland's Medical Dictionary, www.mercksource.com/pp/us/cns/cns.sub.-h1.sub.-Split.jsp-?pg=/ppdocs/us/co44755mmon/dorlands/dorland/one/000005012.htm.
Dorland's Medical Dictionary, www.mercksource.com/pp/us/cns/cns.sub.—h1.sub.—Split.jsp-?pg=/ppdocs/us/co44755mmon/dorlands/dorland/one/000005012.htm.
Evans, J., Ng, K., Wiet, S., Vonesh, M., Burns, W., Radvany, M., Kane, B., Davidson, C., Roth, S., Kramer, B., Meyers, S., McPherson, D., "Accurate Three-Dimensional Reconstruction of Intravascular Ultrasound Data", Circulation, 1996, pp. 567-576, vol. 93, No. 3, American Heart Association, Dallas, U.S.A.
Falk, V., Mourgues, F., Adhami, L., Jacobs, S., Thiele, H., Nitzsche, S., Mohr, F., Coste-Maniere, E., "Cardio Navigation: Planning, Simulation, and Augmented Reality in Robotic Assisted Endoscopic Bypass Grafting", The Annals of Thoracic Surgery, 2005, pp. 2040-2048, vol. 79, No. 6, Little, Brown & Co., Boston, U.S.A.
Fencil, L., Doi, K., Hoffman, K., "Accurate Analysis of Blood Vessel Sizes and Stenotic Lesions Using Stereoscopic DSA System", Investigative Radiology, 1988, pp. 33-41, vol. 23, No. 1, Lippincott, Philadelphia, U.S.A.
Fujita, H., Doi, K., Fencil, L., Chia, K., "Image Feature Analysis and Computer-Aided Diagnosis in Digital Radiography. 2. Computerized Determination of Vessel Sizes in Digital Subtraction Angiography", Medical Physics, 1987, pp. 549-556, vol. 14, No. 4, American Institute of Physics, New York, U.S.A.
Godbout, B., De Guise, J., Soulez, G., Cloutier, G., "3D Elastic Registration of Vessel Structures from IVUS data on Biplane Angiography", Academic Radiology, 2005, pp. 10-16, vol. 12, No. 1, Association of University Radiologists, Reston, U.S.A.
Guggenheim, N., Doriot, P., Dorsaz, P., Descouts, P., Rutishauser, W., "Spatial Reconstruction of Coronary Arteries from Angiographic Images", Physics inMedicine and Biology, 1991, pp. 99-110, vol. 36, No. 1, Institute of Physics, London, England.
Hoffmann, K., Sen, A., Lan, L., Chua, K., Esthappan, J., Mazzucco, M., "A System for Determination of 3D Vessel Tree Centerlines from Biplane Images", The International Journal of Cardiac Imaging, 2000, pp. 315-330, vol. 16, No. 5, Nijhoff, Boston, U.S.A.
International Search Report for PCT/US06/00942 dated Sep. 20, 2007.
Japan Patent Office, "Office Action" for Application No. 2014-223907, mailed Sep. 17, 2015, 3 pages (with translation).
Japanese Patent Office, Office Action dated May 2, 2014 for Japanese Application No. 2013-015279, 3 pages. (translated).
Jiang, H., Chen, W., Wang, G., Liu, H., "Localization Error Analysis forStereo X-ray Image Guidance with Probability Method", Medical Engineering & Physics, 2001, pp. 573-581, vol. 23, No. 8, Butterworth-Heinemann, Oxford, England.
Legget, M., Leotta, D., Bolson, E., McDonald, J., Martin, R., Li, X., Otto, C., Sheehan, F., "System for Quantitative Three-Dimensional Echocardiography of the Left Ventricle Based on a Magnetic-Field Position and Orientation Sensing System", IEEE Transactions on Biomedical Engineering, 1998, pp. 494-504, vol. 45, No. 4, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Leotta, D., "An Efficient Calibration Method for Freehand 3-D Ultrasound Imaging Systems", Ultrasound in Medicine & Biology, 2004, pp. 999-1008, vol. 30, No. 7, Elsevier, New York, U.S.A.
Liu, I., Sun, Y., "Fully Automatic Reconstruction of Three-Dimensional Vascular Tree Structures from Two Orthogonal Views Using Computational Algorithms and Production Rules", Optical Engineering, 1992, pp. 2197-2207, vol. 31, No. 10, The Society of Photo-optical Instrumentation Engineers, Redondo Beach, U.S.A.
