USRE43417E1 - Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND - Google Patents

Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND Download PDF

Info

Publication number
USRE43417E1
USRE43417E1 US12/363,165 US36316509A USRE43417E US RE43417 E1 USRE43417 E1 US RE43417E1 US 36316509 A US36316509 A US 36316509A US RE43417 E USRE43417 E US RE43417E
Authority
US
United States
Prior art keywords
strings
adjacent
string
gate
floating gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US12/363,165
Inventor
Henry Chien
Yupin Fong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
SanDisk Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/086,648 external-priority patent/US7170786B2/en
Application filed by SanDisk Technologies LLC filed Critical SanDisk Technologies LLC
Priority to US12/363,165 priority Critical patent/USRE43417E1/en
Assigned to SANDISK TECHNOLOGIES INC. reassignment SANDISK TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDISK CORPORATION
Application granted granted Critical
Publication of USRE43417E1 publication Critical patent/USRE43417E1/en
Assigned to SANDISK TECHNOLOGIES LLC reassignment SANDISK TECHNOLOGIES LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDISK TECHNOLOGIES INC
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series

Definitions

  • This invention relates generally to flash electrically erasable and programmable read only memory (EEPROMS), and more specifically to NAND flash memory with a high memory cell density.
  • EEPROMS electrically erasable and programmable read only memory
  • the individual cells are operated with more than two threshold level states.
  • two or more bits of data are stored in each cell by operating the individual cells with four or more programmable states.
  • Three threshold breakpoint levels are necessary to define four different threshold states.
  • Such a system is described in U.S. Pat. Nos. 5,043,940 and 5,172,338, which are hereby incorporated by this reference in their entirety.
  • an available operating voltage range of the individual cells is divided into an increased number of states.
  • the use of eight or more states, resulting in storing three or more bits of data per cell, is contemplated.
  • the voltage range of each state necessarily becomes smaller as the number of states is increased. This leaves less margin within each state to accommodate any error that might occur during operation of the memory system.
  • a disisturb One type of error is termed a “disturb,” wherein electrons are unintentionally added to or taken away from a floating gate during operation of the memory.
  • One source of a disturb is the presence of a leaky oxide dielectric positioned between the floating gate and another conductive gate of a cell.
  • the charge level programmed onto a floating gate of a cell changes when such a leaky oxide is present, thus leading to the possibility that the state of the cell will be incorrectly read if the change in charge has been large enough. Since few to no errors can be tolerated in a mass digital data storage system, a sufficient margin for this error is provided by making the voltage range allocated to each state sufficient to include an expanded range of voltages that can occur as the result of such disturbs. This necessarily limits the number of states that can be included in a multi-state flash EEPROM system since the total available voltage range is limited.
  • Yupin effect occurs when the neighboring cell of a selected cell is programmed after the selected cell itself is programmed, and the charges of the neighboring cell influence the voltage of the selected cell. Any potential present in an adjacent cell or string may influence the reading of a selected cell, including those in the channel, floating gate, or control gates etc. . . . Such interference from the subsequently programmed neighbor cell distorts the voltages of the selected cell, possibly leading to an erroneous identification of its memory state during reading.
  • the present invention is an improved structure for high density NAND type flash memory that minimizes the effect of disturbs and Yupin effect errors.
  • One aspect of the invention is a NAND flash memory device formed from a substrate.
  • the device comprises strings of transistors.
  • Each string has a first select gate, a plurality of floating gates, and a second select gate.
  • the floating gates are formed between shallow trench isolation areas and wordlines extend across adjacent strings and extend between the floating gates into the shallow trench isolation areas thereby isolating adjacent floating gates.
  • the wordlines shield a selected floating gate from the potentials, and from variations in the potentials of adjacent memory cells and components.
  • the electric fields may emanate from a component located anywhere near the selected floating gate, for example above or below or at a diagonal.
  • the device comprises strings of adjacent transistors of a NAND architecture comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above the substrate, wherein the strings are separated by shallow trench isolation areas.
  • the device has two or more discrete programming levels programmed by increasing a programming potential until the levels are reached, wherein once the floating gates have reached a steady state a linear increase in programming potential results in an approximately linear increase in floating gate charge given a constant potential surrounding environment.
  • Wordlines extend across adjacent strings and between the floating gates into the shallow trench isolation areas, such that when a floating gate of a selected string is read or verified, the wordline minimizes deviation from the linear increase due to voltage variations in the surrounding environment.
  • FIG. 1A is a plan view of the structure of memory array 100 .
  • FIG. 1B is an electrical circuit diagram corresponding to the structure of FIG. 1A .
  • FIG. 2 is a cross section of memory array 100 .
  • FIG. 3 is a cross section of memory array 100 .
  • FIG. 4 is a cross section of memory array 100 .
  • FIG. 5A is a plot of program voltage vs. time during a program operation.
  • FIG. 5B is a plot of the voltage distribution of programming steps.
  • FIG. 5C is a plot of cell voltage vs. program voltage.
  • FIG. 5D is an illustration of an adjacent memory cell during a program operation.
  • FIG. 5E is an illustration of an adjacent memory cell during lockout.
  • FIG. 6 is a flow chart of a method of forming an embodiment of the present invention.
  • FIGS. 7A–7J are cross sections of memory array 100 at various stages during the fabrication process.
  • FIG. 1A illustrates a plan view of an embodiment of the NAND flash memory of the present invention.
  • FIGS. 2–4 are cross sections taken through the structure shown in FIG. 1A .
  • An electrical equivalent circuit of the memory array is given in FIG. 1B , wherein common elements within the structure of FIGS. 1 A and 2 – 4 are identified by the same reference character.
  • Parallel wordlines 106 connect adjacent NAND strings of floating gates 102 .
  • the wordlines 106 are illustrated horizontally, and the strings are illustrated vertically in the figures.
  • a NAND string generally includes a select gate followed by several floating gates and another select gate.
  • the bitline A, B, and C (BL A , BL B , BL C ) locations correspond to the string locations in the plan view, although the bitlines are generally located in another plane.
  • the circuit diagram of FIG. 1B most clearly shows the vertical array of strings. In this case sixteen floating gates and thus sixteen wordlines are illustrated per string, however, the number of floating gates may be thirty-two or more, and is foreseen to increase in the future.
  • Floating gates 102 are isolated from adjacent floating gates by isolation trenches 104 .
  • Isolating trenches 104 are also referred to as shallow trench isolation areas.
  • the select gate line 105 on the source side (“SS”) is continuous between trenches 104 , as can be seen in section C-C of FIG. 4 . It is not etched into individual floating gates.
  • SS source side
  • Metal bitlines 116 connect to the N+ regions 114 within substrate 108 to sense amplifiers for reading the charge stored in the floating gates 102 .
  • a string is selected via the bitline and a wordline is also selected.
  • the metal bitlines are generally, but not necessarily, formed in a conductive layer insulated from the wordlines.
  • At the end of each string is another select gate coupled to the drain (“SD”).
  • SD Drain
  • the drain and source can be interchanged in some configurations and more than 16 transistors can also be present in each string, thus also increasing the number of wordlines.
  • gate oxide 112 there is a portion of gate oxide 112 between each floating gate 102 and the substrate 108 .
  • a dielectric material 110 separates the wordlines 106 from the floating gates 102 and the isolation trenches 104 .
  • Adjacent floating gates 102 are isolated from other floating gates in the same wordline, not only by isolating trenches 104 , but also by wordlines 106 .
  • Wordlines 106 extend down between floating gates into isolation trenches 104 , until, within, or past the level of gate oxide layer 112 . This has several distinct benefits.
  • the electrical field across the dielectric layer 110 between adjacent floating gates is reduced, therefore reducing any leakage current through the dielectric layer that may occur as a result of the electrical field.
  • the lesser the electrical field the lesser the leakage current between two adjacent floating gates.
  • the leakage current path is greatly increased by the extended wordlines 106 . Any leakage current must travel down and around the extended portion of the wordlines and then back up or over to the adjacent floating gates.
  • the charge level programmed onto a floating gate of a cell changes when such a leakage current is present. Therefore, by minimizing the leakage current, and thus any change in charge of the floating gates, an increased number of levels can be discerned more reliably. This leads to a higher capacity, more cost efficient, and more reliable data storage system.
  • the extended wordline shields a selected floating gate from field effects of nearby channels.
  • a floating gate that has been programmed with a particular charge may, in a subsequent read or verify operation, indicate that it has a larger charge than it should due to a potential or charge in an adjacent channel. This is especially true with complicated program, read, and verify operations in multi-state NAND flash memory where multiple operations are occurring simultaneously in adjacent strings and cells.
  • every other cell along one row is part of the same page; in newer systems, every cell along one row can be part of the same page.
  • floating gate 102 A activated by BL A and the floating gate 102 C activated by BL C would be programmed while the floating gate 102 B activated by BL B is not programmed.
  • every cell along one row can be part of the same page.
  • floating gate 102 A of the string activated by BL A may be undergoing a programming operation at the same time as floating gate 102 B. This will be discussed in further detail later in reference to FIGS. 5D and 5E . In this way, twice the number of cells may be programmed and or verified at the same time. Although this may be efficient, it results in additional field effect problems during all of the various operations involved in data storage operations.
  • an adjacent (substrate) channel of an adjacent cell may be at a low potential, for instance 0V, for a number of programming pulses while it is being programmed and then suddenly be boosted or “locked out” for subsequent programming pulses to a high potential, for instance, 5, 7.5, or 10 V, after it verifies in order to stop further programming or for any other reason.
  • This boosting of the channel potential also increases the floating gate potential of the adjacent cell.
  • both the adjacent channel and adjacent floating gate will couple a higher potential to the selected cell for the next programming pulse which may broaden the width of the programmed distribution.
  • This has a number of negative consequences, some of which may include error in reading a particular bit and reduction in the total number of bits of data that may be stored in a given die size.
  • FIGS. 5A-5E An example of some programming details is illustrated in FIGS. 5A-5E which will be discussed below. The levels given are illustrative and only serve to educate the reader on the operation of an example memory system with which the present invention may be particularly advantageous.
  • FIG. 5A An example of the incremental voltage steps of the programming pulses are shown in FIG. 5A .
  • the pulses are incremented by 0.2 volts.
  • After each pulse there is a verify cycle, followed by an incrementally higher voltage pulse. This takes place until a desired or threshold voltage is verified in the floating gate. For example, this may take place until the floating gate is verified at 2.0 volts.
  • FIG. 5B illustrates that for each program pulse, there is a distribution of the charge stored in the floating gates.
  • the distribution of the verified charges is about three volts. So, if it is desired to store 2.0 volts on the floating gate, it may be necessary to increment up to 17.0 volts and higher in the control gate or wordline. If, for example, after a 17.0 volt programming pulse the distribution of stored charges on the floating gates is such that there are some floating gates above and some below the 2.0 V threshold, those below will receive a further programming while those above the threshold will not by having their channel boosted or “locked out.”
  • V t cell voltage
  • some “fast” floating gates may reach the desired verify V t at a lower program voltage than other “slow” or “intermediate” floating gates.
  • a cell has a V t of 1.99 volts it will receive another programming pulse to take it above the 2.0 volt threshold. In a constant environment, the cell should then have a V t of 2.19 volts. However, if there is any deviation of the voltage or electric field that is applied to the cell, for example between one programming pulse and another, the voltage stored on the cell may differ from that expected. If a neighboring component exerts an influence of the electrical field of the cell during a programming pulse, the charge stored will also deviate. For example, the cell that was at 1.99 volts in the previous verification cycle, may instead of having a V t of 2.19 volts may have a V t of 2.29 or 2.39 volts. As shown in FIG. 5C , coupling of potential from a nearby cell may cause one of the intermediate cells to deviate from the linear increase that is characteristic of the steady state. Thus, the distribution of the cells shown in FIG. 5B will increase due to any variation in the potential of adjacent components.
  • the increase in the distribution of cells will lessen the number of states that can be repeatably and reliably discerned in a multi-level storage system. This greatly lessens the storage capacity of a memory device with a given die size, and therefore increases the cost of production of a storage device with a desired storage capacity.
  • an adjacent cell is any cell located near another cell, in any direction, including diagonally.
  • floating gate 102 A is adjacent to floating gate 102 B.
  • the active area of the cell comprises the channel area in the substrate below the floating gate and the wordline area above the floating gate.
  • the cell may also be said to comprise portions of the shallow trench isolation area and other components.
  • a cell is “locked out” by isolating its corresponding bitline if it has verified at the desired program voltage. In the example given above, if the cell has verified at 2.0 volts, it will be “locked out” from further programming pulses by increasing the cell voltage in the channel (substrate) to a relatively high voltage level by isolating the corresponding bitline.
  • FIG. 5D shows an adjacent cell during the programming operations previously discussed.
  • the shape and configuration of the cells is simplified for ease of understanding.
  • wordline 106 of the cell is at 18 volts
  • floating gate 102 is at 10 volts
  • substrate 108 is at 0 volts.
  • wordline 106 is now at 18.2 volts
  • floating gate 102 is now at 13 volts
  • substrate 108 is now at 8.0 volts.
  • the channel is a portion of the substrate just below the upper surface of the substrate.
  • an adjacent cell may be either in the program operation shown in FIG. 5D , or the lockout state shown in FIG. 5E .
  • the voltages shown in the program operations vary with the different programming pulses discussed earlier. All of these voltages shown in an adjacent cell may couple to a selected cell during programming. It is the variation in these voltages that may result in the variation from steady state programming ( FIG. 5C ) and thus increased deviation ( FIG. 5B ).
  • FIG. 6 is a flowchart of the steps of making memory array 100 which should be referred to in tandem with FIGS. 7A-7J .
  • the memory array 100 is fabricated in a substrate 108 .
  • Substrate 108 preferably comprises silicon but may also comprise any material known to those in the art suclvas Gallium Arsenide etc. . .
  • a gate oxide layer 112 is formed upon substrate 108 in step 505 as seen in FIG. 7A .
  • Gate oxide 112 is preferably grown on substrate 108 but may also be deposited.
  • Gate oxide layer 112 preferably comprises silicon dioxide but may differ depending on what type of substrate is used and other processing factors or elements introduced during processing.
  • gate oxide 112 may comprise materials (known as ETO) including nitride/oxynitride.
  • ETO nitride/oxynitride.
  • a first gate layer 102 a is deposited upon gate oxide layer 112 in step 510 as seen in FIG. 7B .
  • the first gate layer 102 a is made of semiconducting material such as polysilicon.
  • a nitride layer 120 is then deposited upon the first floating gate layer 102 a in step 515 as seen in FIG 7 C.
  • parallel trenches are etched in substrate 108 with well known etching techniques.
  • isolation trenches 104 are then filled with a field oxide, as seen in FIG. 7D , to form isolation trenches 104 .
  • the field oxide within isolation trenches 104 is preferably comprised of silicon dioxide but can be comprised of other insulating materials (including materials other than oxides). Isolation trenches 104 range from about 0.2 microns to about 0.25 microns wide and are preferably about 0.2 microns wide.
  • CMP chemical-mechanical polishing
  • nitride layer 120 is etched away such that isolation trenches 104 extend above the surface of the first gate layer 102 a, as seen in FIG. 7F .
  • the isolating trenches 104 may extend above the substrate 108 and gate oxide layer 112 as shown, or, alternatively, may only extend up to the level of either the substrate 108 , gate oxide layer 112 , or first gate layer 102 a, and it should be understood that differing processes and steps may be necessary to achieve these differing embodiments.
  • a second gate layer 102 b of the same semiconducting material as the first gate layer 102 a is then deposited upon the gate oxide layer 112 and isolation trenches 104 in step 540 . It is then selectively etched above isolation trenches 104 to create floating gates 102 in step 545 .
  • the resultant structure can be seen in FIG. 7G .
  • Floating gates 102 are substantially “T” shaped in order to maximize the coupling between the floating gate and the control gate, also referred to as the wordline 106 that activates the floating gate.
  • the line between the first and second gate layers 102 a and 102 b has been removed for the sake of clarity.
  • the T shape provides a large surface area between floating gate and the wordline, thus maximizing the coupling ratio between the two devices for improved read, program and erase operations.
  • U.S. patent application Ser. No. 09/925,102 to Yuan et al. entitled “Scalable Self-Aligned Dual Floating Gate Memory Cell Array and Methods of Forming the Array,” which is hereby incorporated by this reference in its entirety.
  • a set of parallel trenches 122 is formed within isolating trenches 104 in step 550 .
  • Trenches 122 may extend within trenches 104 to the level of the upper surface of gate oxide 112 or any distance within trenches 104 within or below the level of gate oxide 112 .
  • Isolation layer 110 is then deposited upon the floating gates 102 , and within second trenches 122 in isolation trenches 104 , in step 555 , as seen in FIG. 7I .
  • Isolation layer 110 is preferably a dielectric layer such as an oxide-nitride-oxide (“ONO”) layer 110 .
  • the dielectric layer 110 can be any type of dielectric known in the art and is not necessarily limited to an ONO structure.
  • a wordline layer comprising a semiconducting material layer such as polysilicon and a conductive layer such as tungsten suicide is then deposited upon dielectric layer 110 in step 560 , as can be seen in FIG. 7J .
  • Wordlines 106 are then etched from the wordline layer in step 565 .
  • wordlines 106 extend down between the floating gates 102 into the isolating trenches 104 . This isolates adjacent floating gates 102 from each other. In the preferred embodiment, wordlines 106 extend within the isolation trenches 104 to or beyond the level of the gate dielectric 112 .
  • gate oxide layer 112 may be formed before or after the parallel trenches are etched into substrate 108 etc. . . .
  • additional layers, steps, and resultant structures that are not described may also be part of the process and the resultant memory array.
  • the extended wordline reduces the problem of the aforementioned Yupin effect because it acts as a shield between adjacent floating gates.
  • the Yupin effect is when the charge stored or otherwise present in a neighboring cell influences the reading of a selected cell.
  • the present solution shields gates to avoid or minimize Yupin effect errors caused by neighboring gates. Yupin effect errors can also be accommodated through program and read circuitry and algorithms.
  • the extended wordline also protects against conduction leakage between adjacent floating gates within the dielectric layer 110 because it blocks the conduction path between adjacent gates. Furthermore, any possible stringers as a result of an incomplete etch of the floating gate layer that might short circuit adjacent gates are also-eliminated in the situation where the etch within the isolation trench extends past the upper (top of the “T”) portion of the T shaped floating gate.
  • Yupin effect and on disturbs please refer to U.S. Pat. No. 5,867,429, which was previously incorporated by reference.