Medical Dictionary, The Fite Dictionary; http://medical-dictionary.thefreedictionary.com/angiogram. *
MedTerms.com, http://www.medterms.com/script/main/art.asp?articlekey=2256. *
Meyer, S., Wolf, P., "Registration of Three-Dimensional Cardiac Catheter Models to Single-Plane Fluoroscopic Images", IEEE Transactions on Biomedical Engineering, 1999, pp. 1471-1479, vol. 46, No. 12, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Movassaghi, B., Grass, V., Viergever, M., Niessen, W., "A Quantitative Analysis of 3-D Coronary Modeling from Two or More Projection Images", IEEE Transactions on Medical Imaging, 2004, pp. 1517-1531, vol. 23, No. 12, Institute of Electrical and Electronics Engineers, New York, U.S.A.
No author, "Radiation Safety Manual for the Fluoroscopist," Internet source, 2000, Saint Luke's Hospital of Kansas City, Kansas City, U.S.A.
Prause, G., DeJong, S., McKay, C., Sonka, M., "Accurate 3-D Reconstruction of Tortuous Coronary Vessels Using Biplane Angiography and Intravascular Ultrasound" in SPIE Medical imaging 1997. Physiology and function from multidimensional images : Feb. 23-25, 1997, Newport Beach, California, 1997, pp. 225-234, vol. 3033, Ed.Hofman, E., SPIE, Bellingham, U.S.A.
Prause, G., DeJong, S., McKay, C., Sonka, M., "Semi-Automated Segmentation and 3-D Reconstruction of Coronary Trees: Biplane Angiography and Intravascular Ultrasound Data Fusion" in SPIE Medical imaging 1996. Physiology and function from multidimensional images : Feb. 11-13, 1996, Newport Beach, California, 1996, pp. 82-92, vol. 2709, Ed.Hofman, E., SPIE, Bellingham, U.S.A.
Rotger, D., Radeva, P., Mauri, J., Fernandez-Nofrerias, E., "Internal and External Coronary Vessel Images Registration"in Topics in Artificial Intelligence, 2002, pp. 408-418, Eds. Escrig Monferrer M. and Toledo Lobo, F., Springer-Verlag, Berlin, Germany.
Sheehan, H., Hodgson, J., "Intravascular Ultrasound: Advantages and Indications," International Journal of Cardiac Imaging, 1995, pp. 9-14, vol. 11, No. Suppl 1, Kluwer Academic Publishers, Boston, U.S.A.
Sherknies, D., Meunier, J., Mongrain, R., Tardif, J., "Three-Dimensional Trajectory Assessment of an IVUS Transducer from Single-Plane Cineangiograms: A Phantom Study", IEEE Transactions on Biomedical Engineering, 2005, pp. 543-548, vol. 52, No. 3, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Takemura, A., Harauchi, H., Suzuki, M., Hoffmann, K., Inamura, K., Umeda, T., "An Algorithm for Mapping the Catheter Tip Position on a Fluorograph to the Three-Dimensional Position in Magnetic Resonance Angiography Volume Data", Physics in Medicine and Biology, 2003, pp. 2697-2711, vol. 48, No. 16, Institute of Physics, London, England.
The On-line Medical Dictionary, http://cancerweb.ncl.ac.uk/cgi-bin/omd?angiogram. *
Van Walsum, T., Baert, S., Niessen, W., "Guide Wire Reconstruction and Visualization in 3DRA Using Monoplane Fluoroscopic Imaging", IEEE Transactions on Medical Imaging, 2005, pp. 612-623, vol. 24, No. 5, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Wahle, A., Lopez, J., Pennington, E., Meeks, S., Braddy, K., Fox, J., Brennan, T., Buatti, J., Rossen, J., Sonka, M., "Effects of Vessel Geometry and Catheter Position on Dose Delivery in Intracoronary Brachytherapy", IEEE Transactions on Biomedical Engineering, 2003, pp. 1286-1295, vol. 50, No. 11, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Wahle, A., Mitchell, S., Ramaswamy, S., Chandran, K., Sonka, M., "Four-Dimensional Coronary Morphology and Computational Hemodynamics" in SPIE Medical imaging 2001 : Image processing : Feb. 19-22, 2001, San Diego, USA, 2001, pp. 743-754, vol. 4322, Eds. Sonka, M. and Hanson, K., SPIE, Bellingham, U.S.A.
Wahle, A., Olszewski, M., Sonka, M., "Interactive Virtual Endoscopy in Coronary Arteries Based on Multimidality Fusion", IEEE Transactions on Medical Imaging, 2004, pp. 1391-1403, vol. 23, No. 11, Institute of Electrical and Electronics Engineers, New York, U.S.A.