Abstract

A NAND flash memory structure with a wordline or control gate that provides shielding from Yupin effect errors and generally from potentials in adjacent strings undergoing programming operations with significant variations in potential.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 10/353,570, filed Jan. 28, 2003, now U.S. Pat. No. 6,898,121; which is a continuation-in-part of U.S. patent application Ser. No. 10/175,764, filed Jun. 19, 2002 now U.S. Pat. No. 6,894,930. This application is also related to U.S. Pat. No. 5,867,429 entitled “High Density Non-Volatile Flash Memory Without Adverse Effects of Electric Field Coupling Between Adjacent Floating Gates” which is hereby incorporated by this reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to flash electrically erasable and programmable read only memory (EEPROMS), and more specifically to NAND flash memory with a high memory cell density.
2. Related Art
Most existing commercial flash EEPROM products operate each memory cell with two ranges of threshold voltages, one above and the other below a breakpoint level, thereby defining two programmed states. One bit of data is thus stored in each cell, a 0 when programmed into one state and a 1 when programmed into its other state. A chunk of a given number of bits of data is programmed at one time into an equal number of cells. The state of each cell is monitored during programming so that application of programming voltages stops when the threshold level of an individual cell is verified to have moved within the range that represents the value of the bit of data being stored in the cell.
In order to increase the amount of data stored in a flash EEPROM system having a certain number of storage cells, the individual cells are operated with more than two threshold level states. Preferably, two or more bits of data are stored in each cell by operating the individual cells with four or more programmable states. Three threshold breakpoint levels are necessary to define four different threshold states. Such a system is described in U.S. Pat. Nos. 5,043,940 and 5,172,338, which are hereby incorporated by this reference in their entirety. In multi-state operation, an available operating voltage range of the individual cells is divided into an increased number of states. The use of eight or more states, resulting in storing three or more bits of data per cell, is contemplated. The voltage range of each state necessarily becomes smaller as the number of states is increased. This leaves less margin within each state to accommodate any error that might occur during operation of the memory system.
One type of error is termed a “disturb,” wherein electrons are unintentionally added to or taken away from a floating gate during operation of the memory. One source of a disturb is the presence of a leaky oxide dielectric positioned between the floating gate and another conductive gate of a cell. The charge level programmed onto a floating gate of a cell changes when such a leaky oxide is present, thus leading to the possibility that the state of the cell will be incorrectly read if the change in charge has been large enough. Since few to no errors can be tolerated in a mass digital data storage system, a sufficient margin for this error is provided by making the voltage range allocated to each state sufficient to include an expanded range of voltages that can occur as the result of such disturbs. This necessarily limits the number of states that can be included in a multi-state flash EEPROM system since the total available voltage range is limited.
Another type of error is termed the “Yupin effect.” The Yupin effect occurs when the neighboring cell of a selected cell is programmed after the selected cell itself is programmed, and the charges of the neighboring cell influence the voltage of the selected cell. Any potential present in an adjacent cell or string may influence the reading of a selected cell, including those in the channel, floating gate, or control gates etc. . . . Such interference from the subsequently programmed neighbor cell distorts the voltages of the selected cell, possibly leading to an erroneous identification of its memory state during reading.
SUMMARY OF THE INVENTION
The present invention is an improved structure for high density NAND type flash memory that minimizes the effect of disturbs and Yupin effect errors.
One aspect of the invention is a NAND flash memory device formed from a substrate. The device comprises strings of transistors. Each string has a first select gate, a plurality of floating gates, and a second select gate. The floating gates are formed between shallow trench isolation areas and wordlines extend across adjacent strings and extend between the floating gates into the shallow trench isolation areas thereby isolating adjacent floating gates. The wordlines shield a selected floating gate from the potentials, and from variations in the potentials of adjacent memory cells and components. The electric fields may emanate from a component located anywhere near the selected floating gate, for example above or below or at a diagonal.
Another aspect of the invention is a flash memory device formed from a substrate. The device comprises strings of adjacent transistors of a NAND architecture comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above the substrate, wherein the strings are separated by shallow trench isolation areas. The device has two or more discrete programming levels programmed by increasing a programming potential until the levels are reached, wherein once the floating gates have reached a steady state a linear increase in programming potential results in an approximately linear increase in floating gate charge given a constant potential surrounding environment. Wordlines extend across adjacent strings and between the floating gates into the shallow trench isolation areas, such that when a floating gate of a selected string is read or verified, the wordline minimizes deviation from the linear increase due to voltage variations in the surrounding environment.
The present invention is better understood upon consideration of the detailed description below, in conjunction with the accompanying drawings of illustrative embodiments of the invention.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1A is a plan view of the structure of memory array 100.
FIG. 1B is an electrical circuit diagram corresponding to the structure of FIG. 1A.
FIG. 2 is a cross section of memory array 100.
FIG. 3 is a cross section of memory array 100.
FIG. 4 is a cross section of memory array 100.
FIG. 5A is a plot of program voltage vs. time during a program operation.
FIG. 5B is a plot of the voltage distribution of programming steps.
FIG. 5C is a plot of cell voltage vs. program voltage.
FIG. 5D is an illustration of an adjacent memory cell during a program operation.
FIG. 5E is an illustration of an adjacent memory cell during lockout.
FIG. 6 is a flow chart of a method of forming an embodiment of the present invention.
FIGS. 7A–7J are cross sections of memory array 100 at various stages during the fabrication process.
DETAILED DESCRIPTION OF THE INVENTION
The following is a detailed description of illustrative embodiments of the present invention. As these embodiments of the present invention are described with reference to the aforementioned drawings, various modifications or adaptations of the methods and or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations, or variations that rely upon the teachings of the present invention, and through which these teachings have advanced the art, are considered to be within the scope of the present invention. Hence, these descriptions and drawings are not to be considered in a limiting sense, as it is understood that the present invention is in no way limited to the embodiments illustrated.
FIG. 1A illustrates a plan view of an embodiment of the NAND flash memory of the present invention. FIGS. 2–4 are cross sections taken through the structure shown in FIG. 1A. An electrical equivalent circuit of the memory array is given in FIG. 1B, wherein common elements within the structure of FIGS. 1A and 24 are identified by the same reference character.
Parallel wordlines 106 connect adjacent NAND strings of floating gates 102. The wordlines 106 are illustrated horizontally, and the strings are illustrated vertically in the figures. A NAND string generally includes a select gate followed by several floating gates and another select gate. The bitline A, B, and C (BLA, BLB, BLC) locations correspond to the string locations in the plan view, although the bitlines are generally located in another plane. The circuit diagram of FIG. 1B most clearly shows the vertical array of strings. In this case sixteen floating gates and thus sixteen wordlines are illustrated per string, however, the number of floating gates may be thirty-two or more, and is foreseen to increase in the future. Floating gates 102 are isolated from adjacent floating gates by isolation trenches 104. Isolating trenches 104 are also referred to as shallow trench isolation areas. The select gate line 105 on the source side (“SS”) is continuous between trenches 104, as can be seen in section C-C of FIG. 4. It is not etched into individual floating gates. At the end of the wordline 106 above SS 105, each NAND string is electrically connected to SS 105 with a via, most easily seen in FIG. 1B an FIG. 3.
Metal bitlines 116 (only one of which is shown for the sake of clarity) connect to the N+ regions 114 within substrate 108 to sense amplifiers for reading the charge stored in the floating gates 102. Thus, to read a particular floating gate a string is selected via the bitline and a wordline is also selected. The metal bitlines are generally, but not necessarily, formed in a conductive layer insulated from the wordlines. At the end of each string is another select gate coupled to the drain (“SD”). The drain and source can be interchanged in some configurations and more than 16 transistors can also be present in each string, thus also increasing the number of wordlines.
As seen in FIG. 2, there is a portion of gate oxide 112 between each floating gate 102 and the substrate 108. A dielectric material 110 separates the wordlines 106 from the floating gates 102 and the isolation trenches 104. Adjacent floating gates 102 are isolated from other floating gates in the same wordline, not only by isolating trenches 104, but also by wordlines 106. Wordlines 106 extend down between floating gates into isolation trenches 104, until, within, or past the level of gate oxide layer 112. This has several distinct benefits.
It reduces Yupin effects between adjacent cells in the wordline direction. Also, it improves the cell coupling ratio between the wordlines and the floating gates. The portion of the wordline that extends into the isolation trenches, to or past the depth of the floating gates, increases the overlap of the surface areas and volumes of the wordlines and floating gates. This increased overlap results in better coupling when a charge is read or stored during program, read, or erase operations.
The electrical field across the dielectric layer 110 between adjacent floating gates is reduced, therefore reducing any leakage current through the dielectric layer that may occur as a result of the electrical field. The lesser the electrical field, the lesser the leakage current between two adjacent floating gates. Additionally, the leakage current path is greatly increased by the extended wordlines 106. Any leakage current must travel down and around the extended portion of the wordlines and then back up or over to the adjacent floating gates. The charge level programmed onto a floating gate of a cell changes when such a leakage current is present. Therefore, by minimizing the leakage current, and thus any change in charge of the floating gates, an increased number of levels can be discerned more reliably. This leads to a higher capacity, more cost efficient, and more reliable data storage system.
Additionally, the extended wordline shields a selected floating gate from field effects of nearby channels. In certain program, read, and verify operations, a floating gate that has been programmed with a particular charge may, in a subsequent read or verify operation, indicate that it has a larger charge than it should due to a potential or charge in an adjacent channel. This is especially true with complicated program, read, and verify operations in multi-state NAND flash memory where multiple operations are occurring simultaneously in adjacent strings and cells. In many prior systems, every other cell along one row is part of the same page; in newer systems, every cell along one row can be part of the same page. Referring again to FIG. 2, this would mean that in a prior system, the floating gate 102A activated by BLA and the floating gate 102C activated by BLC would be programmed while the floating gate 102B activated by BLB is not programmed. In newer systems, every cell along one row can be part of the same page. Thus, as seen in FIG. 2, floating gate 102A of the string activated by BLA may be undergoing a programming operation at the same time as floating gate 102B. This will be discussed in further detail later in reference to FIGS. 5D and 5E. In this way, twice the number of cells may be programmed and or verified at the same time. Although this may be efficient, it results in additional field effect problems during all of the various operations involved in data storage operations.
The relationship between the distribution and the incremental voltage of the programming pulses holds true only if the potential of any other coupling element to the floating gates of the cells being programmed remains constant. In the case of programming adjacent NAND strings, an adjacent (substrate) channel of an adjacent cell may be at a low potential, for instance 0V, for a number of programming pulses while it is being programmed and then suddenly be boosted or “locked out” for subsequent programming pulses to a high potential, for instance, 5, 7.5, or 10 V, after it verifies in order to stop further programming or for any other reason. This boosting of the channel potential also increases the floating gate potential of the adjacent cell. Thus, both the adjacent channel and adjacent floating gate will couple a higher potential to the selected cell for the next programming pulse which may broaden the width of the programmed distribution. This has a number of negative consequences, some of which may include error in reading a particular bit and reduction in the total number of bits of data that may be stored in a given die size. An example of some programming details is illustrated in FIGS. 5A-5E which will be discussed below. The levels given are illustrative and only serve to educate the reader on the operation of an example memory system with which the present invention may be particularly advantageous.
For further information regarding the data storage operations, please refer to. U.S. patent application Ser. No. 09/893,277, filed Jun. 27, 2001, entitled “Operating Techniques For Reducing Effects Of Coupling Between Storage Elements Of A Non-Volatile Memory Operated In Multiple Data States,” hereby incorporated by this reference in its entirety, and an article entitled “Fast and Accurate Programming Method for Multi-level NAND EEPROMs”, pp. 129-130, Digest of 1995 Symposium of VLSI Technology, which is also hereby incorporated by this reference in its entirety, and discusses the timing and voltage levels of programming pulses using in the read/verify and programming operations.
An example of the incremental voltage steps of the programming pulses are shown in FIG. 5A. In the example shown and described, the pulses are incremented by 0.2 volts. After each pulse, there is a verify cycle, followed by an incrementally higher voltage pulse. This takes place until a desired or threshold voltage is verified in the floating gate. For example, this may take place until the floating gate is verified at 2.0 volts.
FIG. 5B illustrates that for each program pulse, there is a distribution of the charge stored in the floating gates. For example, with the first pulse of 16.0 volts, the distribution of the verified charges is about three volts. So, if it is desired to store 2.0 volts on the floating gate, it may be necessary to increment up to 17.0 volts and higher in the control gate or wordline. If, for example, after a 17.0 volt programming pulse the distribution of stored charges on the floating gates is such that there are some floating gates above and some below the 2.0 V threshold, those below will receive a further programming while those above the threshold will not by having their channel boosted or “locked out.”
With a constant environment, i.e. one where the potential and electric field of the neighboring components is constant, the programming pulses, will, after having reached a steady state, result in a predictable and approximately linear increase in the cell voltage (Vt), as seen in FIG. 5C. As seen in the nearly parallel lines, some “fast” floating gates may reach the desired verify Vt at a lower program voltage than other “slow” or “intermediate” floating gates. Once the steady state has been reached, it can be seen that a linear increase in the program voltage results in a nearly linear increase in Vt.
Therefore, if, for example, a cell has a Vt of 1.99 volts it will receive another programming pulse to take it above the 2.0 volt threshold. In a constant environment, the cell should then have a Vt of 2.19 volts. However, if there is any deviation of the voltage or electric field that is applied to the cell, for example between one programming pulse and another, the voltage stored on the cell may differ from that expected. If a neighboring component exerts an influence of the electrical field of the cell during a programming pulse, the charge stored will also deviate. For example, the cell that was at 1.99 volts in the previous verification cycle, may instead of having a Vt of 2.19 volts may have a Vt of 2.29 or 2.39 volts. As shown in FIG. 5C, coupling of potential from a nearby cell may cause one of the intermediate cells to deviate from the linear increase that is characteristic of the steady state. Thus, the distribution of the cells shown in FIG. 5B will increase due to any variation in the potential of adjacent components.
The increase in the distribution of cells will lessen the number of states that can be repeatably and reliably discerned in a multi-level storage system. This greatly lessens the storage capacity of a memory device with a given die size, and therefore increases the cost of production of a storage device with a desired storage capacity.
Specifically, as can be seen in FIGS. 5D and 5E, the voltages in the components of an adjacent cell will vary greatly during program and during “lockout.” An adjacent cell is any cell located near another cell, in any direction, including diagonally. For example, floating gate 102A is adjacent to floating gate 102B. The active area of the cell comprises the channel area in the substrate below the floating gate and the wordline area above the floating gate. The cell may also be said to comprise portions of the shallow trench isolation area and other components. A cell is “locked out” by isolating its corresponding bitline if it has verified at the desired program voltage. In the example given above, if the cell has verified at 2.0 volts, it will be “locked out” from further programming pulses by increasing the cell voltage in the channel (substrate) to a relatively high voltage level by isolating the corresponding bitline.
FIG. 5D shows an adjacent cell during the programming operations previously discussed. The shape and configuration of the cells is simplified for ease of understanding. In the example programming operation shown, wordline 106 of the cell is at 18 volts, floating gate 102 is at 10 volts, and substrate 108 is at 0 volts. However, during lockout, as shown in FIG. 5E, wordline 106 is now at 18.2 volts, floating gate 102 is now at 13 volts, and substrate 108 is now at 8.0 volts. The channel is a portion of the substrate just below the upper surface of the substrate. While a selected cell is being programmed, an adjacent cell may be either in the program operation shown in FIG. 5D, or the lockout state shown in FIG. 5E. Furthermore, the voltages shown in the program operations vary with the different programming pulses discussed earlier. All of these voltages shown in an adjacent cell may couple to a selected cell during programming. It is the variation in these voltages that may result in the variation from steady state programming (FIG. 5C) and thus increased deviation (FIG. 5B).
FIG. 6 is a flowchart of the steps of making memory array 100 which should be referred to in tandem with FIGS. 7A-7J. The memory array 100 is fabricated in a substrate 108. Substrate 108 preferably comprises silicon but may also comprise any material known to those in the art suclvas Gallium Arsenide etc. . . First, a gate oxide layer 112 is formed upon substrate 108 in step 505 as seen in FIG. 7A. Gate oxide 112 is preferably grown on substrate 108 but may also be deposited. Gate oxide layer 112 preferably comprises silicon dioxide but may differ depending on what type of substrate is used and other processing factors or elements introduced during processing. For example, for CMOS applications, gate oxide 112 may comprise materials (known as ETO) including nitride/oxynitride. Next, a first gate layer 102a is deposited upon gate oxide layer 112 in step 510 as seen in FIG. 7B. The first gate layer 102a is made of semiconducting material such as polysilicon. A nitride layer 120 is then deposited upon the first floating gate layer 102a in step 515 as seen in FIG 7C. In step 520, parallel trenches are etched in substrate 108 with well known etching techniques. Generally in fabricating high density memory arrays where the features are of a very small scale, plasma etching is preferred over wet etching in order to have a precise and uniform etch. In step 525 the trenches are then filled with a field oxide, as seen in FIG. 7D, to form isolation trenches 104. The field oxide within isolation trenches 104 is preferably comprised of silicon dioxide but can be comprised of other insulating materials (including materials other than oxides). Isolation trenches 104 range from about 0.2 microns to about 0.25 microns wide and are preferably about 0.2 microns wide. The remaining field oxide 124 is removed via chemical-mechanical polishing (“CMP”) in step 530, as seen in FIG. 7E.
Next, in step 535, nitride layer 120 is etched away such that isolation trenches 104 extend above the surface of the first gate layer 102a, as seen in FIG. 7F. The isolating trenches 104 may extend above the substrate 108 and gate oxide layer 112 as shown, or, alternatively, may only extend up to the level of either the substrate 108, gate oxide layer 112, or first gate layer 102a, and it should be understood that differing processes and steps may be necessary to achieve these differing embodiments.
A second gate layer 102b of the same semiconducting material as the first gate layer 102a is then deposited upon the gate oxide layer 112 and isolation trenches 104 in step 540. It is then selectively etched above isolation trenches 104 to create floating gates 102 in step 545. The resultant structure can be seen in FIG. 7G. Floating gates 102 are substantially “T” shaped in order to maximize the coupling between the floating gate and the control gate, also referred to as the wordline 106 that activates the floating gate. The line between the first and second gate layers 102a and 102b has been removed for the sake of clarity. The T shape provides a large surface area between floating gate and the wordline, thus maximizing the coupling ratio between the two devices for improved read, program and erase operations. For further information, please refer to co-pending U.S. patent application Ser. No. 09/925,102 to Yuan et al., entitled “Scalable Self-Aligned Dual Floating Gate Memory Cell Array and Methods of Forming the Array,” which is hereby incorporated by this reference in its entirety.
As seen in FIG. 7H, a set of parallel trenches 122 is formed within isolating trenches 104 in step 550. Trenches 122 may extend within trenches 104 to the level of the upper surface of gate oxide 112 or any distance within trenches 104 within or below the level of gate oxide 112. Isolation layer 110 is then deposited upon the floating gates 102, and within second trenches 122 in isolation trenches 104, in step 555, as seen in FIG. 7I. Isolation layer 110 is preferably a dielectric layer such as an oxide-nitride-oxide (“ONO”) layer 110. The dielectric layer 110 can be any type of dielectric known in the art and is not necessarily limited to an ONO structure. A wordline layer comprising a semiconducting material layer such as polysilicon and a conductive layer such as tungsten suicide is then deposited upon dielectric layer 110 in step 560, as can be seen in FIG. 7J. Wordlines 106 are then etched from the wordline layer in step 565.
As previously mentioned, the wordlines 106 extend down between the floating gates 102 into the isolating trenches 104. This isolates adjacent floating gates 102 from each other. In the preferred embodiment, wordlines 106 extend within the isolation trenches 104 to or beyond the level of the gate dielectric 112.
The various layers can be formed and the etching steps can be performed in many different well known methods and orders, and are not necessarily done in the order described, i.e. gate oxide layer 112 may be formed before or after the parallel trenches are etched into substrate 108 etc. . . . Furthermore, additional layers, steps, and resultant structures that are not described may also be part of the process and the resultant memory array.
The extended wordline reduces the problem of the aforementioned Yupin effect because it acts as a shield between adjacent floating gates. Again, in short, the Yupin effect is when the charge stored or otherwise present in a neighboring cell influences the reading of a selected cell. The present solution shields gates to avoid or minimize Yupin effect errors caused by neighboring gates. Yupin effect errors can also be accommodated through program and read circuitry and algorithms.
The extended wordline also protects against conduction leakage between adjacent floating gates within the dielectric layer 110 because it blocks the conduction path between adjacent gates. Furthermore, any possible stringers as a result of an incomplete etch of the floating gate layer that might short circuit adjacent gates are also-eliminated in the situation where the etch within the isolation trench extends past the upper (top of the “T”) portion of the T shaped floating gate. For more information on the Yupin effect and on disturbs, please refer to U.S. Pat. No. 5,867,429, which was previously incorporated by reference.
While embodiments of the present invention have been shown and described, changes and modifications to these illustrative embodiments can be made without departing from the present invention in its broader aspects. Thus, it should be evident that there are other embodiments of this invention which, while not expressly described above, are within the scope of the present invention and therefore that the scope of the invention is not limited merely to the illustrative embodiments presented. Therefore, it will understood that the appended claims set out the metes and bounds of the invention. However, as words are an imperfect way of describing the scope of the invention, it should also be understood that equivalent structures and methods while not within the express words of the claims are also within the true scope of the invention.

Claims (23)

1. A multi-state flash memory device formed from a substrate in which individual memory cells can store multiple bits represented as charges of more than two possible levels, the device comprising:
a plurality of strings of transistors of a NAND architecture, each string of the plurality of strings comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above channel regions in the substrate and separated from the channel regions,
wherein a controller circuit is adapted to cause adjacent first and second strings of the plurality of strings to undergo programming operations at the same time, the programming operations including setting different voltages levels in floating gates of the adjacent first and second strings, and
wherein when the plurality of strings of transistors is arranged such that, during programming of a selected floating gate of the first string, a change in a potential of a portion of the second adjacent string is shielded from the selected floating gate of the first string by a wordline extending across adjacent strings and extending between floating gates of the first and second strings into a shallow trench isolation trench between the channel regions of the first and second strings.
2. The flash memory device of claim 1 wherein the wordline shields the selected floating gate of the first string from a potential in the substrate at the second string.
3. The flash memory device of claim 1 wherein the wordline shields the selected floating gate of the first string from a potential of the adjacent floating gate of the second string.
4. The flash memory device of claim 1 further comprising a gate oxide layer between the floating gates and the substrate, the wordline extending down past the level of an upper surface of the gate oxide layer.
5. The flash memory device of claim 1 wherein the wordline shields the selected floating gate of the first string from the potential of a floating gate of the second adjacent string.
6. A flash memory device comprising:
a plurality of strings of adjacent transistors of a NAND architecture, individual strings of the plurality of strings comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above a substrate;
shallow trench isolation trenches between adjacent ones of the plurality of strings;
wordlines extending across the plurality of strings and extending between floating gates into the shallow trench isolation trenches between adjacent strings of the plurality of strings,
wherein in the case of programming adjacent strings of the plurality of NAND strings, a channel of a first string adjacent a floating gate of a second string is at a first potential for a number of programming pulses and is at a second potential during subsequent programming pulses,
wherein the potential of the channel of the first string couples to the potential of the floating gate of the second string, and
wherein the wordline shields the floating gate of the second string from the potential of the channel of the first string thereby affecting the coupling to the potential of the floating gate.
7. The flash memory device of claim 6 further comprising a gate oxide layer between the floating gates and the substrate, the wordlines extending down past the level of an upper surface of the gate oxide layer.
8. The flash memory device of claim 6 wherein the wordlines extend down past the level of an upper surface of the substrate.
9. The flash memory device of claim 6 wherein the wordlines extend down past the lower level of the channel.
10. A flash memory device formed from a substrate, the device comprising:
a plurality of strings of transistors of a NAND architecture, each string of the plurality of strings comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above the substrate, a plurality of control gates, each control gate of the plurality of control gate overlying a floating gate;
the plurality of floating gates formed above a gate oxide layer formed upon cell channel regions within the substrate; and
a plurality of wordlines that extend across the plurality of strings to connect control gates of different strings and that extend between the floating gates of adjacent strings, each wordline of the plurality of wordlines extending down past an upper surface of the substrate to shield a selected floating gate during a read or verify operation from a potential present in an adjacent string.
11. The flash memory device of claim 10 wherein a wordline of the plurality of wordlines shields the selected floating gate from the potential of the substrate beneath the adjacent string.
12. The flash memory device of claim 11 wherein a wordline of the plurality of wordlines shields the selected floating gate from the potential of a channel region of the substrate beneath the adjacent string.
13. The flash memory device of claim 10 wherein a wordline of the plurality of wordlines shields the selected floating gate from a potential of a floating gate of the adjacent string.
14. A multi-state flash memory device formed from a substrate in which individual memory cells can store multiple bits represented as charges of more than two possible levels, the device comprising:
a plurality of strings of transistors of a NAND architecture arranged longitudinally in the memory device, each string of the plurality of strings comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above channel regions in the substrate and separated from the channel regions;
wherein a controller circuit is adapted to cause adjacent first and second strings of the plurality of strings to undergo programming operations at the same time, the programming operations including setting different voltages levels in floating gates of the adjacent first and second strings, and
structure in the NAND architecture that at least partially shields a change in a potential of a portion of one adjacent string from a selected floating gate of another adjacent string when the other adjacent string is programmed by a wordline situated transversely over adjacent strings and including shielding portions extending towards the substrate between floating gates of the first and second strings.
15. The flash memory device of claim 14 wherein the wordline shields the selected floating gate of the other adjacent string from the potential of a floating gate of the one adjacent string.
16. A multi-state flash memory device formed from a substrate in which individual memory cells can store multiple bits represented as charges of more than two possible levels, the device comprising:
a plurality of strings of transistors of a NAND architecture arranged longitudinally in the memory device, each string of the plurality of strings comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above the substrate, a plurality of control gates, each control gate of the plurality of control gate overlying a floating gate, the plurality of floating gates formed above a gate oxide layer formed upon cell channel regions within the substrate;
wherein a controller circuit is adapted to cause adjacent first and second strings of the plurality of strings to undergo programming operations at the same time, the programming operations including setting different voltages levels in floating gates of the adjacent first and second strings, and
a plurality of wordlines situated transversely over the plurality of strings to connect control gates of different strings and that include shielding portions extending towards the substrate between the floating gates of adjacent strings, to shield a selected floating gate during a read or verify operation from a potential present in an adjacent string.
17. The flash memory device of claim 16 wherein a wordline of the plurality of wordlines shields the selected floating gate from a potential of a floating gate of the adjacent string.
18. In manufacturing a memory device to have a plurality of memory cells having floating gates in which a programmable charge from among more than two levels is to be stored such that individual memory cells can represent multiple bits, the plurality of memory cells arranged over a substrate to form columns along a longitudinal direction and rows along a transverse direction, the memory electrically arranged such that bit lines corresponding to the columns are situated along the longitudinal direction, and word lines corresponding to the rows are arranged over the memory cells along the transverse direction, a method of shielding memory cells from one another, the method comprising:
arranging the plurality of word lines in rows along the transverse direction over corresponding rows of the memory cells such that each of the word lines is capacitively coupled with memory cells of a corresponding row;
providing a controller circuit that is adapted to cause adjacent first and second strings of the plurality of strings to undergo programming operations at the same time, the programming operations including setting different voltages levels in floating gates of the adjacent first and second strings, and
forming the plurality of word lines such that each word line includes a set of shielding portions extending towards the substrate between adjacent memory cells of the row of memory cells corresponding to that word line, thereby causing the word lines to at least partially shield the adjacent memory cells from one another.
19. A flash memory device comprising:
strings of adjacent transistors of a NAND architecture comprising a first select gate, a plurality of floating gates, and a second select gate, the plurality of floating gates formed above a substrate, with a channel of a first string adjacent a floating gate of a second string at a first potential for a number of programming pulses and at a second, different potential for a subsequent number of programming pulses; and
means for controlling the floating gates to be programmed at the same time to different levels and for shielding the floating gates from variations of adjacent potential fields during and between program pulses, the means for controlling the floating gates and for shielding the floating gates being situated over the floating gates and extending toward the substrate between the floating gates.
20. In a memory having a plurality of strings of memory cells arranged to form columns across a substrate surface and individually including a floating gate, wherein the strings of memory cells are separated by dielectric between them, and wherein a plurality of word lines extend across rows of memory cell floating gates the dielectric therebetween, a method of programming charge levels on an individual row of memory cells to defined states, comprising:
alternatively applying program pulses to and reading the states of memory cells along the row,
in response to reading that a memory cell along the row has reached its defined state, ceasing to apply any further programming pulses to such a memory cell while continuing to apply programming pulses to other memory cells in the row until all of the memory cells along the row have reached their defined states, and
utilizing shielding between the floating gates in the row during the alternate application of program pulses to and reading the state of the memory cells along the row by maintaining portions of the word lines between adjacent floating gates and extending toward the dielectric therebetween.
21. The method of claim 20, wherein in using the shielding, the dielectric fills trenches formed into the substrate surface between the strings of memory cells.
22. The method of claim 21, wherein providing shielding includes maintaining the word lines below the level of the substrate surface.
23. The method of claim 22, wherein applying program pulses includes applying programming pulses that are successively increased in magnitude.
US12/363,165 2002-06-19 2009-01-30 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND Expired - Lifetime USRE43417E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/363,165 USRE43417E1 (en) 2002-06-19 2009-01-30 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/175,764 US6894930B2 (en) 2002-06-19 2002-06-19 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US10/353,570 US6898121B2 (en) 2002-06-19 2003-01-28 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US11/086,648 US7170786B2 (en) 2002-06-19 2005-03-21 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US12/363,165 USRE43417E1 (en) 2002-06-19 2009-01-30 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/086,648 Reissue US7170786B2 (en) 2002-06-19 2005-03-21 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND

Publications (1)

Publication Number Publication Date
USRE43417E1 true USRE43417E1 (en) 2012-05-29

Family

ID=29733973

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/175,764 Expired - Lifetime US6894930B2 (en) 2002-06-19 2002-06-19 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US10/353,570 Expired - Lifetime US6898121B2 (en) 2002-06-19 2003-01-28 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US12/363,165 Expired - Lifetime USRE43417E1 (en) 2002-06-19 2009-01-30 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/175,764 Expired - Lifetime US6894930B2 (en) 2002-06-19 2002-06-19 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US10/353,570 Expired - Lifetime US6898121B2 (en) 2002-06-19 2003-01-28 Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND

Country Status (2)

Country Link
US (3) US6894930B2 (en)
JP (1) JP4833547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031549A1 (en) * 2009-08-04 2011-02-10 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method of semiconductor memory device
US20160181435A1 (en) * 2014-12-22 2016-06-23 Wafertech, Llc Floating gate transistors and method for forming the same

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762092B2 (en) * 2001-08-08 2004-07-13 Sandisk Corporation Scalable self-aligned dual floating gate memory cell array and methods of forming the array
US6894930B2 (en) * 2002-06-19 2005-05-17 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US6908817B2 (en) * 2002-10-09 2005-06-21 Sandisk Corporation Flash memory array with increased coupling between floating and control gates
US6888755B2 (en) * 2002-10-28 2005-05-03 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
JP2005079165A (en) * 2003-08-28 2005-03-24 Toshiba Corp Nonvolatile semiconductor memory device, its manufacturing method, electronic card, and electronic device
JP2005085996A (en) * 2003-09-09 2005-03-31 Toshiba Corp Semiconductor device and method for manufacturing the same
US7221008B2 (en) 2003-10-06 2007-05-22 Sandisk Corporation Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory
US7355237B2 (en) * 2004-02-13 2008-04-08 Sandisk Corporation Shield plate for limiting cross coupling between floating gates
US7183153B2 (en) * 2004-03-12 2007-02-27 Sandisk Corporation Method of manufacturing self aligned non-volatile memory cells
US7020017B2 (en) * 2004-04-06 2006-03-28 Sandisk Corporation Variable programming of non-volatile memory
US8536661B1 (en) 2004-06-25 2013-09-17 University Of Hawaii Biosensor chip sensor protection methods
US7212435B2 (en) * 2004-06-30 2007-05-01 Micron Technology, Inc. Minimizing adjacent wordline disturb in a memory device
US7164168B2 (en) * 2004-08-03 2007-01-16 Micron Technology, Inc. Non-planar flash memory having shielding between floating gates
US7388251B2 (en) * 2004-08-11 2008-06-17 Micron Technology, Inc. Non-planar flash memory array with shielded floating gates on silicon mesas
JP2006059978A (en) * 2004-08-19 2006-03-02 Toshiba Corp Semiconductor device
WO2007008246A2 (en) 2004-11-12 2007-01-18 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for dna and other molecules
US7416956B2 (en) * 2004-11-23 2008-08-26 Sandisk Corporation Self-aligned trench filling for narrow gap isolation regions
US7381615B2 (en) * 2004-11-23 2008-06-03 Sandisk Corporation Methods for self-aligned trench filling with grown dielectric for high coupling ratio in semiconductor devices
KR100630725B1 (en) * 2004-12-17 2006-10-02 삼성전자주식회사 Semiconductor device having buried bit line and method of manufacturing the same
US7482223B2 (en) 2004-12-22 2009-01-27 Sandisk Corporation Multi-thickness dielectric for semiconductor memory
US7202125B2 (en) 2004-12-22 2007-04-10 Sandisk Corporation Low-voltage, multiple thin-gate oxide and low-resistance gate electrode
TWI270199B (en) * 2005-01-31 2007-01-01 Powerchip Semiconductor Corp Non-volatile memory and manufacturing method and operating method thereof
KR100655291B1 (en) * 2005-03-14 2006-12-08 삼성전자주식회사 Non-volatile semiconductor memory device and method of fabrication the same
US7541240B2 (en) * 2005-10-18 2009-06-02 Sandisk Corporation Integration process flow for flash devices with low gap fill aspect ratio
US20070106842A1 (en) * 2005-11-04 2007-05-10 Conley Kevin M Enhanced first level storage caching methods using nonvolatile memory
US7634585B2 (en) * 2005-11-04 2009-12-15 Sandisk Corporation In-line cache using nonvolatile memory between host and disk device
EP1786036A1 (en) * 2005-11-11 2007-05-16 STMicroelectronics S.r.l. Floating gate non-volatile memory cell and process for manufacturing
US7436733B2 (en) * 2006-03-03 2008-10-14 Sandisk Corporation System for performing read operation on non-volatile storage with compensation for coupling
US7499319B2 (en) * 2006-03-03 2009-03-03 Sandisk Corporation Read operation for non-volatile storage with compensation for coupling
US7515463B2 (en) 2006-04-12 2009-04-07 Sandisk Corporation Reducing the impact of program disturb during read
US7426137B2 (en) 2006-04-12 2008-09-16 Sandisk Corporation Apparatus for reducing the impact of program disturb during read
US7499326B2 (en) * 2006-04-12 2009-03-03 Sandisk Corporation Apparatus for reducing the impact of program disturb
US7436713B2 (en) 2006-04-12 2008-10-14 Sandisk Corporation Reducing the impact of program disturb
US7951669B2 (en) 2006-04-13 2011-05-31 Sandisk Corporation Methods of making flash memory cell arrays having dual control gates per memory cell charge storage element
US7440331B2 (en) 2006-06-01 2008-10-21 Sandisk Corporation Verify operation for non-volatile storage using different voltages
US7457163B2 (en) * 2006-06-01 2008-11-25 Sandisk Corporation System for verifying non-volatile storage using different voltages
US7310272B1 (en) * 2006-06-02 2007-12-18 Sandisk Corporation System for performing data pattern sensitivity compensation using different voltage
US7450421B2 (en) * 2006-06-02 2008-11-11 Sandisk Corporation Data pattern sensitivity compensation using different voltage
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
GB2457851B (en) 2006-12-14 2011-01-05 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale fet arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US7440324B2 (en) * 2006-12-29 2008-10-21 Sandisk Corporation Apparatus with alternating read mode
US7616498B2 (en) * 2006-12-29 2009-11-10 Sandisk Corporation Non-volatile storage system with resistance sensing and compensation
US7590002B2 (en) * 2006-12-29 2009-09-15 Sandisk Corporation Resistance sensing and compensation for non-volatile storage
US7495962B2 (en) * 2006-12-29 2009-02-24 Sandisk Corporation Alternating read mode
US7535764B2 (en) * 2007-03-21 2009-05-19 Sandisk Corporation Adjusting resistance of non-volatile memory using dummy memory cells
US7745285B2 (en) 2007-03-30 2010-06-29 Sandisk Corporation Methods of forming and operating NAND memory with side-tunneling
KR100900232B1 (en) * 2007-05-22 2009-05-29 주식회사 하이닉스반도체 Semiconductor device and method of manufacturing the same
US7636260B2 (en) * 2007-06-25 2009-12-22 Sandisk Corporation Method for operating non-volatile storage with individually controllable shield plates between storage elements
US7808826B2 (en) * 2007-06-25 2010-10-05 Sandisk Corporation Non-volatile storage with individually controllable shield plates between storage elements
US7781286B2 (en) * 2007-06-25 2010-08-24 Sandisk Corporation Method for fabricating non-volatile storage with individually controllable shield plates between storage elements
US7869273B2 (en) * 2007-09-04 2011-01-11 Sandisk Corporation Reducing the impact of interference during programming
DE102008003637B4 (en) * 2008-01-09 2010-05-12 Qimonda Ag Integrated circuit, method of programming a memory cell array of an integrated circuit, and memory module
JP2009283488A (en) 2008-05-19 2009-12-03 Toshiba Corp Nonvolatile memory, and manufacturing method thereof
JP5491705B2 (en) * 2008-05-22 2014-05-14 株式会社東芝 Semiconductor device
US7893519B2 (en) * 2008-05-28 2011-02-22 Qimonda Ag Integrated circuit with conductive structures
EP2982437B1 (en) 2008-06-25 2017-12-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
TWI539172B (en) 2010-06-30 2016-06-21 生命技術公司 Methods and apparatus for testing isfet arrays
TWI547688B (en) 2010-06-30 2016-09-01 生命技術公司 Ion-sensing charge-accumulation circuits and methods
US8823380B2 (en) 2010-06-30 2014-09-02 Life Technologies Corporation Capacitive charge pump
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
CN103168341B (en) 2010-07-03 2016-10-05 生命科技公司 There is the chemosensitive sensor of lightly doped discharger
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
JP2012069193A (en) 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor memory device and its control method
JP2012069203A (en) 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor memory device and driving method for nonvolatile semiconductor memory device
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8916920B2 (en) * 2011-07-19 2014-12-23 Macronix International Co., Ltd. Memory structure with planar upper surface
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9099196B2 (en) 2013-01-25 2015-08-04 Samsung Electronics Co., Ltd. Semiconductor memory device and method of operating the same
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8942043B2 (en) 2013-03-04 2015-01-27 Sandisk Technologies Inc. Non-volatile storage with process that reduces read disturb on end wordlines
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
EP2972281B1 (en) 2013-03-15 2023-07-26 Life Technologies Corporation Chemical device with thin conductive element
EP2972280B1 (en) 2013-03-15 2021-09-29 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
CN105283758B (en) 2013-03-15 2018-06-05 生命科技公司 Chemical sensor with consistent sensor surface area
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9299438B2 (en) * 2013-06-12 2016-03-29 Kabushiki Kaisha Toshiba Semiconductor memory device
CN111505087A (en) 2014-12-18 2020-08-07 生命科技公司 Method and apparatus for measuring analytes using large scale FET arrays
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
WO2016100486A1 (en) 2014-12-18 2016-06-23 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
KR20170073980A (en) * 2015-12-21 2017-06-29 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
US9865609B2 (en) * 2016-01-28 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. One-time-programming (OTP) memory cell with floating gate shielding

Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043940A (en) 1988-06-08 1991-08-27 Eliyahou Harari Flash EEPROM memory systems having multistate storage cells
US5053839A (en) 1990-01-23 1991-10-01 Texas Instruments Incorporated Floating gate memory cell and device
US5070032A (en) 1989-03-15 1991-12-03 Sundisk Corporation Method of making dense flash eeprom semiconductor memory structures
US5095344A (en) 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
US5168465A (en) 1988-06-08 1992-12-01 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5172338A (en) 1989-04-13 1992-12-15 Sundisk Corporation Multi-state EEprom read and write circuits and techniques
US5198380A (en) 1988-06-08 1993-03-30 Sundisk Corporation Method of highly compact EPROM and flash EEPROM devices
US5268318A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5268319A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5279982A (en) 1990-07-24 1994-01-18 Sgs-Thomson Microelectronics S.R.L. Method for fabricating memory cell matrix having parallel source and drain interconnection metal lines formed on the substrate and topped by orthogonally oriented gate interconnection parallel metal lines
US5297148A (en) 1989-04-13 1994-03-22 Sundisk Corporation Flash eeprom system
US5313421A (en) 1992-01-14 1994-05-17 Sundisk Corporation EEPROM with split gate source side injection
US5315541A (en) 1992-07-24 1994-05-24 Sundisk Corporation Segmented column memory array
US5343063A (en) 1990-12-18 1994-08-30 Sundisk Corporation Dense vertical programmable read only memory cell structure and processes for making them
US5471423A (en) 1993-05-17 1995-11-28 Nippon Steel Corporation Non-volatile semiconductor memory device
US5512505A (en) 1990-12-18 1996-04-30 Sandisk Corporation Method of making dense vertical programmable read only memory cell structure
US5534456A (en) 1994-05-25 1996-07-09 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with sidewall spacers
US5579259A (en) 1995-05-31 1996-11-26 Sandisk Corporation Low voltage erase of a flash EEPROM system having a common erase electrode for two individually erasable sectors
US5621233A (en) 1994-09-16 1997-04-15 Motorola Inc. Electrically programmable read-only memory cell
US5637897A (en) 1995-03-06 1997-06-10 Nec Corporation Nonvolatile semiconductor memory device with dual insulation layers between adjacent gate structures
US5640032A (en) 1994-09-09 1997-06-17 Nippon Steel Corporation Non-volatile semiconductor memory device with improved rewrite speed
EP0780902A1 (en) 1995-07-31 1997-06-25 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory and method for fabricating the same
US5665987A (en) 1992-10-27 1997-09-09 Toyo Denki Seizo Kabushiki Kaisha Insulated gate static induction thyristor with a split gate type shorted cathode structure
US5680345A (en) 1995-06-06 1997-10-21 Advanced Micro Devices, Inc. Nonvolatile memory cell with vertical gate overlap and zero birds beaks
US5688705A (en) 1994-02-17 1997-11-18 National Semiconductor Corporation Method for reducing the spacing between the horizontally adjacent floating gates of a flash EPROM array
US5712179A (en) 1995-10-31 1998-01-27 Sandisk Corporation Method of making triple polysilicon flash EEPROM arrays having a separate erase gate for each row of floating gates
US5712180A (en) 1992-01-14 1998-01-27 Sundisk Corporation EEPROM with split gate source side injection
US5751038A (en) 1996-11-26 1998-05-12 Philips Electronics North America Corporation Electrically erasable and programmable read only memory (EEPROM) having multiple overlapping metallization layers
US5756385A (en) 1994-03-30 1998-05-26 Sandisk Corporation Dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US5786988A (en) 1996-07-02 1998-07-28 Sandisk Corporation Integrated circuit chips made bendable by forming indentations in their back surfaces flexible packages thereof and methods of manufacture
US5851881A (en) 1997-10-06 1998-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making monos flash memory for multi-level logic
JPH1126731A (en) 1997-06-27 1999-01-29 Toshiba Corp Nonvolatile semiconductor memory device and manufacture thereof
US5867429A (en) 1997-11-19 1999-02-02 Sandisk Corporation High density non-volatile flash memory without adverse effects of electric field coupling between adjacent floating gates
JPH1154732A (en) 1997-06-06 1999-02-26 Toshiba Corp Non-volatile semiconductor memory device
JPH11186419A (en) 1997-12-25 1999-07-09 Toshiba Corp Non-volatile semiconductor storage device
US5923976A (en) 1995-12-26 1999-07-13 Lg Semicon Co., Ltd. Nonvolatile memory cell and method of fabricating the same
US5943572A (en) 1995-07-10 1999-08-24 Siemens Aktiengesellschaft Electrically writable and erasable read-only memory cell arrangement and method for its production
WO1999044239A1 (en) 1998-02-25 1999-09-02 Siemens Aktiengesellschaft Electrically programmable memory cell arrangement and method for producing the same
US5949101A (en) 1994-08-31 1999-09-07 Kabushiki Kaisha Toshiba Semiconductor memory device comprising multi-level logic value of the threshold voltage
US5981335A (en) 1997-11-20 1999-11-09 Vanguard International Semiconductor Corporation Method of making stacked gate memory cell structure
US5999448A (en) 1998-03-17 1999-12-07 Fujitsu Limited Nonvolatile semiconductor memory device and method of reproducing data of nonvolatile semiconductor memory device
US6046935A (en) 1996-03-18 2000-04-04 Kabushiki Kaisha Toshiba Semiconductor device and memory system
US6046940A (en) * 1994-06-29 2000-04-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US6048768A (en) 1998-12-24 2000-04-11 United Semiconductor Copr. Method of manufacturing flash memory
US6058044A (en) 1997-12-10 2000-05-02 Kabushiki Kaisha Toshiba Shielded bit line sensing scheme for nonvolatile semiconductor memory
US6057580A (en) 1997-07-08 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor memory device having shallow trench isolation structure
US6069382A (en) 1998-02-11 2000-05-30 Cypress Semiconductor Corp. Non-volatile memory cell having a high coupling ratio
US6072721A (en) 1997-05-23 2000-06-06 Sony Corporation Semiconductor nonvolatile memory, method of data programming of same, and method of producing same
US6103573A (en) 1999-06-30 2000-08-15 Sandisk Corporation Processing techniques for making a dual floating gate EEPROM cell array
JP2000236031A (en) 1999-02-16 2000-08-29 Toshiba Corp Nonvolatile semiconductor memory
JP2000268585A (en) 1999-03-17 2000-09-29 Sony Corp Non-volatile semiconductor memory, and its erasing verifying method
US6151248A (en) 1999-06-30 2000-11-21 Sandisk Corporation Dual floating gate EEPROM cell array with steering gates shared by adjacent cells
US6159801A (en) 1999-04-26 2000-12-12 Taiwan Semiconductor Manufacturing Company Method to increase coupling ratio of source to floating gate in split-gate flash
JP2001015717A (en) 1999-06-30 2001-01-19 Toshiba Corp Nonvolatile semiconductor memory
JP2001024076A (en) 1999-06-30 2001-01-26 Hyundai Electronics Ind Co Ltd Flash eeprom cell and manufacture thereof
US6180457B1 (en) 1998-09-25 2001-01-30 Samsung Electronics Co., Ltd. Method of manufacturing non-volatile memory device
US6208545B1 (en) 1997-04-04 2001-03-27 Glenn J. Leedy Three dimensional structure memory
US6222762B1 (en) 1992-01-14 2001-04-24 Sandisk Corporation Multi-state memory
US6235586B1 (en) 1999-07-13 2001-05-22 Advanced Micro Devices, Inc. Thin floating gate and conductive select gate in situ doped amorphous silicon material for NAND type flash memory device applications
US20010001491A1 (en) 1997-11-07 2001-05-24 Koji Sakui Semiconductor memory device having memory cells each having a conductive body of booster plate and a method for manufacturing the same
EP1104023A1 (en) 1999-11-26 2001-05-30 STMicroelectronics S.r.l. Process for manufacturing electronic devices comprising non-volatile memory cells
WO2001041199A1 (en) 1999-12-03 2001-06-07 Intel Corporation Integrated memory cell and method of fabrication
JP2001168306A (en) 1999-12-09 2001-06-22 Toshiba Corp Non-volatile semiconductor memory device and its manufacturing method
US6256225B1 (en) 1999-02-26 2001-07-03 Micron Technology, Inc. Construction and application for non-volatile reprogrammable switches
US6258665B1 (en) 1997-03-21 2001-07-10 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method for manufacturing the same
US6281075B1 (en) 1999-01-27 2001-08-28 Sandisk Corporation Method of controlling of floating gate oxide growth by use of an oxygen barrier
US6295227B1 (en) 1998-11-26 2001-09-25 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US6297097B1 (en) 1996-05-16 2001-10-02 Hyundai Electronics Industries Co., Ltd. Method for forming a semiconductor memory device with increased coupling ratio
US6340611B1 (en) * 1997-06-27 2002-01-22 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US6391717B1 (en) 1999-12-28 2002-05-21 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a flash memory device
US6403421B1 (en) 1998-04-22 2002-06-11 Sony Corporation Semiconductor nonvolatile memory device and method of producing the same
US6406961B1 (en) 2000-10-06 2002-06-18 Winbond Electronics Corporation Process for producing flash memory without mis-alignment of floating gate with field oxide
US6417538B1 (en) 1998-07-23 2002-07-09 Samsung Electronics Co., Ltd. Nonvolative semiconductor memory device with high impurity concentration under field oxide layer
US20020093073A1 (en) 2000-10-30 2002-07-18 Kabushiki Kaisha Toshiba Semiconductor device having two-layered charge storage electrode
US6426529B2 (en) 2000-07-05 2002-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory
US6429072B1 (en) 1998-06-12 2002-08-06 Nec Corporation Method of forming a floating gate memory cell structure
KR20020088554A (en) 2001-05-18 2002-11-29 삼성전자 주식회사 Flash Memory Cell and Method Of Forming The Same
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6522580B2 (en) 2001-06-27 2003-02-18 Sandisk Corporation Operating techniques for reducing effects of coupling between storage elements of a non-volatile memory operated in multiple data states
US6529410B1 (en) 2000-09-20 2003-03-04 Advanced Micro Devices, Inc. NAND array structure and method with buried layer
US6559009B2 (en) 2001-03-29 2003-05-06 Macronix International Co. Ltd. Method of fabricating a high-coupling ratio flash memory
US6614684B1 (en) 1999-02-01 2003-09-02 Hitachi, Ltd. Semiconductor integrated circuit and nonvolatile memory element
US6624464B2 (en) 2000-11-14 2003-09-23 Samsung Electronics Co., Ltd. Highly integrated non-volatile memory cell array having a high program speed
WO2004001852A1 (en) 2002-06-19 2003-12-31 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled nand
US6738289B2 (en) 2001-02-26 2004-05-18 Sandisk Corporation Non-volatile memory with improved programming and method therefor
US6762092B2 (en) 2001-08-08 2004-07-13 Sandisk Corporation Scalable self-aligned dual floating gate memory cell array and methods of forming the array
US6768161B2 (en) 2001-06-01 2004-07-27 Kabushiki Kaisha Toshiba Semiconductor device having floating gate and method of producing the same
US6770932B2 (en) 2002-07-10 2004-08-03 Kabushiki Kaisha Toshiba Semiconductor memory device having a memory region and a peripheral region, and a manufacturing method thereof
US6801095B2 (en) 2002-11-26 2004-10-05 Agere Systems, Inc. Method, program and system for designing an interconnected multi-stage oscillator
US6888755B2 (en) 2002-10-28 2005-05-03 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US6894930B2 (en) * 2002-06-19 2005-05-17 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US20050157549A1 (en) 2004-01-21 2005-07-21 Nima Mokhlesi Non-volatile memory cell using high-k material and inter-gate programming
US20050199939A1 (en) 2004-03-12 2005-09-15 Lutze Jeffrey W. Self aligned non-volatile memory cells and processes for fabrication
US7026684B2 (en) 2003-09-22 2006-04-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US7078763B2 (en) 2003-02-26 2006-07-18 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device including improved gate electrode
US20070198766A1 (en) 2006-02-22 2007-08-23 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing a semiconductor memory
US20080076217A1 (en) 2006-09-21 2008-03-27 Henry Chien Methods of Reducing Coupling Between Floating Gates in Nonvolatile Memory
US20080079059A1 (en) 1991-04-24 2008-04-03 Eon Silicon Solution Inc. Method of manufacturing a nonvolatile semiconductor memory device and select gate device having a stacked gate structure
US7355237B2 (en) 2004-02-13 2008-04-08 Sandisk Corporation Shield plate for limiting cross coupling between floating gates
US7385015B2 (en) 2004-10-12 2008-06-10 Exxonmobil Chemical Patents Inc. Trialkylaluminum treated supports

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US93073A (en) * 1869-07-27 Improvement in valves for hydraulic presses
US5554563A (en) 1995-04-04 1996-09-10 Taiwan Semiconductor Manufacturing Company In situ hot bake treatment that prevents precipitate formation after a contact layer etch back step

Patent Citations (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198380A (en) 1988-06-08 1993-03-30 Sundisk Corporation Method of highly compact EPROM and flash EEPROM devices
US5095344A (en) 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
US5168465A (en) 1988-06-08 1992-12-01 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5554553A (en) 1988-06-08 1996-09-10 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
US5268318A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5268319A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5043940A (en) 1988-06-08 1991-08-27 Eliyahou Harari Flash EEPROM memory systems having multistate storage cells
US5070032A (en) 1989-03-15 1991-12-03 Sundisk Corporation Method of making dense flash eeprom semiconductor memory structures
US5172338A (en) 1989-04-13 1992-12-15 Sundisk Corporation Multi-state EEprom read and write circuits and techniques
US5297148A (en) 1989-04-13 1994-03-22 Sundisk Corporation Flash eeprom system
US5172338B1 (en) 1989-04-13 1997-07-08 Sandisk Corp Multi-state eeprom read and write circuits and techniques
US5053839A (en) 1990-01-23 1991-10-01 Texas Instruments Incorporated Floating gate memory cell and device
US5279982A (en) 1990-07-24 1994-01-18 Sgs-Thomson Microelectronics S.R.L. Method for fabricating memory cell matrix having parallel source and drain interconnection metal lines formed on the substrate and topped by orthogonally oriented gate interconnection parallel metal lines
US5380672A (en) 1990-12-18 1995-01-10 Sundisk Corporation Dense vertical programmable read only memory cell structures and processes for making them
US5847425A (en) 1990-12-18 1998-12-08 Sandisk Corporation Dense vertical programmable read only memory cell structures and processes for making them
US5965913A (en) 1990-12-18 1999-10-12 Sandisk Corporation Dense vertical programmable read only memory cell structures and processes for making them
US5512505A (en) 1990-12-18 1996-04-30 Sandisk Corporation Method of making dense vertical programmable read only memory cell structure
US5343063A (en) 1990-12-18 1994-08-30 Sundisk Corporation Dense vertical programmable read only memory cell structure and processes for making them
US20080079059A1 (en) 1991-04-24 2008-04-03 Eon Silicon Solution Inc. Method of manufacturing a nonvolatile semiconductor memory device and select gate device having a stacked gate structure
US6222762B1 (en) 1992-01-14 2001-04-24 Sandisk Corporation Multi-state memory
US5883409A (en) 1992-01-14 1999-03-16 Sandisk Corporation EEPROM with split gate source side injection
US5313421A (en) 1992-01-14 1994-05-17 Sundisk Corporation EEPROM with split gate source side injection
US5712180A (en) 1992-01-14 1998-01-27 Sundisk Corporation EEPROM with split gate source side injection
US5315541A (en) 1992-07-24 1994-05-24 Sundisk Corporation Segmented column memory array
US5665987A (en) 1992-10-27 1997-09-09 Toyo Denki Seizo Kabushiki Kaisha Insulated gate static induction thyristor with a split gate type shorted cathode structure
US5471423A (en) 1993-05-17 1995-11-28 Nippon Steel Corporation Non-volatile semiconductor memory device
US5688705A (en) 1994-02-17 1997-11-18 National Semiconductor Corporation Method for reducing the spacing between the horizontally adjacent floating gates of a flash EPROM array
US5756385A (en) 1994-03-30 1998-05-26 Sandisk Corporation Dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US5661053A (en) 1994-05-25 1997-08-26 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US5534456A (en) 1994-05-25 1996-07-09 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with sidewall spacers
US5595924A (en) 1994-05-25 1997-01-21 Sandisk Corporation Technique of forming over an irregular surface a polysilicon layer with a smooth surface
US5654217A (en) 1994-05-25 1997-08-05 Sandisk Corporation Dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US5747359A (en) 1994-05-25 1998-05-05 Sandisk Corporation Method of patterning polysilicon layers on substrate
US6046940A (en) * 1994-06-29 2000-04-04 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US5949101A (en) 1994-08-31 1999-09-07 Kabushiki Kaisha Toshiba Semiconductor memory device comprising multi-level logic value of the threshold voltage
US5640032A (en) 1994-09-09 1997-06-17 Nippon Steel Corporation Non-volatile semiconductor memory device with improved rewrite speed
US5621233A (en) 1994-09-16 1997-04-15 Motorola Inc. Electrically programmable read-only memory cell
US5637897A (en) 1995-03-06 1997-06-10 Nec Corporation Nonvolatile semiconductor memory device with dual insulation layers between adjacent gate structures
US5579259A (en) 1995-05-31 1996-11-26 Sandisk Corporation Low voltage erase of a flash EEPROM system having a common erase electrode for two individually erasable sectors
US5677872A (en) 1995-05-31 1997-10-14 Sandisk Corporation Low voltage erase of a flash EEPROM system having a common erase electrode for two individual erasable sectors
US5680345A (en) 1995-06-06 1997-10-21 Advanced Micro Devices, Inc. Nonvolatile memory cell with vertical gate overlap and zero birds beaks
US5943572A (en) 1995-07-10 1999-08-24 Siemens Aktiengesellschaft Electrically writable and erasable read-only memory cell arrangement and method for its production
US5962889A (en) 1995-07-31 1999-10-05 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory with a floating gate that has a bottom surface that is smaller than the upper surface
EP0780902A1 (en) 1995-07-31 1997-06-25 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory and method for fabricating the same
US6028336A (en) 1995-10-31 2000-02-22 Sandisk Corporation Triple polysilicon flash EEPROM arrays having a separate erase gate for each row of floating gates, and methods of manufacturing such arrays
US5712179A (en) 1995-10-31 1998-01-27 Sandisk Corporation Method of making triple polysilicon flash EEPROM arrays having a separate erase gate for each row of floating gates
US5923976A (en) 1995-12-26 1999-07-13 Lg Semicon Co., Ltd. Nonvolatile memory cell and method of fabricating the same
US6046935A (en) 1996-03-18 2000-04-04 Kabushiki Kaisha Toshiba Semiconductor device and memory system
US6297097B1 (en) 1996-05-16 2001-10-02 Hyundai Electronics Industries Co., Ltd. Method for forming a semiconductor memory device with increased coupling ratio
US5786988A (en) 1996-07-02 1998-07-28 Sandisk Corporation Integrated circuit chips made bendable by forming indentations in their back surfaces flexible packages thereof and methods of manufacture
US5751038A (en) 1996-11-26 1998-05-12 Philips Electronics North America Corporation Electrically erasable and programmable read only memory (EEPROM) having multiple overlapping metallization layers
US6258665B1 (en) 1997-03-21 2001-07-10 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method for manufacturing the same
US6208545B1 (en) 1997-04-04 2001-03-27 Glenn J. Leedy Three dimensional structure memory
US6072721A (en) 1997-05-23 2000-06-06 Sony Corporation Semiconductor nonvolatile memory, method of data programming of same, and method of producing same
US6034894A (en) 1997-06-06 2000-03-07 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device having buried electrode within shallow trench
JPH1154732A (en) 1997-06-06 1999-02-26 Toshiba Corp Non-volatile semiconductor memory device
JPH1126731A (en) 1997-06-27 1999-01-29 Toshiba Corp Nonvolatile semiconductor memory device and manufacture thereof
US6340611B1 (en) * 1997-06-27 2002-01-22 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US6057580A (en) 1997-07-08 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor memory device having shallow trench isolation structure
US5851881A (en) 1997-10-06 1998-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making monos flash memory for multi-level logic
US20010001491A1 (en) 1997-11-07 2001-05-24 Koji Sakui Semiconductor memory device having memory cells each having a conductive body of booster plate and a method for manufacturing the same
US5867429A (en) 1997-11-19 1999-02-02 Sandisk Corporation High density non-volatile flash memory without adverse effects of electric field coupling between adjacent floating gates
US5981335A (en) 1997-11-20 1999-11-09 Vanguard International Semiconductor Corporation Method of making stacked gate memory cell structure
US6058044A (en) 1997-12-10 2000-05-02 Kabushiki Kaisha Toshiba Shielded bit line sensing scheme for nonvolatile semiconductor memory
US6310374B1 (en) 1997-12-25 2001-10-30 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having extracting electrode
JPH11186419A (en) 1997-12-25 1999-07-09 Toshiba Corp Non-volatile semiconductor storage device
US6069382A (en) 1998-02-11 2000-05-30 Cypress Semiconductor Corp. Non-volatile memory cell having a high coupling ratio
WO1999044239A1 (en) 1998-02-25 1999-09-02 Siemens Aktiengesellschaft Electrically programmable memory cell arrangement and method for producing the same
US5999448A (en) 1998-03-17 1999-12-07 Fujitsu Limited Nonvolatile semiconductor memory device and method of reproducing data of nonvolatile semiconductor memory device
US6403421B1 (en) 1998-04-22 2002-06-11 Sony Corporation Semiconductor nonvolatile memory device and method of producing the same
US6429072B1 (en) 1998-06-12 2002-08-06 Nec Corporation Method of forming a floating gate memory cell structure
US6417538B1 (en) 1998-07-23 2002-07-09 Samsung Electronics Co., Ltd. Nonvolative semiconductor memory device with high impurity concentration under field oxide layer
US6180457B1 (en) 1998-09-25 2001-01-30 Samsung Electronics Co., Ltd. Method of manufacturing non-volatile memory device
US6295227B1 (en) 1998-11-26 2001-09-25 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US6048768A (en) 1998-12-24 2000-04-11 United Semiconductor Copr. Method of manufacturing flash memory
US6281075B1 (en) 1999-01-27 2001-08-28 Sandisk Corporation Method of controlling of floating gate oxide growth by use of an oxygen barrier
US6614684B1 (en) 1999-02-01 2003-09-02 Hitachi, Ltd. Semiconductor integrated circuit and nonvolatile memory element
JP2000236031A (en) 1999-02-16 2000-08-29 Toshiba Corp Nonvolatile semiconductor memory
US6256225B1 (en) 1999-02-26 2001-07-03 Micron Technology, Inc. Construction and application for non-volatile reprogrammable switches
JP2000268585A (en) 1999-03-17 2000-09-29 Sony Corp Non-volatile semiconductor memory, and its erasing verifying method
US6159801A (en) 1999-04-26 2000-12-12 Taiwan Semiconductor Manufacturing Company Method to increase coupling ratio of source to floating gate in split-gate flash
US6151248A (en) 1999-06-30 2000-11-21 Sandisk Corporation Dual floating gate EEPROM cell array with steering gates shared by adjacent cells
JP2001024076A (en) 1999-06-30 2001-01-26 Hyundai Electronics Ind Co Ltd Flash eeprom cell and manufacture thereof
US6103573A (en) 1999-06-30 2000-08-15 Sandisk Corporation Processing techniques for making a dual floating gate EEPROM cell array
JP2001015717A (en) 1999-06-30 2001-01-19 Toshiba Corp Nonvolatile semiconductor memory
US6339006B1 (en) 1999-06-30 2002-01-15 Hyundai Electronics Ind. Co., Ltd. Flash EEPROM cell and method of manufacturing the same
US6235586B1 (en) 1999-07-13 2001-05-22 Advanced Micro Devices, Inc. Thin floating gate and conductive select gate in situ doped amorphous silicon material for NAND type flash memory device applications
EP1104023A1 (en) 1999-11-26 2001-05-30 STMicroelectronics S.r.l. Process for manufacturing electronic devices comprising non-volatile memory cells
US6509222B1 (en) 1999-11-26 2003-01-21 Stmicroelectronics S.R.L. Process for manufacturing electronic devices comprising nonvolatile memory cells of reduced dimensions
WO2001041199A1 (en) 1999-12-03 2001-06-07 Intel Corporation Integrated memory cell and method of fabrication
US6518618B1 (en) 1999-12-03 2003-02-11 Intel Corporation Integrated memory cell and method of fabrication
US6987047B2 (en) 1999-12-09 2006-01-17 Kabushiki Kaisha Toshiba Method of manufacturing a nonvolatile semiconductor memory device having a stacked gate structure
JP2001168306A (en) 1999-12-09 2001-06-22 Toshiba Corp Non-volatile semiconductor memory device and its manufacturing method
US20010014503A1 (en) * 1999-12-09 2001-08-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
US6720610B2 (en) 1999-12-09 2004-04-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
US7582928B2 (en) 1999-12-09 2009-09-01 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
US20070278562A1 (en) 1999-12-09 2007-12-06 Kabushi Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
KR20010062298A (en) 1999-12-09 2001-07-07 니시무로 타이죠 Nonvolatile semiconductor memory device and manufacturing method the same
US20070166919A1 (en) 1999-12-09 2007-07-19 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
US6974746B2 (en) 1999-12-09 2005-12-13 Kabushiki Kaisha Toshiba Method of manufacturing a nonvolatile semiconductor memory device having a stacked gate structure
US6391717B1 (en) 1999-12-28 2002-05-21 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a flash memory device
US6426529B2 (en) 2000-07-05 2002-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory
US6529410B1 (en) 2000-09-20 2003-03-04 Advanced Micro Devices, Inc. NAND array structure and method with buried layer
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6406961B1 (en) 2000-10-06 2002-06-18 Winbond Electronics Corporation Process for producing flash memory without mis-alignment of floating gate with field oxide
US6806132B2 (en) 2000-10-30 2004-10-19 Kabushiki Kaisha Toshiba Semiconductor device having two-layered charge storage electrode
US20020093073A1 (en) 2000-10-30 2002-07-18 Kabushiki Kaisha Toshiba Semiconductor device having two-layered charge storage electrode
US6624464B2 (en) 2000-11-14 2003-09-23 Samsung Electronics Co., Ltd. Highly integrated non-volatile memory cell array having a high program speed
US6738289B2 (en) 2001-02-26 2004-05-18 Sandisk Corporation Non-volatile memory with improved programming and method therefor
US6559009B2 (en) 2001-03-29 2003-05-06 Macronix International Co. Ltd. Method of fabricating a high-coupling ratio flash memory
KR20020088554A (en) 2001-05-18 2002-11-29 삼성전자 주식회사 Flash Memory Cell and Method Of Forming The Same
US6768161B2 (en) 2001-06-01 2004-07-27 Kabushiki Kaisha Toshiba Semiconductor device having floating gate and method of producing the same
US6807095B2 (en) 2001-06-27 2004-10-19 Sandisk Corporation Multi-state nonvolatile memory capable of reducing effects of coupling between storage elements
US6522580B2 (en) 2001-06-27 2003-02-18 Sandisk Corporation Operating techniques for reducing effects of coupling between storage elements of a non-volatile memory operated in multiple data states
US6762092B2 (en) 2001-08-08 2004-07-13 Sandisk Corporation Scalable self-aligned dual floating gate memory cell array and methods of forming the array
US20070161191A1 (en) 2001-08-08 2007-07-12 Yuan Jack H Scalable Self-Aligned Dual Floating Gate Memory Cell Array And Methods Of Forming The Array
US7211866B2 (en) 2001-08-08 2007-05-01 Sandisk Corporation Scalable self-aligned dual floating gate memory cell array and methods of forming the array
US6953970B2 (en) 2001-08-08 2005-10-11 Sandisk Corporation Scalable self-aligned dual floating gate memory cell array and methods of forming the array
US7170786B2 (en) 2002-06-19 2007-01-30 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
WO2004001852A1 (en) 2002-06-19 2003-12-31 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled nand
US6898121B2 (en) * 2002-06-19 2005-05-24 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US6894930B2 (en) * 2002-06-19 2005-05-17 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US6770932B2 (en) 2002-07-10 2004-08-03 Kabushiki Kaisha Toshiba Semiconductor memory device having a memory region and a peripheral region, and a manufacturing method thereof
US6888755B2 (en) 2002-10-28 2005-05-03 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US6801095B2 (en) 2002-11-26 2004-10-05 Agere Systems, Inc. Method, program and system for designing an interconnected multi-stage oscillator
US7078763B2 (en) 2003-02-26 2006-07-18 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device including improved gate electrode
US7026684B2 (en) 2003-09-22 2006-04-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
US20050157549A1 (en) 2004-01-21 2005-07-21 Nima Mokhlesi Non-volatile memory cell using high-k material and inter-gate programming
US7355237B2 (en) 2004-02-13 2008-04-08 Sandisk Corporation Shield plate for limiting cross coupling between floating gates
US20050199939A1 (en) 2004-03-12 2005-09-15 Lutze Jeffrey W. Self aligned non-volatile memory cells and processes for fabrication
US7385015B2 (en) 2004-10-12 2008-06-10 Exxonmobil Chemical Patents Inc. Trialkylaluminum treated supports
US20070198766A1 (en) 2006-02-22 2007-08-23 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing a semiconductor memory
US20080076217A1 (en) 2006-09-21 2008-03-27 Henry Chien Methods of Reducing Coupling Between Floating Gates in Nonvolatile Memory

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
Application and File History for U.S. Patent No. 6,762,092, issued Jul. 13, 2004, inventor Yuan.
Application and File History for U.S. Patent No. 6,894,930, issued May 17, 2005, inventor Chien.
Application and File History for U.S. Patent No. 6,898,121, issued May 24, 2003, inventor Chien.
Application and File History for U.S. Patent No. 6,953,970, issued Oct. 11, 2005, inventor Yuan.
Application and File History for U.S. Patent No. 7,170,786, issued Jan. 30, 2007, inventor Chien.
Application and File History for U.S. Patent No. 7,211,866, issued May 1, 2007, inventor Yuan.
Application and File History for U.S. Patent No. 7,512,005, issued Mar. 31, 2009, inventor Mokhlesi.
Application and File History for U.S. Publication No. 2007/0161191, published Jul. 12, 2007, inventor Yuan.
Application and File Wrapper for U.S. Patent No. 7,745,285, issued Jun. 29, 2010, inventor Mokhlesi.
Aritome et al., "A 0.67um2 Self-Aligned Shallow Trench Isolation Cell (SA-STI Cell) for 3V-only 256Mbit NAND EEPROMs" IEDm Technical digest, pp. 61-64 (1994).
Aritome et al., "A Novel Side-Wall transfer-Transistor Cell (SWATT Cell) For Multi-Level NAND EEPROMs", 1995 IEEE International Solid-State Circuits Conference, IEDM 95, pp. 275-278.
Aritome et al., "A0.67um2 Self-Aligned Shallow Trench Isolation Cell (SA-STI Cell) for 3V-only 256Mbit NAND EEPROMs", IEDM Technical digest, pp. 61-64 (1994).
Aritome, Seiichi, "Advanced Flash Memory Technology and Trends for File Storage Application," IEDM Technical Digest, International Electronic Devices Meeting, IEEE, San Francisco, California, Dec. 10-13, 2000, pp. 33.1.1-33.1.4.
Chan, et al., "A True Single-Transistor Oxide-nitride-Oxide EEPROM Device," IEEE Electron Device Letters, vol. EDL-8, No. 3, Mar. 1987, pp. 93-95.
Cho et al., "A Dual-Mode NAND Flash memory: 1-Gb Multilevel and High-Performance 512-Mb Single-Level Modes", IEEE Journal of Solid-State Circuits, vol. 36, No. 11, pp. 1700-1706 (2001).
DiMaria et al., "Electrically-alterable read-only memory using Si-rich SIO2 injectors and a floating polycrystalline silicon storage layer," J.Appl. Phys. 52 (7), Jul. 1981, pp. 4825-4842.
Eitan et al., "NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell," IEEE Electron Device Letters, vol. 21, No. 11, Nov. 2000, pp. 543-545.
EPO/ISA, "International Search Report," mailed in PCT/US2002/025025 on Apr. 4, 2003, 4 pages.
European Office Action for European Application No: 03736962.6 dated Jan. 18, 2010.
European Office Acton for European Application No. 03736962.6 dated Jan. 14, 2011.
European Office Acton for European Application No. 03736962.6 dated Jun. 21, 2010.
European Patent Office, "International Search Report", corresponding PCT application No. PCT/US03/18183, Sep. 6, 2003, 4 pages.
Hori et al., "A MOSFET with Si-implanted GATE-SIO2 Insulator for Nonvolatile Memory Applications," IEDM 92, Apr. 1992, pp. 469-472.
International Search Report, PCT/US03/18183 filed Sep. 6, 2003.
ISR for corresponding PCT Application No. PCT/US03/18183.
Japanese Office Action dispatch dated May 10, 2011 from Japanese Application No. 2004-515756.
Korean Office Action dated May 27, 2011 from Korean Application No. 2004-7020775.
Lee, Jae-Duk, et al., "Effects of Parasitic Capacitance on NAND Flash memory Cell Operation," Non-Volatile Semiconductor Memory Workshop, IEEE, Monterey, CA, Aug. 12-16, 2001, pp. 90-92.
Machine Translation of JP 08-125148, Published May 17, 1996.
Notification of Reasons for Refusal for Japanese Patent Application No. 2003-519998 mailed May 29, 2009.
Notification of Reasons for Refusal for Japanese Patent Application No. 2004-515756 dated Mar. 30, 2010.
Nozaki et al., "A 1-Mb EEPROM with MONOS Memory Cell for Semiconductor Disk Application," IEEE Journal of Solid State Circuits, vol. 26, No. 4, Apr. 1991, pp. 497-501.
Office Action for corresponding PRC Patent Application No. 02815618.8, mailed may 16, 2006, 11 pages.
Office Action in related Korean Application No. 2004-7002026 Action mailed Nov. 3, 2008.
Office Action in related Korean Application No. 2004-7020775 Action mailed Sep. 30, 2009.
Office Action in related Korean Application No. 2004-7020775 dated Jun. 7, 2010.
Office Action in related PRC (China) Patent Application No. 02815618.8 mailed Jun. 5, 2009.
Seiichi Aritome, "Advanced Flash Memory Technology and Trends for File Storage Application," 2000 International Electron Devices Meeting, Dec. 10-13, 2000, pp. 33.1.1-33.1.4.
Takeuchi et al., A Self-Aligned STI Process Integration for Low Cost and Highly Reliable 1Gbit Flash Memories, 1998 Symposium on VLSI Technology; Digest of Technical Papers, IEEE Honolulu, HI, Jun. 9-11, 1998, pp. 102-103.
Y. Takeuchi et al., "A Self-Aligned STI Process Integration for Low Cost and Highly Reliable 1Gbit Flash Memories," 1998 Symposium on VLSI Technology-Digest of Technical Papers, Jun. 9-11, 1998, pp. 102.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031549A1 (en) * 2009-08-04 2011-02-10 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method of semiconductor memory device
US20160181435A1 (en) * 2014-12-22 2016-06-23 Wafertech, Llc Floating gate transistors and method for forming the same

Also Published As

Publication number Publication date
US6898121B2 (en) 2005-05-24
US20030235078A1 (en) 2003-12-25
US20040012998A1 (en) 2004-01-22
US6894930B2 (en) 2005-05-17
JP2005530362A (en) 2005-10-06
JP4833547B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
USRE43417E1 (en) Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US7170786B2 (en) Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
EP1936681B1 (en) Non-volatile memory device and method of operating the same
US6826084B1 (en) Accessing individual storage nodes in a bi-directional nonvolatile memory cell
US20030052360A1 (en) EEPROM with split gate source side injection with sidewall spacers
US8837216B2 (en) Non-volatile storage system with shared bit lines connected to a single selection device
US9047971B2 (en) Operation for non-volatile storage system with shared bit lines
WO2005081769A2 (en) Nor-type channel-program channel-erase contactless flash memory on soi
US9159406B2 (en) Single-level cell endurance improvement with pre-defined blocks
US6967373B2 (en) Two-bit charge trap nonvolatile memory device and methods of operating and fabrication the same
US20050072999A1 (en) Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory
US5168335A (en) Electrically programmable, electrically erasable memory array cell with field plate
KR100379553B1 (en) A array of flash memory cell and method for programming of data thereby and method for erased of data thereby
WO2000045438A1 (en) Two transistor eeprom cell using p-well for tunneling across a channel
KR100241523B1 (en) Flash memory device and its programming, erasing and reading method
US6960805B2 (en) Flash memory cell and method of manufacturing the same, and programming/erasing/reading method in the flash memory cell
US5134449A (en) Nonvolatile memory cell with field-plate switch
US7319604B2 (en) Electronic memory device having high density non-volatile memory cells and a reduced capacitive interference cell-to-cell
KR0144909B1 (en) Cell array layout method of nonvolatile memory device
US20060024887A1 (en) Flash memory cell and fabricating method thereof
US8422290B2 (en) Methods of reading data in a NAND flash memory device with a fringe voltage applied to a conductive layer
WO2004070730A1 (en) A novel highly-integrated flash memory and mask rom array architecture

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDISK TECHNOLOGIES INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK CORPORATION;REEL/FRAME:026317/0360

Effective date: 20110404

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SANDISK TECHNOLOGIES LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038809/0600

Effective date: 20160516

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12