Wahle, A., Prause, G., Von Birgelen, C., Erbel, R., Sonka, M., "Automated Calculation of the Axial Orientation of Intravascular Ultrasound Images by Fusion with Biplane Angiography" in SPIE Medical imaging 1999. Image processing Feb. 22-25, 1999, San Diego, California, 1999, pp. 1094-1104, vol. 3661, Ed. Hanson, K., SPIE, Bellingham, U.S.A.
Weichert, F., Wawro, M., Muller, H., Wilke, C, "Registration of Biplane Angiography and Intravascular Ultrasound for 3D Vessel Reconstruction", Methods of Information in Medicine, 2004, pp. 398-402, vol. 43, No. 4, F.K. Schattauer, Stuttgart, Germany.
Weichert, F., Wawro, M., Wilke, C., "A 3D Computer Graphics Approach To Brachytherapy Planning", The International Journal of Cardiovascular Imaging, 2004, pp. 173-182, vol. 20, No. 3, Kluwer Academic Publishers, Boston, U.S.A.
Written Opinion of the International Searching Authority for PCT/US06/00942 dated Sep. 20, 2007.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160206267A1 (en) * 2013-09-26 2016-07-21 Terumo Kabushiki Kaisha Image processing apparatus, image display system, imaging system, image processing method, and program
US10492754B2 (en) * 2015-11-20 2019-12-03 International Business Machines Corporation Real-time cloud-based virtual fractional flow reserve estimation
US10667868B2 (en) 2015-12-31 2020-06-02 Stryker Corporation System and methods for performing surgery on a patient at a target site defined by a virtual object
US11103315B2 (en) 2015-12-31 2021-08-31 Stryker Corporation Systems and methods of merging localization and vision data for object avoidance
US11806089B2 (en) 2015-12-31 2023-11-07 Stryker Corporation Merging localization and vision data for robotic control
US11311196B2 (en) 2018-02-23 2022-04-26 Boston Scientific Scimed, Inc. Methods for assessing a vessel with sequential physiological measurements
US11850073B2 (en) 2018-03-23 2023-12-26 Boston Scientific Scimed, Inc. Medical device with pressure sensor
US11559213B2 (en) 2018-04-06 2023-01-24 Boston Scientific Scimed, Inc. Medical device with pressure sensor
US11666232B2 (en) 2018-04-18 2023-06-06 Boston Scientific Scimed, Inc. Methods for assessing a vessel with sequential physiological measurements

Also Published As

Publication number Publication date
JP2015062680A (en) 2015-04-09
EP2712553A2 (en) 2014-04-02
US20060241465A1 (en) 2006-10-26
JP2013116332A (en) 2013-06-13
JP2008526387A (en) 2008-07-24
USRE45534E1 (en) 2015-06-02
EP1835855A4 (en) 2010-12-01
WO2006076409A2 (en) 2006-07-20
US7930014B2 (en) 2011-04-19
WO2006076409A3 (en) 2007-11-22
JP5345782B2 (en) 2013-11-20
JP6134695B2 (en) 2017-05-24
EP1835855B1 (en) 2017-04-05
EP2712553A3 (en) 2014-09-17
JP5886219B2 (en) 2016-03-16
EP1835855A2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
USRE46562E1 (en) Vascular image co-registration
US20200345321A1 (en) Automatic display of previously-acquired endoluminal images
US9375164B2 (en) Co-use of endoluminal data and extraluminal imaging
US9629571B2 (en) Co-use of endoluminal data and extraluminal imaging
US9974509B2 (en) Image super enhancement
EP2599033B1 (en) Co-use of endoluminal data and extraluminal imaging
JP4698589B2 (en) Apparatus and method for displaying ultrasound image of blood vessel
US8457375B2 (en) Visualization method and imaging system
JP4993982B2 (en) Catheter apparatus and treatment apparatus
US8442618B2 (en) Method and system for delivering a medical device to a selected position within a lumen
US8909323B2 (en) System for processing angiography and ultrasound image data
CN107205780B (en) Tracking-based 3D model enhancement
JP2008526387A5 (en)
US20200375576A1 (en) Co-registration systems and methods fo renhancing the quality of intravascular images
US20020049375A1 (en) Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US20140275996A1 (en) Systems and methods for constructing an image of a body structure
US20230309835A1 (en) Systems and methods for vascular image co-registration
US20220284606A1 (en) Systems and methods for vascular image co-registration

Legal Events

Date Code Title Description
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY