US20080241261A1 - process for producing solid oral dosage forms with sustained release of active ingredient - Google Patents

process for producing solid oral dosage forms with sustained release of active ingredient Download PDF

Info

Publication number
US20080241261A1
US20080241261A1 US12/135,580 US13558008A US2008241261A1 US 20080241261 A1 US20080241261 A1 US 20080241261A1 US 13558008 A US13558008 A US 13558008A US 2008241261 A1 US2008241261 A1 US 2008241261A1
Authority
US
United States
Prior art keywords
oral dosage
dosage form
active ingredient
agents
polyvinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/135,580
Inventor
Karl Kolter
Dieter Flick
Hermann Ascherl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/135,580 priority Critical patent/US20080241261A1/en
Publication of US20080241261A1 publication Critical patent/US20080241261A1/en
Assigned to BASF SE reassignment BASF SE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BASF AKTIENGESELLSCHAFT
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present invention relates to a process for producing solid oral dosage forms with sustained release of active ingredient, comprising at least one active ingredient, a preformulated mixture of polyvinyl acetate and polyvinylpyrrolidone, where appropriate water-soluble polymers or lipophilic additives and, where appropriate, other conventional excipients, wherein this mixture or parts of this mixture are granulated by heating to from 40° C. to 130° C., and the granules are, after admixture with conventional excipients, subsequently tabletted.
  • So-called depot or sustained release dosage forms are becoming increasingly important especially in pharmaceutical technology. Because it is possible, through the choice of suitable excipients, to control the release of active ingredient, the intention is to improve the therapeutic effect of the dosage form.
  • the release principles in this connection extend from delayed dissolution of active ingredient, the setting up of diffusion barriers or the swelling-based release to chemically controlled release of bioerosion. In practice, the principle of matrix tablets is frequently used.
  • the matrix formers frequently employed are substances from the group of cellulose derivatives, but also substances from the group of fats and waxes. However, since these substances, as well as the active ingredients, can frequently be processed in tablet presses only with difficulty or not at all, because of their physical properties, granulation is often unavoidable.
  • DE 4408326 describes the production of a sustained release tablet with a content of diclofenac-Na.
  • the matrix is formed by using the frequently employed methylhydroxypropylcellulose, which is a associated with the crucial disadvantage that the production of the granules by wet granulation takes place in a fluidized bed, and thus a drying step is made necessary. It is particularly complicated in this case to adjust the release of active ingredient, because this takes place via a two-layer tablet.
  • DE 3829398 describes a fixed pharmaceutical combination in which, although it is possible to dispense with the use of fillers, there is also a use as matrix farmers of stearyl alcohol alone and/or acrylic resins, which must be processed in a melt.
  • EP 097 523 describes the production of sustained release drugs where the active ingredients represent a combination of salt and the free base. This elaborate process requires several process steps in order to obtain the finished granules. Thus, the actual granules are produced by conventional wet granulation and dried and only then coated with a molten hydrophobic component, or a mixture of such constituents, these usually being fatty alcohols.
  • U.S. Pat. No. 5,403,593 describes the production of a sustained release dosage form in which a combination of hydrophilic cellulose polymers and a granulating medium with a melting point above 30° C. are employed. It is clear in this case too that a large number of excipients is necessary in order on the one hand to achieve the desired granulation effect, and on the other hand to adjust the release of active ingredient. Although this process can be carried out in one apparatus, in this case cooling of granules to room temperature is necessary before further processing.
  • DE 4 031 881 describes the production of granules which contain, inter alia, polyvinyl acetate as thermoplastic, on the one hand the granules are produced from a melt, and on the other hand the molten active ingredient acts in this process as solvent for the excipient(s) bringing about the sustained release.
  • U.S. Pat. No. 5,169,645 describes inter alia the production of granules with waxes whose properties can be influenced by the addition of other substances such as, for example, polyvinyl acetate.
  • other substances such as, for example, polyvinyl acetate.
  • the wax it is necessary on the one hand for the wax to be molten, and on the other hand for the properties such as, for example, that of release to be adjusted by adding other substances.
  • the situation is similar in the U.S. Pat. No. 5,000,965, where the polyvinyl acetate is melted and additionally mixed with emulsion excipients.
  • DE 19729487 describes a process for producing active ingredient preparations with controlled release from a matrix.
  • the release characteristics are adjusted by means of a thermal after-treatment in a fluidized bed.
  • This form of production is very inconvenient because a second step is necessary after the granulation, including changing the operating equipment, in which the granules must be heated again until the melting point of the binder is reached.
  • EP 0204596 describes the production of microparticles by extrusion. In this process it is necessary to add nonhydrophilic polymers and a mixture of at least two lipid binders, which again makes the overall process very complicated.
  • DE 3612212 describes the production of pharmaceutical forms by extrusion or injection molding, in which the fusible N-vinylpyrrolidone polymer is employed and, where appropriate, additional nitrogen- and/or oxygen-containing comonomers are included in the polymer. However, in this case, the process requires complete melting of the mixture.
  • melt granulation aids are added to the powder mixture in the molten state, a problem which often arises is that of uniform distribution of the melt in the powder. An irregular particle structure, poor filling of the die and non-uniform release are the consequence.
  • the process of the invention applies the principle of melt granulation, and a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone acts both as binder and as matrix former, the matrix which is responsible for the sustained release being formed only after the tabletting.
  • the special feature of this process is that no melt is present in the granulation; on the contrary, merely because of the low glass transition temperature (T g ) of polyvinyl acetate the surface of the polyvinyl acetate starts to become tacky at temperatures above about 35° C., and thus a granulation effect occurs.
  • T g low glass transition temperature
  • the process is in principle independent of the physicochemical properties of the active ingredient.
  • the latter may be water-soluble, water-insoluble, acidic or basic or low-melting.
  • the invention also relates to the oral dosage forms produced by the process of the invention.
  • the dosage forms are preferably employed for active pharmaceutical ingredients. However, they can also be employed for any other active ingredient for which delayed release is desired.
  • the active ingredient or a combination of different active ingredients is premixed alone or with water-soluble or low or high molecular weight lipophilic additives and/or with conventional excipients and the formulated mixture of polyvinyl acetate and polyvinylpyrrolidone, preferably in a mixer, granulated in the same apparatus, continuously or batchwise, by heating to temperatures between 40 and 130° C., preferably in a range from 45 to 100° C. It is possible according to the invention for the granules also to be produced by extrusion or in a fluidized bed.
  • a possible option is to force the granules while still warm or after cooling through a screen with mesh widths between 0.2 mm and 3.0 mm, and then compress them to tablets by adding conventional tabletting excipients such as, for example, fillers or lubricants.
  • tabletting excipients such as, for example, fillers or lubricants.
  • the properties of the granules can be adjusted by the skilled worker inter alia via the parameters of temperature and residence time. Higher temperatures and longer residence times usually mean a greater granulation effect and thus coarser particles.
  • the surface moisture can be increased by adding small amounts of water or solvent ( ⁇ 5%) to the dosage form.
  • additives are employed in concentrations of from 1 to 40%, preferably from 2 to 30%, based on the total weight of the tablets. This is necessary with very low-dose active ingredients, where the amount of formulated mixture of polyvinyl acetate and polyvinylpyrrolidone required to build up the structure entails the release being slowed too much. This also applies to active ingredients of low solubility, where although small amounts of release-slowing agent lead to delayed release, the structure is not completely built up and is subject to wide variations, and the mechanical stability of the tablets is inadequate. This is especially the case when the compressibility of the active ingredient is poor.
  • Water-soluble swelling polymers which can be employed are: alginates, pectins, galactomannans, carrageenans, dextran, curdlan, pullulan, gellan, chitin, gelatin, xanthans, hemicelluloses, cellulose derivatives such as methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, carboxymethylcellulose, starch derivatives such as carboxymethylstarch, degraded starch, maltodextrins, polyacrylic acid, polymethacrylic acid, acrylic acid/methacrylic acid copolymers, polyvinyl alcohols, high molecular weight polyethylene glycols, polyoxyethylene/polyoxypropylene block copolymers, high molecular weight polyvinylpyrrolidones and derivatives thereof.
  • the ratio of active ingredient to release-slowing agent is between 5:95 and 85:15.
  • the release-slowing effect can also be intensified by fine-particle lipophilic additives. This entails these additives being trapped in the pores and channels of the structure of polyvinyl acetate and polyvinylpyrrolidone and blocking them. It is important that these substances are employed in small particle size, because they have only a slight effect or no effect in coarse form.
  • Lipophilic additives which can be used are both polymers and low molecular weight compounds. The polymers are, however, preferred.
  • additives include: cellulose derivatives such as ethylcellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate succinate, hydroxypropylmethylcellulose acetate phthalate, hydroxypropylmethylcellulose acetate succinate, acrylic ester/methacrylic ester copolymers, especially methyl methacrylate/ethyl acrylate copolymers, ammoniomethacrylate copolymer type A and type B, methacrylic acid/acrylic ester copolymers, especially methacrylic acid/ethyl acrylate copolymers, fatty alcohols such as stearyl alcohol, fatty acids such as stearic acid, fatty acid esters and fatty alcohol esters, glycerides, waxes, lecithin.
  • cellulose derivatives such as ethylcellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate succinate, hydroxypropylmethylcellulose acetate phthalate,
  • Water-soluble additives which can be employed are the following:
  • Polyvinyl alcohols polyethylene glycols, polyoxyethylene/polyoxypropylene block copolymers, polyvinylpyrrolidone and derivatives, vinyl acetate/vinylpyrrolidone copolymers, preferably polyethylene glycols, polyvinylpyrrolidones, vinyl acetate/vinylpyrrolidone copolymers or maltodextrins, and salts thereof.
  • additives are employed in concentrations of from 1 to 40%, preferably from 2 to 30%, based on the total weight of the tablets.
  • the formulated mixture of polyvinyl acetate and polyvinylpyrrolidone is present in the preparations of the invention in concentrations of from 10 to 80%, preferably from 20 to 60%.
  • the molecular weights of polyvinyl acetate and polyvinylpyrrolidone are in each case between 20 000 and 1 000 000.
  • the ratio of polyvinyl acetate and polyvinylpyrrolidone in the formulated mixture is between 6:4 and 9:1, preferably 8:2. This formulation is designed so that the polyvinylpyrrolidone is extremely finely dispersed in the polyvinyl acetate.
  • the dosage forms of the invention comprise oral dosage forms such as tablets, extrudates, pellets or granules.
  • Smaller shaped articles such as, for example, pellets or microtablets can also be introduced into capsules.
  • Dosage forms of this invention are distinguished by the fact that additional excipients are not absolutely necessary and accordingly solid drug forms with a high active ingredient content can be produced. If, nevertheless, excipients are used in order to adjust particular properties, they are substances from the class of fillers such as, for example, lactose, cellulose powder, mannitol, calcium diphosphate or various starches, silicates, and disintegrants and adsorbents, lubricants, flowability agents, dyes, stabilizers such as antioxidants, wetting agents, preservatives, release agents, flavorings or sweeteners, preferably fillers.
  • fillers such as, for example, lactose, cellulose powder, mannitol, calcium diphosphate or various starches, silicates, and disintegrants and adsorbents, lubricants, flowability agents, dyes, stabilizers such as antioxidants, wetting agents, preservatives, release agents, flavorings or sweeteners, preferably fillers.
  • Lubricants which can be used are stearates of aluminum, calcium, magnesium and tin, and magnesium silicate, silicones and the like.
  • Flowability agents can be, for example, talc or colloidal silica.
  • binder is microcrystalline cellulose.
  • Disintegrants can be crosslinked polyvinylpyrrolidone or crosslinked sodium carboxymethylstarch.
  • Stabilizers can be ascorbic acid or tocopherol.
  • fillers which can be added are inorganic fillers such as oxides of magnesium, aluminum, silicon, titanium carbonate or calcium carbonate, calcium phosphates or magnesium phosphates or organic fillers such as lactose, sucrose, sorbitol, mannitol.
  • dyes are iron oxides, titanium dioxide, triphenylmethane dyes, azo dyes, quinoline dyes, indigotine dyes, carotenoids, for coloring the dosage forms, opacifying agents such as titanium dioxide or talc in order to reduce the transparency to light and to save on dyes.
  • the dosage forms of the invention may contain any active ingredient for which delayed release is desired.
  • the active ingredients preferably employed are food supplements or additives, vitamins, minerals or trace elements, but particularly preferably active pharmaceutical ingredients.
  • compositions of the abovementioned type can be obtained by processing the claimed compounds with active pharmaceutical ingredients by conventional methods and with use of known and novel active ingredients.
  • the active ingredients may moreover come from any area of indications.
  • any active ingredient which does not decompose at the stated temperatures and whose average particle size is in a range between 20 and 700 ⁇ m, but preferably in a range between 30 and 500 ⁇ m, is suitable.
  • the shape of the tablet can be varied within wide limits.
  • biconvex, biplanar, round or polygonal tablets can be produced, as well as oblong or football shapes.
  • the upper limit on size is determined by the swallowability, while the lower limit is determined by machine design limits.
  • Conventional tablet sizes are between 1 and 16 mm, preferably between 2 and 13 mm, in diameter.
  • polyvinyl acetate and polyvinylpyrrolidone makes it possible by means of the chosen process to produce granules in a “one-pot system”, it being possible to dispense with the addition of any solvents, and it being unnecessary either for an additional thermal after-treatment to be carried out or for the tablets to be coated.
  • Another advantage is that active ingredients whose tablettability is known to be poor can be processed in a simple manner.
  • the angle of repose was determined by the Pfrengle method specified in DIN 53916.
  • the dosage forms of the invention show good hardnesses and uniformities of weight for the tablets produced from the granules.
  • the paracetamol/Methocel K 15M combination granule properties are distinctly worse, resulting in the relative standard deviation for the tablet masses being twice as large, and the poor hardnesses. In order to improve the tablet properties it was therefore frequently necessary for additional binders and satisfactorily compressible fillers to be added.
  • the tablet properties were measured using an automatic tablet tester from Kraemer (type HT-TMB).
  • a Kollidon SR/paracetamol mixture composed of 50% Kollidon SR and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at various temperatures (70 to 85° C.) and at 650 rpm for various times. The still hot granules were then passed through a 1 mm screen, leading to very homogeneous granules. After admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • Table 3 shows the dependence of the granule particle size on the granulation temperature and the residence time, the granulation effects achieved being, as expected, better with a longer granulation time and higher granulation temperature.
  • the average particle size was measured by laser diffraction.
  • the D[4,3] value is stated.
  • a Kollidon SR/paracetamol mixture composed of 50% Kollidon SR and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at about 80° C. and at 650 rpm for 12.5 min.
  • the paracetamol employed had previously been fractionated in order to establish the effect of the active ingredient particle size on the granulation.
  • the still hot granules were passed through a 1 mm screen, leading to very homogeneous granules. After admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • Table 4 shows that even small active ingredient particles can be granulated without problems, and that there is no dusting, as might be suspected, of the polymer particles, thus preventing granulation.
  • the average particle size was measured by laser diffraction.
  • the D[4,3] value is stated.
  • Table 5 shows that there are only slight effects on the hardness despite distinct differences in the starting material.
  • the hardness was measured using an automatic tablet tester from Kraemer (type HT-TMB).
  • Table 6 shows the active ingredient release from tablets by the paddle method in deionized water at 37° C. over 16 h.
  • Table 7 shows clearly the effect of the amount of Kollidon SR on the active ingredient release and on the hardness.
  • the hardness was measured in an automatic tablet tester from Kraemer (type HT-TMB).
  • the release time for determining the t 50 of the tablets was 16 h (paddle method; test medium: 0 to 2 h: 0.1 N HCl, 2 to 16 h: phosphate buffer pH 6.8; test temperature: 37° C.).
  • a Kollidon SR/caffeine/alginate mixture composed of 47.5% Kollidon SR, 47.5% paracetamol and 5% alginate were premixed in a high-speed mixer with jacket heating (Gral Collette type) and granulated at a temperature of about 85° C. The still hot granules were then passed through a 1 mm screen, leading to homogeneous granules each time. After a granulation time of about 10 min, the granules were passed through a 1 mm screen and, after admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in an eccentric press (Korsch Ek0).
  • the tablets have a hardness of about 160 N even with a compressive force of 10 kN.
  • Table 8 shows that there is no release-slowing effect either with the physical mixture or with the melt granules. An effect is evident only after tabletting, the release being delayed even more from the tablet produced from the melt granules. This result shows that the process of melt granulation of the invention distinctly enhances the release-slowing effect in the tablet with the formulated mixture of polyvinylacetate and polyvinylpyrrolidone, preferably in the ratio 8:2.
  • Active ingredient release from the tablets was carried out by the paddle method in deionized water at 37° C. over 16 h.
  • a Kollidon SR/caffeine mixture composed of 50% Kollidon SR and 50% caffeine was mixed in a drum mixer (from Turbula, type T 10B). The mixture was kneaded in a single screw extruder (from Haake, type Rheocord 90) at a temperature of 50° C. to give a homogeneous composition. The strands were cut by a cutting device to give granules which were again passed through a 1 mm screen and, after admixture of 0.5% magnesium stearate, compressed to 10 mm beveled tablets in an eccentric press (Korsch Ek0).
  • the average particle size was measured by laser diffraction.
  • the D[4,3] value is stated.
  • Methocel K15M/paracetamol mixture composed of 50% Methocel K15M and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at about 85° C. and at 650 rpm for 12.5 min. The still hot mixture was passed through a 1 mm screen. After admixture of 0.5% magnesium stearate and 1% Aerosil 200, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • the average particle size was measured by laser diffraction.
  • the D[4,3] value is stated.
  • the angle of repose was determined by the Pfrengle method as described in DIN 53916.
  • the tablet properties were determined using an automatic tablet tester from Kraemer (type HT-TMB).
  • the release time for determining the t 50 of the tablets was 16 h at 37° C. in deionized water (paddle method).
  • the molten stearyl alcohol is added to the paracetamol in an intensive mixer and granulated for 12.5 min.
  • the cooled granules are passed through a 1 mm screen.
  • After admixture of 0.5% magnesium stearate and 1% Aerosil 200, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • Example 2 In addition to the poor flow characteristics, the tablet properties are distinctly worse. Tabletting with a compressive force of 18 kN was possible under the same conditions as in Example 1 only with provisos because every second tablet was capped on ejection from the die. The intact tablets have low hardness and a friability of 100%.
  • the angle of repose was determined by the Pfrengle method specified in DIN 53916.
  • the tablet properties were measured using an automatic tablet tester from Kraemer (type HT-TMB).
  • the release time for determining the t 50 of the tablets was 16 h at 37° C. in deionized water (paddle method).

Abstract

The present invention relates to a process for producing solid oral dosage forms with sustained release of active ingredient, comprising at least one active ingredient, a preformulated mixture of polyvinyl acetate and polyvinylpyrrolidone, where appropriate, water-soluble polymers or lipophilic additives and, where appropriate, other conventional excipients, wherein this mixture or parts of this mixture are granulated by heating to from 40° C. to 130° C., and the granules are, after admixture with conventional excipients, subsequently tabletted.

Description

  • A process for producing solid oral dosage forms with sustained release of active ingredient
  • The present invention relates to a process for producing solid oral dosage forms with sustained release of active ingredient, comprising at least one active ingredient, a preformulated mixture of polyvinyl acetate and polyvinylpyrrolidone, where appropriate water-soluble polymers or lipophilic additives and, where appropriate, other conventional excipients, wherein this mixture or parts of this mixture are granulated by heating to from 40° C. to 130° C., and the granules are, after admixture with conventional excipients, subsequently tabletted.
  • So-called depot or sustained release dosage forms are becoming increasingly important especially in pharmaceutical technology. Because it is possible, through the choice of suitable excipients, to control the release of active ingredient, the intention is to improve the therapeutic effect of the dosage form. The release principles in this connection extend from delayed dissolution of active ingredient, the setting up of diffusion barriers or the swelling-based release to chemically controlled release of bioerosion. In practice, the principle of matrix tablets is frequently used.
  • The production of these sustained release dosage forms, matrix tablets, frequently takes place by granulation and subsequent tabletting. A particular form of agglomeration is represented by melt granulation. In contrast to conventional wet granulation, in which a mixture is moistened with solvent or a binder solution, there is not addition in this process of additional solvent. On the contrary, in this type of agglomeration there is use of binders which are solid at room temperature and melt at temperatures above about 50° C. The omission of additional solvent is particularly interesting since, because there are no drying periods, the process times are distinctly shorter and, in the specific case of water-sensitive active ingredients, it is unnecessary to use organic solvents.
  • The matrix formers frequently employed are substances from the group of cellulose derivatives, but also substances from the group of fats and waxes. However, since these substances, as well as the active ingredients, can frequently be processed in tablet presses only with difficulty or not at all, because of their physical properties, granulation is often unavoidable.
  • Many of the matrix formers employed additionally lack a sufficient ability to act also as binders, allowing tablets with adequate mechanical stability to be produced. This therefore frequently makes it necessary to use other excipients which lead not only to stable granules but also to tablets with optimal properties.
  • In DE 19729487 or DE2357503 there is use of binders which are already molten or are converted into the molten state of aggregation during the process (for example cetyl alcohol, stearyl alcohol or polyethylene glycol). Besides the disadvantage of the change in the state of aggregation, this has the additional disadvantage that the tablet properties are not satisfactory either.
  • DE 4408326 describes the production of a sustained release tablet with a content of diclofenac-Na. The matrix is formed by using the frequently employed methylhydroxypropylcellulose, which is a associated with the crucial disadvantage that the production of the granules by wet granulation takes place in a fluidized bed, and thus a drying step is made necessary. It is particularly complicated in this case to adjust the release of active ingredient, because this takes place via a two-layer tablet.
  • DE 3829398 describes a fixed pharmaceutical combination in which, although it is possible to dispense with the use of fillers, there is also a use as matrix farmers of stearyl alcohol alone and/or acrylic resins, which must be processed in a melt.
  • EP 097 523 describes the production of sustained release drugs where the active ingredients represent a combination of salt and the free base. This elaborate process requires several process steps in order to obtain the finished granules. Thus, the actual granules are produced by conventional wet granulation and dried and only then coated with a molten hydrophobic component, or a mixture of such constituents, these usually being fatty alcohols.
  • U.S. Pat. No. 5,403,593 describes the production of a sustained release dosage form in which a combination of hydrophilic cellulose polymers and a granulating medium with a melting point above 30° C. are employed. It is clear in this case too that a large number of excipients is necessary in order on the one hand to achieve the desired granulation effect, and on the other hand to adjust the release of active ingredient. Although this process can be carried out in one apparatus, in this case cooling of granules to room temperature is necessary before further processing.
  • Although DE 4 031 881 describes the production of granules which contain, inter alia, polyvinyl acetate as thermoplastic, on the one hand the granules are produced from a melt, and on the other hand the molten active ingredient acts in this process as solvent for the excipient(s) bringing about the sustained release.
  • U.S. Pat. No. 5,169,645 describes inter alia the production of granules with waxes whose properties can be influenced by the addition of other substances such as, for example, polyvinyl acetate. In this case it is necessary on the one hand for the wax to be molten, and on the other hand for the properties such as, for example, that of release to be adjusted by adding other substances. The situation is similar in the U.S. Pat. No. 5,000,965, where the polyvinyl acetate is melted and additionally mixed with emulsion excipients.
  • DE 19729487 describes a process for producing active ingredient preparations with controlled release from a matrix. In this case, the release characteristics are adjusted by means of a thermal after-treatment in a fluidized bed. This form of production is very inconvenient because a second step is necessary after the granulation, including changing the operating equipment, in which the granules must be heated again until the melting point of the binder is reached.
  • EP 0204596 describes the production of microparticles by extrusion. In this process it is necessary to add nonhydrophilic polymers and a mixture of at least two lipid binders, which again makes the overall process very complicated.
  • DE 3612212 describes the production of pharmaceutical forms by extrusion or injection molding, in which the fusible N-vinylpyrrolidone polymer is employed and, where appropriate, additional nitrogen- and/or oxygen-containing comonomers are included in the polymer. However, in this case, the process requires complete melting of the mixture.
  • The preparations and processes described above frequently involve the use of very lipophilic, completely melting excipients. In the liquid state of aggregation, these very lipophilic excipients, such as, for example, waxes, dissolve active ingredients and/or completely entrap them. During release therefore the lipophilic drugs which have high affinity for these very lipophilic excipients are not completely released.
  • The general disadvantage is always that very lipophilic regions exist which are not rendered hydrophilic by hydrophilic polymers. It is therefore impossible for water to penetrate into such regions.
  • An additional factor is that the compressibility of these lipophilic excipients is very poor. The hardnesses achieved are only low, the friability is high, and adhesion occurs during production, which can be eliminated—if at all—only with very large amounts of release agents.
  • If the melt granulation aids are added to the powder mixture in the molten state, a problem which often arises is that of uniform distribution of the melt in the powder. An irregular particle structure, poor filling of the die and non-uniform release are the consequence.
  • Although a number of possibilities for producing sustained release drug forms are now known, there is still a need for simple, rapid and thus cost-effective processes which allow both water-soluble and water-insoluble active ingredients to be used without complications.
  • It is an object of the present invention to produce active ingredient-containing granules with good physical properties, which can be converted by tabletting into high-dose pharmaceutical dosage forms with sustained release of active ingredient and good mechanical properties. It was intended secondly that the process have short processing times allowing the granules to be produced with relatively little technical complexity and being suitable both for water-sensitive and for water-insensitive active ingredients, with which it is also possible to dispense very substantially with additional excipients.
  • We have found that this object is achieved by a process for producing an oral dosage form with sustained release of active ingredient, comprising
      • a) a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone
      • b) at least one active ingredient
      • c) where appropriate water-soluble polymers or low or high molecular weight lipophilic additives
      • d) and, where appropriate, other conventional excipients,
        wherein the mixture of a) to d) or a) to c) or a) and b) and d) or a) and b) is granulated by heating to from 40° C. to 130° C., and the granules are then tabletted after admixture of conventional excipients.
  • The process of the invention applies the principle of melt granulation, and a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone acts both as binder and as matrix former, the matrix which is responsible for the sustained release being formed only after the tabletting. The special feature of this process is that no melt is present in the granulation; on the contrary, merely because of the low glass transition temperature (Tg) of polyvinyl acetate the surface of the polyvinyl acetate starts to become tacky at temperatures above about 35° C., and thus a granulation effect occurs. The process is in principle independent of the physicochemical properties of the active ingredient. The latter may be water-soluble, water-insoluble, acidic or basic or low-melting.
  • The invention also relates to the oral dosage forms produced by the process of the invention.
  • The dosage forms are preferably employed for active pharmaceutical ingredients. However, they can also be employed for any other active ingredient for which delayed release is desired.
  • The active ingredient or a combination of different active ingredients is premixed alone or with water-soluble or low or high molecular weight lipophilic additives and/or with conventional excipients and the formulated mixture of polyvinyl acetate and polyvinylpyrrolidone, preferably in a mixer, granulated in the same apparatus, continuously or batchwise, by heating to temperatures between 40 and 130° C., preferably in a range from 45 to 100° C. It is possible according to the invention for the granules also to be produced by extrusion or in a fluidized bed. A possible option is to force the granules while still warm or after cooling through a screen with mesh widths between 0.2 mm and 3.0 mm, and then compress them to tablets by adding conventional tabletting excipients such as, for example, fillers or lubricants. The properties of the granules can be adjusted by the skilled worker inter alia via the parameters of temperature and residence time. Higher temperatures and longer residence times usually mean a greater granulation effect and thus coarser particles.
  • The surface moisture can be increased by adding small amounts of water or solvent (<5%) to the dosage form.
  • It is surprisingly possible in the process of the invention to employ as mixer both the double cone, ploughshare or V mixers mainly employed for blending, and the sigma kneaders, planetary mixing kneaders, intensive mixers or extruders normally employed in pharmaceutical technology for granulation. It is possible for the energy required for the superficial melting in the mixers to be supplied optionally by means of the heat of friction or conventional heating methods such as, for example, jacket heating or microwaves. A particular advantage which has unexpectedly emerged in this connection is that an apparatus for cooling is not absolutely necessary as in processes employed to date, because this process does not involve a melt in the conventional sense. Adhesion effects and accretions on mixer implements or mixer walls therefore do not occur.
  • It is possible by adding highly swelling water-soluble polymers or lipophilic additives to vary the release within almost any limits while, at the same time, the flowability of the tabletting mixture is good, and the tablets have great hardness and low friability. It is possible to increase the rate of active ingredient release by adding low-viscosity, nonswelling water-soluble polymers such as polyvinyl alcohols, polyethylene glycols, polyoxyethylene/polyoxypropylene block copolymers, polyvinylpyrrolidones and derivatives, vinyl acetate/vinylpyrrolidone copolymers, preferably polyethylene glycols, polyvinylpyrrolidones, vinyl acetate/vinylpyrrolidone copolymers or maltodextrins.
  • These additives are employed in concentrations of from 1 to 40%, preferably from 2 to 30%, based on the total weight of the tablets. This is necessary with very low-dose active ingredients, where the amount of formulated mixture of polyvinyl acetate and polyvinylpyrrolidone required to build up the structure entails the release being slowed too much. This also applies to active ingredients of low solubility, where although small amounts of release-slowing agent lead to delayed release, the structure is not completely built up and is subject to wide variations, and the mechanical stability of the tablets is inadequate. This is especially the case when the compressibility of the active ingredient is poor.
  • The poor flowability of the active ingredient then cannot be decisively improved by small amounts of formulated mixture of polyvinyl acetate and polyvinylpyrrolidone. Increasing the content of release-slowing agent improves these properties, but then leads to release being too slow. The water-soluble nonswelling polymer increases the rate of release and stabilizes the latter to all external effects. The reproducibility is also very much better. Conventional tabletting excipients such as lactose, calcium phosphates, sorbitol, mannitol, microcrystalline cellulose or starch are able to do this insufficiently or not at all. It is probable that an interaction of the water-soluble polymer with a formulated mixture of the polymers polyvinyl acetate and polyvinylpyrrolidone leads to the very stable and reproducible release which is independent of the compressive force. The hardness of the tablets and the friability also show excellent values, and are often in fact better than without admixture of water-soluble polymers.
  • Water-soluble but swelling, high-viscosity polymers surprisingly lead to slower release. It would have been expected that the inert structure would be destroyed by the swelling polymer, and the active ingredient would be released more rapidly. The fact that this does not occur probably derives from the great elasticity of the formulated mixture of polyvinyl acetate and polyvinylpyrrolidone. The highly viscous solution formed from the water-soluble, swelling polymer in the pores of the structure blocks them and thus slows down diffusion of the active ingredient to the outside. The release is frequently slowed down more than by the two components on their own. A synergistic effect is present. An additional factor is that the initial release is also reduced by gel formation on the surface, and the release profile is thus “linearized”. The mechanical properties of the tablets remain at a very high level.
  • Water-soluble swelling polymers which can be employed are: alginates, pectins, galactomannans, carrageenans, dextran, curdlan, pullulan, gellan, chitin, gelatin, xanthans, hemicelluloses, cellulose derivatives such as methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, carboxymethylcellulose, starch derivatives such as carboxymethylstarch, degraded starch, maltodextrins, polyacrylic acid, polymethacrylic acid, acrylic acid/methacrylic acid copolymers, polyvinyl alcohols, high molecular weight polyethylene glycols, polyoxyethylene/polyoxypropylene block copolymers, high molecular weight polyvinylpyrrolidones and derivatives thereof.
  • The ratio of active ingredient to release-slowing agent is between 5:95 and 85:15.
  • The release-slowing effect can also be intensified by fine-particle lipophilic additives. This entails these additives being trapped in the pores and channels of the structure of polyvinyl acetate and polyvinylpyrrolidone and blocking them. It is important that these substances are employed in small particle size, because they have only a slight effect or no effect in coarse form. Lipophilic additives which can be used are both polymers and low molecular weight compounds. The polymers are, however, preferred.
  • These additives include: cellulose derivatives such as ethylcellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate succinate, hydroxypropylmethylcellulose acetate phthalate, hydroxypropylmethylcellulose acetate succinate, acrylic ester/methacrylic ester copolymers, especially methyl methacrylate/ethyl acrylate copolymers, ammoniomethacrylate copolymer type A and type B, methacrylic acid/acrylic ester copolymers, especially methacrylic acid/ethyl acrylate copolymers, fatty alcohols such as stearyl alcohol, fatty acids such as stearic acid, fatty acid esters and fatty alcohol esters, glycerides, waxes, lecithin.
  • Water-soluble additives which can be employed are the following:
  • Polyvinyl alcohols, polyethylene glycols, polyoxyethylene/polyoxypropylene block copolymers, polyvinylpyrrolidone and derivatives, vinyl acetate/vinylpyrrolidone copolymers, preferably polyethylene glycols, polyvinylpyrrolidones, vinyl acetate/vinylpyrrolidone copolymers or maltodextrins, and salts thereof.
  • These additives are employed in concentrations of from 1 to 40%, preferably from 2 to 30%, based on the total weight of the tablets.
  • The formulated mixture of polyvinyl acetate and polyvinylpyrrolidone is present in the preparations of the invention in concentrations of from 10 to 80%, preferably from 20 to 60%. The molecular weights of polyvinyl acetate and polyvinylpyrrolidone are in each case between 20 000 and 1 000 000.
  • The ratio of polyvinyl acetate and polyvinylpyrrolidone in the formulated mixture is between 6:4 and 9:1, preferably 8:2. This formulation is designed so that the polyvinylpyrrolidone is extremely finely dispersed in the polyvinyl acetate.
  • The dosage forms of the invention comprise oral dosage forms such as tablets, extrudates, pellets or granules.
  • Smaller shaped articles such as, for example, pellets or microtablets can also be introduced into capsules.
  • Dosage forms of this invention are distinguished by the fact that additional excipients are not absolutely necessary and accordingly solid drug forms with a high active ingredient content can be produced. If, nevertheless, excipients are used in order to adjust particular properties, they are substances from the class of fillers such as, for example, lactose, cellulose powder, mannitol, calcium diphosphate or various starches, silicates, and disintegrants and adsorbents, lubricants, flowability agents, dyes, stabilizers such as antioxidants, wetting agents, preservatives, release agents, flavorings or sweeteners, preferably fillers.
  • Lubricants which can be used are stearates of aluminum, calcium, magnesium and tin, and magnesium silicate, silicones and the like.
  • Flowability agents can be, for example, talc or colloidal silica.
  • An example of a binder is microcrystalline cellulose.
  • Disintegrants can be crosslinked polyvinylpyrrolidone or crosslinked sodium carboxymethylstarch. Stabilizers can be ascorbic acid or tocopherol.
  • Examples of fillers which can be added are inorganic fillers such as oxides of magnesium, aluminum, silicon, titanium carbonate or calcium carbonate, calcium phosphates or magnesium phosphates or organic fillers such as lactose, sucrose, sorbitol, mannitol.
  • Examples of dyes are iron oxides, titanium dioxide, triphenylmethane dyes, azo dyes, quinoline dyes, indigotine dyes, carotenoids, for coloring the dosage forms, opacifying agents such as titanium dioxide or talc in order to reduce the transparency to light and to save on dyes.
  • The dosage forms of the invention may contain any active ingredient for which delayed release is desired.
  • The active ingredients preferably employed are food supplements or additives, vitamins, minerals or trace elements, but particularly preferably active pharmaceutical ingredients.
  • Pharmaceutical formulations of the abovementioned type can be obtained by processing the claimed compounds with active pharmaceutical ingredients by conventional methods and with use of known and novel active ingredients. The active ingredients may moreover come from any area of indications.
  • Examples which may be mentioned here are the following:
  • Benzodiazepines, antihypertensives, vitamins, cytostatics, anesthetics, neuroleptics, antidepressants, antibiotics, antimycotics, fungicides, chemotherapeutics, urologicals, platelet aggregation inhibitors, sulfonamides, spasmolytics, hormones, immunoglobulins, sera, thyroid therapeutics, psychopharmaceuticals, antiparkinson agents and other antihyperkinetics, ophthalmologicals, neuropathy products, calcium metabolism regulators, muscle relaxants, lipid-lowering agents, liver therapeutics, coronary agents, cardiac agents, immunotherapeutics, regulatory peptides and their inhibitors, hypnotics, sedatives, gynecologicals, antigout agents, fibrinolytics, enzyme products and transport proteins, enzyme inhibitors, emetics, perfusion promoters, diuretics, diagnostics, corticoids, cholinergics, biliary therapeutics, antiasthmatics, bronchospasmolytics, beta-receptor blockers, calcium channel blockers, ACE inhibitors, arteriosclerosis remedies, antiinflammatory agents, anticoagulants, antihypotensives, antihypoglycemics, antifibrinolytics, antiepileptics, antiemetics, antidotes, antidiabetics, antiarrhythmics, antianemics, antiallergics, anthelmintics, analgesics, analeptics, aldosterone antagonists, weight-reducing agents.
  • Surprisingly, any active ingredient which does not decompose at the stated temperatures and whose average particle size is in a range between 20 and 700 μm, but preferably in a range between 30 and 500 μm, is suitable.
  • The shape of the tablet can be varied within wide limits. Thus, biconvex, biplanar, round or polygonal tablets can be produced, as well as oblong or football shapes. The upper limit on size is determined by the swallowability, while the lower limit is determined by machine design limits. Conventional tablet sizes are between 1 and 16 mm, preferably between 2 and 13 mm, in diameter.
  • It is also possible to produce two-layer or multilayer tables in which one layer contains the complete dose of active ingredient or at least has a very large active ingredient content, whereas the other layer has a very large content of the polyvinyl acetate/polyvinylpyrrolidone combination. It is possible in this way specifically to influence active ingredient release additionally. It is even possible on use of two or more active ingredients to release these at different rates by incorporating them entirely or for the most part separately in individual layers.
  • Besides the formulated mixture of polyvinyl acetate and polyvinylpyrrolidone, it is additionally possible to add release-sustaining excipients. The addition can optionally take place both before and after the granulation.
  • The combination of the two polymers polyvinyl acetate and polyvinylpyrrolidone makes it possible by means of the chosen process to produce granules in a “one-pot system”, it being possible to dispense with the addition of any solvents, and it being unnecessary either for an additional thermal after-treatment to be carried out or for the tablets to be coated. Another advantage is that active ingredients whose tablettability is known to be poor can be processed in a simple manner.
  • The particular advantages of the produced granules are immediately evident in the properties of the granules of paracetamol (fine crystals type) which is known to be difficult to process. On the basis of the distinctly better flow characteristics, the first advantage of the granules produced by elt granulation from polyvinyl acetate and polyvinylpyrrolidone in the ratio 8:2 (Kollidon SR) is evident compared with other atrix formers frequently used.
  • TABLE 1
    Flow properties of paracetamol granules
    Granule composition Angle of repose Flow time
    Paracetamol/Kollidon SR (1:1)1 32.9° 7.84 s
    Paracetamol/Methocel K 15M (1:1)1 48.2° flow stops
    Paracetamol/stearyl alcohol (1:1)2 45.6° flow stops
    Paracetamol/Kollidon SR (1:1)3 34.2° flow stops
    1Granulation in a type UMC5 electronic Stephan mixer (from A. Stephan u. Söhne) Parameters: 85° C. (jacket heating), 12.5 min, 650 rpm
    2Granulation in an intensive mixer (Diosna V20) Parameter: 12.5 min
    3Physical mixture
  • The angle of repose was determined by the Pfrengle method specified in DIN 53916.
  • The dosage forms of the invention show good hardnesses and uniformities of weight for the tablets produced from the granules. The paracetamol/Methocel K 15M combination granule properties are distinctly worse, resulting in the relative standard deviation for the tablet masses being twice as large, and the poor hardnesses. In order to improve the tablet properties it was therefore frequently necessary for additional binders and satisfactorily compressible fillers to be added.
  • TABLE 2
    Properties of paracetamol tablets
    Tablet composition Hardness Weight srel
    Paracetamol/Kollidon SR (1:1)1 175N 319.0 mg 0.4%
    Paracetamol/Methocel K 15M (1:1)1,2 112N 320.5 mg 0.8%
    Paracetamol/stearyl alcohol (1:1)1,2  53N 311.8 mg 0.6%
    1Tabletting in a Korsch (type Ek0) eccentric press Excipient: 0.5% magnesium stearate Punch: 10 mm, beveled; compressive force: 18 kN
    2Additional excipient: 1.0% Aerosil 200
  • The tablet properties (hardness and tablet weight) were measured using an automatic tablet tester from Kraemer (type HT-TMB).
  • On use of a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone the tablet properties achieved without the addition of other fillers are excellent, even with products whose tablettability is poor.
  • In contrast to conventional methods, it is possible with the method of the invention by simple manipulation to produce sustained release tablets which are distinguished by good mechanical properties and easily adjustable release characteristics.
  • EXAMPLE 1
  • 400 g of a Kollidon SR/paracetamol mixture composed of 50% Kollidon SR and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at various temperatures (70 to 85° C.) and at 650 rpm for various times. The still hot granules were then passed through a 1 mm screen, leading to very homogeneous granules. After admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • Table 3 shows the dependence of the granule particle size on the granulation temperature and the residence time, the granulation effects achieved being, as expected, better with a longer granulation time and higher granulation temperature.
  • TABLE 3
    Dependence of the average particle size on the
    granulation temperature and the granulation time
    Granulation Granulation temperature [° C.]
    time [min] 75 80 85
    7.5 147.4 μm 146.2 μm 279.2 μm
    12.5 157.6 μm 164.6 μm 391.8 μm
    17.5 179.7 μm 296.8 μm 416.6 μm
  • The average particle size was measured by laser diffraction. The D[4,3] value is stated.
  • EXAMPLE 2
  • 400 g of a Kollidon SR/paracetamol mixture composed of 50% Kollidon SR and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at about 80° C. and at 650 rpm for 12.5 min. The paracetamol employed had previously been fractionated in order to establish the effect of the active ingredient particle size on the granulation. The still hot granules were passed through a 1 mm screen, leading to very homogeneous granules. After admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • Table 4 shows that even small active ingredient particles can be granulated without problems, and that there is no dusting, as might be suspected, of the polymer particles, thus preventing granulation.
  • TABLE 4
    Dependence of the average particle size of the granules
    on the average particle size of the active ingredient
    Average particle Average particle
    size of active ingredient size of granules
    [μm] [μm]
    58.0 182.6
    63.1 178.3
    92.8 287.9
    116.8 502.2
    179.4 590.2
    412.2 640.1
    557.6 655.3
    685.2 672.7
    930.9 707.1
  • The average particle size was measured by laser diffraction. The D[4,3] value is stated.
  • Table 5 shows that there are only slight effects on the hardness despite distinct differences in the starting material.
  • TABLE 5
    Dependence of the hardness on the average particle size
    of the active ingredient
    Average particle size
    of active ingredient Hardness
    [μm] [N]
    58.0 157
    63.1 148
    92.8 148
    116.8 170
    179.4 183
    412.2 161
    557.6 167
    685.2 159
    930.9 156
  • The hardness was measured using an automatic tablet tester from Kraemer (type HT-TMB).
  • Table 6 shows the active ingredient release from tablets by the paddle method in deionized water at 37° C. over 16 h.
  • TABLE 6
    Dependence of the active ingredient release on the
    average particle size
    Active ingredient released [%]
    Average particle size of Average particle size of
    Time granules = 178 μm granules = 590 μm
    [h] (active ingredient = 63 μm) (active ingredient = 179 μm)
    0.5 12.5 13.4
    1.0 17.8 18.8
    1.5 21.5 23.0
    2.0 25.1 26.4
    3.0 31.2 30.0
    4.0 35.0 33.6
    6.0 40.4 40.3
    8.0 44.2 44.7
    12.0 50.7 52.2
    16.0 58.1 57.9
  • EXAMPLE 3
  • 400 g of a Kollidon SR/theophylline mixture composed of
    • a) 50% Kollidon SR and 50% theophylline
    • b) 43.75% Kollidon SR and 56.25% theophylline
    • c) 37.5% Kollidon SR and 62.5% theophylline
    • d) 25% Kollidon SR and 75% theophylline
      were premixed in a Stephan mixer with jacket heating and granulated at about 85° C. and at 650 rpm for 12.5 min. The still hot granules were then passed through a 1 mm screen, leading to homogeneous granules each time. After admixture of 0.5% magnesium stearate and 1% Aerosil 200, 10 mm beveled tablets were produced in a rotary press (Korsch PH 106). Release took place in analogy to example 2.
  • Table 7 shows clearly the effect of the amount of Kollidon SR on the active ingredient release and on the hardness.
  • TABLE 7
    Properties of theophylline tablets
    Tablet composition Hardness t50
    a1 220N  >16 h
    b1 202N 15.2 h
    c1 186N 12.3 h
    d1 153N 11.6 h
    1Tabletting in a Korsch rotary press (Korsch PH 106) Excipients: 1.0% Aerosil 200; 0.5% magnesium stearate Punch: 10 mm, beveled; compressive force: 18 kN
  • The hardness was measured in an automatic tablet tester from Kraemer (type HT-TMB). The release time for determining the t50 of the tablets was 16 h (paddle method; test medium: 0 to 2 h: 0.1 N HCl, 2 to 16 h: phosphate buffer pH 6.8; test temperature: 37° C.).
  • EXAMPLE 4
  • 400 g of a Kollidon SR/caffeine/alginate mixture composed of 47.5% Kollidon SR, 47.5% paracetamol and 5% alginate were premixed in a high-speed mixer with jacket heating (Gral Collette type) and granulated at a temperature of about 85° C. The still hot granules were then passed through a 1 mm screen, leading to homogeneous granules each time. After a granulation time of about 10 min, the granules were passed through a 1 mm screen and, after admixture of 0.5% magnesium stearate, 10 mm beveled tablets were produced in an eccentric press (Korsch Ek0).
  • The tablets have a hardness of about 160 N even with a compressive force of 10 kN.
  • EXAMPLE 5
  • The fact that a release-slowing effect is achieved only after tabletting was demonstrated on the basis of the following experiment (Kollidon SR/paracetamol 1:1) through the release from
    • a) the physical mixture
    • b) the granules (Stephan mixer: 650 rpm, 85° C., 12.5 min)
    • c) tablets produced from the physical mixture (10 mm, beveled; compressive force: 18 kN)
    • d) tablets produced from the granules (10 mm, beveled; compressive force: 18 kN)
  • Table 8 shows that there is no release-slowing effect either with the physical mixture or with the melt granules. An effect is evident only after tabletting, the release being delayed even more from the tablet produced from the melt granules. This result shows that the process of melt granulation of the invention distinctly enhances the release-slowing effect in the tablet with the formulated mixture of polyvinylacetate and polyvinylpyrrolidone, preferably in the ratio 8:2.
  • TABLE 8
    Dependence of active ingredient release on the dosage
    form
    Active ingredient released [%]
    Granules
    (650 rpm, Tablet from
    Time Physical 85° C., Tablet from physical
    [h] mixture 12.5 min) granules1 mixture1,2
    0.5 99.8 100.1 10.6 11.5
    1.0 15.4 18.0
    1.5 18.4 20.9
    2.0 21.4 25.0
    3.0 24.0 29.9
    4.0 27.5 31.8
    6.0 32.9 28.4
    8.0 33.5 44.4
    12.0 41.6 52.7
    16.0 47.7 58.3
    1Tabletting in a Korsch eccentric press (type Ek0) Excipient: 0.5% magnesium stearate Punch: 10 mm, beveled; compressive force: 18 kN
    2Additional excipient: 1.0% Aerosil 200
  • Active ingredient release from the tablets was carried out by the paddle method in deionized water at 37° C. over 16 h.
  • EXAMPLE 6
  • A Kollidon SR/caffeine mixture composed of 50% Kollidon SR and 50% caffeine was mixed in a drum mixer (from Turbula, type T 10B). The mixture was kneaded in a single screw extruder (from Haake, type Rheocord 90) at a temperature of 50° C. to give a homogeneous composition. The strands were cut by a cutting device to give granules which were again passed through a 1 mm screen and, after admixture of 0.5% magnesium stearate, compressed to 10 mm beveled tablets in an eccentric press (Korsch Ek0).
  • TABLE 9
    Comparison of the average particle size of the physical
    mixture with the granules
    Caffeine/Kollidon SR
    (1:1)
    Average particle size  80.23 μm
    of physical mixture
    Average particle size 553.88 μm
    of granules
  • The average particle size was measured by laser diffraction. The D[4,3] value is stated.
  • Comparative Example hydroxypropylmethylcellulose
  • 400 g of a Methocel K15M/paracetamol mixture composed of 50% Methocel K15M and 50% paracetamol were premixed in a Stephan mixer with jacket heating and granulated at about 85° C. and at 650 rpm for 12.5 min. The still hot mixture was passed through a 1 mm screen. After admixture of 0.5% magnesium stearate and 1% Aerosil 200, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • In addition to the absence of a granulation effect, the flow properties are distinctly worse and the tablet properties are worse. The brittle paracetamol in fact results in particle comminution, as a result of fracture of crystals, in place of granulation.
  • TABLE 10
    Comparison of granule and tablet properties
    Paracetamol/
    Paracetamol/Kollidon SR Methocel K 15M
    (1:1)1,2 (1:1)1,2,3
    Particle size D[4, 3] 115.91 154.97
    [μm]
    (physic. mixture)
    Particle size D[4, 3] 539.17 139.34
    [μm]
    granules)
    Angle of repose [°] 32.90 48.20
    Flow time [s] 7.84 flow stops
    Hardness [N] 175.00 112.00
    Weight [mg] (srel [%]) 319 (0.4) 320.5 (0.8)
    t50 [h] >16 12.9
    1Granulation in a Stephan type UMC5 electronic mixer (from A. Stephan u. Söhne) Parameters: 85° C. (jacket heating), 12.5 min, 650 rpm
    2Tabletting in a Korsch eccentric press (type Ek0) Excipient: 0.5% magnesium stearate Punch: 10 mm, beveled; compressive force: 18 kN
    3Additional excipient: 1.0% Aerosil 200
  • The average particle size was measured by laser diffraction. The D[4,3] value is stated. The angle of repose was determined by the Pfrengle method as described in DIN 53916. The tablet properties were determined using an automatic tablet tester from Kraemer (type HT-TMB). The release time for determining the t50 of the tablets was 16 h at 37° C. in deionized water (paddle method).
  • Comparative Example Stearyl Alcohol
  • The molten stearyl alcohol is added to the paracetamol in an intensive mixer and granulated for 12.5 min. The cooled granules are passed through a 1 mm screen. After admixture of 0.5% magnesium stearate and 1% Aerosil 200, 10 mm beveled tablets were produced in a Korsch Ek0 eccentric press.
  • In addition to the poor flow characteristics, the tablet properties are distinctly worse. Tabletting with a compressive force of 18 kN was possible under the same conditions as in Example 1 only with provisos because every second tablet was capped on ejection from the die. The intact tablets have low hardness and a friability of 100%.
  • TABLE 11
    Comparison of the granule and tablet properties
    Paracetamol/
    Paracetamol/Kollidon SR stearyl alcohol
    (1:1)1,3 (1:1)2,3,4
    Angle of repose [°] 32.9 45.57
    Flow time [s] 7.84 flow stops
    Hardness [N] 175 53  
    Weight [mg] (srel [%]) 319 (0.4) 311.8 (0.6)
    t50 [h] >16 4.8
    1Granulation in the Stephan type UMC5 electronic mixer (from A. Stephan u. Söhne) Parameters: 85° C., 12.5 min, 650 rpm
    2Granulation in an intensive mixer (Diosna V20), 12.5 min
    3Tabletting in a Korsch eccentric press (type Ek0) Excipient: 0.5% magnesium stearate Punch: 10 mm, beveled; compressive force: 18 kN
    4Additional excipient: 1.0% Aerosil 200
  • The angle of repose was determined by the Pfrengle method specified in DIN 53916. The tablet properties were measured using an automatic tablet tester from Kraemer (type HT-TMB). The release time for determining the t50 of the tablets was 16 h at 37° C. in deionized water (paddle method).

Claims (22)

1.-16. (canceled)
17. An oral dosage form comprising
a) a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone, wherein the polyvinylpyrrolidone is finely dispersed in the polyvinyl acetate,
b) at least one active ingredients
c) optionally where appropriate water-soluble polymers or low or high molecular weight lipophilic additives, and
d) optionally excipients, wherein the mixture of a) to d) or a) to c) or a) and b) and d) or a) and b) is granulated by heating to from 40° C. to 130° C.
18. An oral dosage form as claimed in claim 17, which comprises as active ingredients food supplements or additives, vitamins, minerals or trace elements or active pharmaceutical ingredients.
19. An oral dosage form as claimed in claim 17, which comprises active pharmaceutical ingredients as active ingredients.
20. An oral dosage form as claimed in claim 19, wherein the active pharmaceutical ingredient is selected from the group of benzodiazepines, antihypertensives, vitamins, cytostatics, anesthetics, neuroleptics, antidepressants, antibiotics, antimycotics, fungicides, chemotherapeutics, urologicals, platelet aggregation inhibitors, sulfonamides, spasmolytics, hormones, immunoglobulins, sera, thyroid therapeutics, psychopharmaceuticals, antiparkinson agents and other antihyperkinetics, ophthalmologicals, neuropathy products, calcium metabolism regulators, muscle relaxants, lipid-lowering agents, liver therapeutics, coronary agents, cardiac agents, immunotherapeutics, regulatory peptides and their inhibitors, hypnotics, sedatives, gynecologicals, antigout agents, fibrinolytics, enzyme products and transport proteins, enzyme inhibitors, emetics, perfusion promoters, diuretics, diagnostics, corticoids, cholinergics, biliary therapeutics, antiasthmatics, bronchospasmolytics, beta-receptor blockers, calcium channel blockers, ACE inhibitors, arteriosclerosis remedies, antiinflammatory agents, anticoagulants, antihypotensives, antihypoglycemics, antifibrinolytics, antiepileptics, antiemetics, antidotes, antidiabetics, antiarrhythmics, antianemics, antiallergics, anthelmintics, analgesics, analeptics, aldosterone antagonists, weight-reducing agents.
21. An oral dosage form as claimed in claim 17, which is used to produce compressed tablets.
22. A drug product with delayed release of active ingredient, which is an oral dosage form as claimed in claim 17.
23. A drug product for delayed release of active ingredient, which is an oral dosage form as claimed in claim 17 which has been produced by compression.
24.-25. (canceled)
26. An oral dosage form as claimed in claim 17 which comprises water or solvent in amounts of less than 5% to increase surface moisture.
27. An oral dosage form as claimed in claim 17, wherein the polyvinyl acetate to polyvinylpyrrolidone ratio is from 6:4 to 9:1.
28. An oral dosage form as claimed in claim 17, wherein the active ingredient to component (c) ratio employed in the combination is from 5:95 to 85:15.
29. A method of delaying the release of at least one active ingredient which comprises producing the oral dosage form of claim 17 wherein the at least one active ingrdient comprises food supplements or additives, vitamins, minerals or trace elements.
30. An oral dosage form comprising
a) a formulated mixture of polyvinyl acetate and polyvinylpyrrolidone which acts as a binder and a matrix former, and wherein the polyvinylpyrrolidone has a molecular weight of from 20,000 to 1,000,000, and the polyvinylpyrrolidone is finely dispersed in the polyvinyl acetate,
b) at least one active ingredient,
c) optionally water-soluble polymers or low or high molecular weight lipophilic additives, and
d) optionally excipients,
which is obtained by a process which comprises granulating a mixture of a) to d) or a) to c) or a) and b) and d) or a) and b) by heating to a temperature of from 40° C. to 130° C. in the absence of solvents.
31. An oral dosage form as claimed in claim 30, which comprises as active ingredients food supplements or additives, vitamins, minerals or trace elements or active pharmaceutical ingredients.
32. An oral dosage form as claimed in claim 30, which comprises active pharmaceutical ingredients as active ingredients.
33. An oral dosage form as claimed in claim 32, wherein the active pharmaceutical ingredient is selected from the group of benzodiazepines, antihypertensives, vitamins, cytostatics, anesthetics, neuroleptics, antidepressants, antibiotics, antimycotics, fungicides, chemotherapeutics, urologicals, platelet aggregation inhibitors, sulfonamides, spasmolytics, hormones, immunoglobulins, sera, thyroid therapeutics, psychopharmaceuticals, antiparkinson agents and other antihyperkinetics, ophthalmologicals, neuropathy products, calcium metabolism regulators, muscle relaxants, lipid-lowering agents, liver therapeutics, coronary agents, cardiac agents, immunotherapeutics, regulatory peptides and their inhibitors, hypnotics, sedatives, gynecologicals, antigout agents, fibrinolytics, enzyme products and transport proteins, enzyme inhibitors, emetics, perfusion promoters, diuretics, diagnostics, corticoids, cholinergics, biliary therapeutics, antiasthmatics, bronchospasmolytics, beta-receptor blockers, calcium channel blockers, ACE inhibitors, arteriosclerosis remedies, antiinflammatory agents, anticoagulants, antihypotensives, antihypoglycemics, antifibrinolytics, antiepileptics, antiemetics, antidotes, antidiabetics, antiarrhythmics, antianemics, antiallergics, anthelmintics, analgesics, analeptics, aldosterone antagonists, weight-reducing agents.
34. An oral dosage form as claimed in claim 30 which comprises water or solvent in amounts of less than 5% to increase surface moisture.
35. An oral dosage form as claimed in claim 30, wherein the polyvinyl acetate to polyvinylpyrrolidone ratio is from 6:4 to 9:1.
36. An oral dosage form as claimed in claim 30, wherein the active ingredient to component (c) ratio employed in the combination is from 5:95 to 85:15.
37. An oral dosage form as claimed in claim 30, wherein polyvinyl acetate and polyvinylpyrrolidone each have a molecular weight of from 20,000 to 1,000,000.
38. A method of delaying the release of at least one active ingredient which comprises producing the oral dosage form of claim 30 wherein the at least one active ingrdient comprises food supplements or additives, vitamins, minerals or trace elements.
US12/135,580 2000-06-19 2008-06-09 process for producing solid oral dosage forms with sustained release of active ingredient Abandoned US20080241261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/135,580 US20080241261A1 (en) 2000-06-19 2008-06-09 process for producing solid oral dosage forms with sustained release of active ingredient

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10029201A DE10029201A1 (en) 2000-06-19 2000-06-19 Retarded release oral dosage form, obtained by granulating mixture containing active agent and polyvinyl acetate-polyvinyl pyrrolidone mixture below the melting temperature
DE10029201.1 2000-06-19
US09/873,431 US7413750B2 (en) 2000-06-19 2001-06-05 Process for producing solid oral dosage forms with sustained release of active ingredient
US12/135,580 US20080241261A1 (en) 2000-06-19 2008-06-09 process for producing solid oral dosage forms with sustained release of active ingredient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/873,431 Division US7413750B2 (en) 2000-06-19 2001-06-05 Process for producing solid oral dosage forms with sustained release of active ingredient

Publications (1)

Publication Number Publication Date
US20080241261A1 true US20080241261A1 (en) 2008-10-02

Family

ID=7645638

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/873,431 Expired - Lifetime US7413750B2 (en) 2000-06-19 2001-06-05 Process for producing solid oral dosage forms with sustained release of active ingredient
US12/135,580 Abandoned US20080241261A1 (en) 2000-06-19 2008-06-09 process for producing solid oral dosage forms with sustained release of active ingredient

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/873,431 Expired - Lifetime US7413750B2 (en) 2000-06-19 2001-06-05 Process for producing solid oral dosage forms with sustained release of active ingredient

Country Status (8)

Country Link
US (2) US7413750B2 (en)
EP (1) EP1166776B1 (en)
JP (1) JP2002020319A (en)
CN (1) CN1247179C (en)
AT (1) ATE288259T1 (en)
DE (2) DE10029201A1 (en)
ES (1) ES2236086T3 (en)
PT (1) PT1166776E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056531B1 (en) * 2000-05-04 2006-06-06 Nature's Way Products, Inc. Sustained release compositions for orally administered substances and methods
WO2002067905A1 (en) * 2001-02-27 2002-09-06 Kos Pharmaceuticals, Inc. A sustained release pharmaceutical formulation
WO2002072064A2 (en) * 2001-03-09 2002-09-19 Dow Global Technologies Inc. Granular composition comprising an active compound and a cellulose ether and the use thereof
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
JP4261861B2 (en) * 2002-09-30 2009-04-30 双葉電子工業株式会社 Sealing material for fluorescent display tube and fluorescent display tube
TWI319713B (en) * 2002-10-25 2010-01-21 Sustained-release tramadol formulations with 24-hour efficacy
US8487002B2 (en) * 2002-10-25 2013-07-16 Paladin Labs Inc. Controlled-release compositions
CN101091695B (en) * 2003-02-03 2011-01-19 诺瓦提斯公司 Pharmaceutical formulation
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
CA2534925A1 (en) * 2003-08-06 2005-02-24 Gruenenthal Gmbh Dosage form that is safeguarded from abuse
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102005005446A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
DE102004032051A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE10361596A1 (en) 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
US20060172006A1 (en) * 2003-10-10 2006-08-03 Vincent Lenaerts Sustained-release tramadol formulations with 24-hour clinical efficacy
US8226977B2 (en) * 2004-06-04 2012-07-24 Teva Pharmaceutical Industries Ltd. Pharmaceutical composition containing irbesartan
DE102004032049A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
DE102004032103A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
DE102005042875A1 (en) * 2004-12-23 2006-09-21 Grünenthal GmbH Fast-release dosage forms for antibiotics
US8481565B2 (en) * 2004-12-27 2013-07-09 Eisai R&D Management Co., Ltd. Method for stabilizing anti-dementia drug
US20070129402A1 (en) * 2004-12-27 2007-06-07 Eisai Research Institute Sustained release formulations
US20090208579A1 (en) * 2004-12-27 2009-08-20 Eisai R & D Management Co., Ltd. Matrix Type Sustained-Release Preparation Containing Basic Drug or Salt Thereof, and Method for Manufacturing the Same
PL1843754T3 (en) * 2005-01-26 2011-12-30 Lek Pharmaceuticals New pharmaceutical composition containing candesartan cilexetil as lipophilic crystalline substance
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
US7348027B2 (en) * 2005-04-08 2008-03-25 Bayer Healthcare Llc Taste masked veterinary formulation
WO2006118265A1 (en) * 2005-04-28 2006-11-09 Eisai R & D Management Co., Ltd. Composition containing antidementia agent
MX2007014068A (en) * 2005-05-10 2008-02-07 Novartis Ag Modified release famciclovir pharmaceutical compositions.
BRPI0612802A2 (en) * 2005-07-07 2010-11-30 Farnam Co Inc sustained release pharmaceutical compositions for extremely water soluble drugs
PL1907382T3 (en) 2005-07-26 2016-01-29 Bial Portela & Ca Sa Nitrocatechol derivatives as comt inhibitors
UA91376C2 (en) * 2005-08-24 2010-07-26 Рубикон Рисеч Пвт Лтд. Controlled release formulation
JP5269595B2 (en) * 2005-09-09 2013-08-21 アンジェリーニ ラボファーム リミテッド ライアビリティ カンパニー Trazodone composition for once daily administration
CN101304764B (en) * 2005-11-11 2012-12-05 旭化成化学株式会社 Solid formulation to control-release
EP1845097A1 (en) 2006-04-10 2007-10-17 Portela &amp; Ca., S.A. Oxadiazole derivatives as COMT inhibitors
ES2400446T5 (en) 2006-08-03 2017-03-13 Horizon Pharma Ag Treatment with delayed-release glucocorticoids of a rheumatic disease
PT2481410T (en) 2007-01-31 2016-10-18 BIAL-PORTELA & Cª S A Nitrocatechol derivates as comt inhibitors administered with a specific dosage regime
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
US20090060983A1 (en) * 2007-08-30 2009-03-05 Bunick Frank J Method And Composition For Making An Orally Disintegrating Dosage Form
CN101842085B (en) * 2007-10-31 2013-01-30 麦克内尔-Ppc股份有限公司 Orally disintegrated dosage form
US8383152B2 (en) 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US8975410B2 (en) 2008-03-17 2015-03-10 BIAL—Portela & CA., S.A. Crystal forms of 5-[3-(2,5-dichloro-4, 6-dimethyl-1-oxy-pyridine-3-yl)[1,2,4] oxadiazol-5-yl]-3-nitrobenzene-1,2-diol
HUE030803T2 (en) 2008-05-09 2017-06-28 Gruenenthal Gmbh Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
DE102008046650A1 (en) * 2008-09-10 2010-03-11 Tiefenbacher Pharmachemikalien Alfred E. Tiefenbacher Gmbh & Co. Kg Quetiapine-containing prolonged-release tablet
EP2344138B1 (en) * 2008-09-25 2014-07-16 Basf Se Use of polyether-based and vinyl monomer-based copolymers as binders for dosing forms comprising solid active ingredients
WO2010040686A1 (en) * 2008-10-07 2010-04-15 Basf Se Method for producing controlled-release oral dosage forms
EP2391369A1 (en) * 2009-01-26 2011-12-07 Nitec Pharma AG Delayed-release glucocorticoid treatment of asthma
NZ582836A (en) * 2009-01-30 2011-06-30 Nitec Pharma Ag Delayed-release glucocorticoid treatment of rheumatoid arthritis by improving signs and symptoms, showing major or complete clinical response and by preventing from joint damage
EP3045043B1 (en) 2009-02-26 2020-04-29 Relmada Therapeutics, Inc. Extended release oral pharmaceutical compositions of 3-hydroxy-n-methylmorphinan and method of use
RU2011144145A (en) * 2009-04-01 2013-05-10 Биал-Портела Энд Ка, С.А. PHARMACEUTICAL PRODUCTS CONTAINING NITROCATECHIN DERIVATIVES AND METHODS FOR PRODUCING THEM
KR101738369B1 (en) 2009-07-22 2017-05-22 그뤼넨탈 게엠베하 Hot-melt extruded controlled release dosage form
RU2555531C2 (en) 2009-07-22 2015-07-10 Грюненталь Гмбх Misuse protected dosage form for oxidation sensitive opioids
US20110070286A1 (en) * 2009-09-24 2011-03-24 Andreas Hugerth Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process
US9610224B2 (en) * 2009-09-24 2017-04-04 Johnson & Johnson Consumer Inc. Manufacture of tablet in a die utilizing powder blend containing water-containing material
US8858210B2 (en) 2009-09-24 2014-10-14 Mcneil-Ppc, Inc. Manufacture of variable density dosage forms utilizing radiofrequency energy
US8313768B2 (en) * 2009-09-24 2012-11-20 Mcneil-Ppc, Inc. Manufacture of tablet having immediate release region and sustained release region
US9579285B2 (en) * 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
CA2801620A1 (en) * 2010-07-06 2012-01-12 Gruenenthal Gmbh Novel gastro-retentive dosage forms comprising a gaba analog and an opioid
EP2611426B1 (en) 2010-09-02 2014-06-25 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
AR082862A1 (en) 2010-09-02 2013-01-16 Gruenenthal Gmbh ALTERATION RESISTANT DOSAGE FORM INCLUDING AN ANIONIC POLYMER
US20140045900A1 (en) 2011-02-11 2014-02-13 Bial-Portela & Ca, S.A. Administration regime for nitrocatechols
AR087359A1 (en) 2011-07-29 2014-03-19 Gruenenthal Gmbh TEST ALTERATION TABLET PROVIDING IMMEDIATE RELEASE OF THE PHARMACO
EA201400172A1 (en) 2011-07-29 2014-06-30 Грюненталь Гмбх SUSTAINABLE TO DESTRUCTION TABLET THAT PROVIDES IMMEDIATE RELEASE OF MEDICINES
CN102908327B (en) * 2011-08-05 2015-03-11 江苏恒瑞医药股份有限公司 Sustained release preparation for ivabradine or medicinal salt thereof
JP6456143B2 (en) 2011-12-13 2019-01-23 ノヴィファーマ,エス.アー. Chemical compounds useful as intermediates for preparing catechol-O-methyltransferase inhibitors
EP2819656A1 (en) 2012-02-28 2015-01-07 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
MX362357B (en) 2012-04-18 2019-01-14 Gruenenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form.
US9511028B2 (en) 2012-05-01 2016-12-06 Johnson & Johnson Consumer Inc. Orally disintegrating tablet
US9233491B2 (en) 2012-05-01 2016-01-12 Johnson & Johnson Consumer Inc. Machine for production of solid dosage forms
US9445971B2 (en) 2012-05-01 2016-09-20 Johnson & Johnson Consumer Inc. Method of manufacturing solid dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
AR096439A1 (en) 2013-05-29 2015-12-30 Gruenenthal Gmbh DOSAGE METHOD RESISTING TO INDEED USE CONTAINING ONE OR MORE PARTICLES
JP6445537B2 (en) 2013-05-29 2018-12-26 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Tamper-resistant dosage forms containing one or more particles
EA032465B1 (en) 2013-07-12 2019-05-31 Грюненталь Гмбх Tamper-resistant oral pharmaceutical dosage form containing ethylene-vinyl acetate polymer and process for the production thereof
US10195153B2 (en) 2013-08-12 2019-02-05 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
CN103554985B (en) * 2013-10-18 2015-11-18 苏州大学 A kind of can the molecule release system of the biswitch response limiting of opening and closing, preparation method and application repeatedly
AU2014356581C1 (en) 2013-11-26 2020-05-28 Grunenthal Gmbh Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US10172797B2 (en) 2013-12-17 2019-01-08 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
AU2015204763A1 (en) 2014-01-10 2016-07-21 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
AU2015261060A1 (en) 2014-05-12 2016-11-03 Grunenthal Gmbh Tamper resistant immediate release capsule formulation comprising Tapentadol
CA2949422A1 (en) 2014-05-26 2015-12-03 Grunenthal Gmbh Multiparticles safeguarded against ethanolic dose-dumping
EP3169315B1 (en) 2014-07-17 2020-06-24 Pharmaceutical Manufacturing Research Services, Inc. Immediate release abuse deterrent liquid fill dosage form
US20160106737A1 (en) 2014-10-20 2016-04-21 Pharmaceutical Manufacturing Research Services, Inc. Extended Release Abuse Deterrent Liquid Fill Dosage Form
JP2018500300A (en) 2014-11-28 2018-01-11 ノヴィファーマ,エス.アー. Medicines for delaying Parkinson's disease
EP3285745A1 (en) 2015-04-24 2018-02-28 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
JP2018526414A (en) 2015-09-10 2018-09-13 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Protection against oral overdose with abuse-inhibiting immediate release formulations
FR3042387B1 (en) * 2015-10-20 2019-05-24 Ynsect PRESERVATION OF WATER-SOLUBLE VITAMINS
JP7063806B2 (en) * 2015-10-23 2022-05-09 ビーエーエスエフ ソシエタス・ヨーロピア Fragrance-controlled release formulation for skin application
CA3043494C (en) * 2016-11-10 2022-11-08 Medisca Pharmaceutique Inc. Pharmaceutical compounding methods and systems
US10493026B2 (en) 2017-03-20 2019-12-03 Johnson & Johnson Consumer Inc. Process for making tablet using radiofrequency and lossy coated particles
ES2938608T3 (en) 2017-09-20 2023-04-13 Tillotts Pharma Ag Method for preparing a solid dosage form comprising antibodies by wet granulation, extrusion and spheronization
US11510877B2 (en) 2017-10-10 2022-11-29 Capsugel Belgium Nv Gelling multiparticulates
PL3556357T3 (en) * 2018-04-16 2023-12-04 Vianex S.A. Sustained release pyridostigmine compositions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801460A (en) * 1986-04-11 1989-01-31 Basf Aktiengesellschaft Preparation of solid pharmaceutical forms
US4837032A (en) * 1986-02-04 1989-06-06 Farval Ag Theophylline sustained release tablet
US5076363A (en) * 1989-01-31 1991-12-31 The Standard Oil Company Surfactant-polymer composition and method of enhanced oil recovery
US5169645A (en) * 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
US5389380A (en) * 1991-04-08 1995-02-14 Tanabe Seiyaku Co., Ltd. Sustained release pharmaceutical preparation and process for preparing the same
US5403593A (en) * 1991-03-04 1995-04-04 Sandoz Ltd. Melt granulated compositions for preparing sustained release dosage forms
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US5874107A (en) * 1994-03-11 1999-02-23 Hexal Ag Sustained release tablet containing diclofenac-Na and methylhydroxypropyl-cellulose as a sustained release agent
US6046277A (en) * 1997-03-10 2000-04-04 Basf Aktiengesellschaft Use of redispersible polymer powders of polymer granules for coating pharmaceutical or agrochemical use forms
US6066334A (en) * 1997-03-10 2000-05-23 Basf Aktiengesellschaft Use of redispersible polymer powders or polymer granules as binders for producing solid pharmaceutical presentations
US6103264A (en) * 1997-07-10 2000-08-15 Arzneimittelwerk Dresden Gmbh Process for preparing a controlled release composition
US6635279B2 (en) * 2000-03-27 2003-10-21 Basf Aktiengesellschaft Active ingredient-containing floating forms comprising polyvinyl acetate and polyvinylpyrrolidone, their use and production
US20040039171A1 (en) * 2000-10-12 2004-02-26 Akihiro Matsumoto Method of forming polypeptide particles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1442851A (en) 1973-07-09 1976-07-14 Squibb & Sons Inc Substituted cyclic polymethylene phenols
DE2357503A1 (en) 1973-11-17 1975-05-28 Cassella Farbwerke Mainkur Ag PROCESS FOR THE PREPARATION OF SOLID PREPARATIONS CONTAINING CARBOCROME HYDROCHLORIDE
US4443428A (en) 1982-06-21 1984-04-17 Euroceltique, S.A. Extended action controlled release compositions
FR2581541B1 (en) 1985-05-09 1988-05-20 Rhone Poulenc Sante NOVEL PHARMACEUTICAL COMPOSITIONS FOR THE EXTENDED RELEASE OF AN ACTIVE INGREDIENT AND THEIR PREPARATION METHOD
DE3829398A1 (en) 1988-08-30 1990-03-08 Rentschler Arzneimittel FIXED MEDICINAL COMBINATION WITH DELAYED RELEASE
DE4031881C2 (en) 1990-10-08 1994-02-24 Sanol Arznei Schwarz Gmbh Solvent-free, oral sustained-release pharmaceutical preparation and process for its preparation
US5585093A (en) * 1995-05-08 1996-12-17 Church & Dwight Co., Inc. Cosmetic deodorant compositions containing encapsulated bicarbonate and liquid fragrance ingredients

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837032A (en) * 1986-02-04 1989-06-06 Farval Ag Theophylline sustained release tablet
US4801460A (en) * 1986-04-11 1989-01-31 Basf Aktiengesellschaft Preparation of solid pharmaceutical forms
US5076363A (en) * 1989-01-31 1991-12-31 The Standard Oil Company Surfactant-polymer composition and method of enhanced oil recovery
US5169645A (en) * 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
US5403593A (en) * 1991-03-04 1995-04-04 Sandoz Ltd. Melt granulated compositions for preparing sustained release dosage forms
US5389380A (en) * 1991-04-08 1995-02-14 Tanabe Seiyaku Co., Ltd. Sustained release pharmaceutical preparation and process for preparing the same
US5453293A (en) * 1991-07-17 1995-09-26 Beane; Alan F. Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects
US5874107A (en) * 1994-03-11 1999-02-23 Hexal Ag Sustained release tablet containing diclofenac-Na and methylhydroxypropyl-cellulose as a sustained release agent
US6046277A (en) * 1997-03-10 2000-04-04 Basf Aktiengesellschaft Use of redispersible polymer powders of polymer granules for coating pharmaceutical or agrochemical use forms
US6066334A (en) * 1997-03-10 2000-05-23 Basf Aktiengesellschaft Use of redispersible polymer powders or polymer granules as binders for producing solid pharmaceutical presentations
US6103264A (en) * 1997-07-10 2000-08-15 Arzneimittelwerk Dresden Gmbh Process for preparing a controlled release composition
US6635279B2 (en) * 2000-03-27 2003-10-21 Basf Aktiengesellschaft Active ingredient-containing floating forms comprising polyvinyl acetate and polyvinylpyrrolidone, their use and production
US20040039171A1 (en) * 2000-10-12 2004-02-26 Akihiro Matsumoto Method of forming polypeptide particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
US8268349B2 (en) 2003-08-28 2012-09-18 Abbott Laboratories Solid pharmaceutical dosage form
US8309613B2 (en) 2003-08-28 2012-11-13 Abbvie Inc. Solid pharmaceutical dosage form
US8333990B2 (en) 2003-08-28 2012-12-18 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8399015B2 (en) 2003-08-28 2013-03-19 Abbvie Inc. Solid pharmaceutical dosage form
US8691878B2 (en) 2003-08-28 2014-04-08 Abbvie Inc. Solid pharmaceutical dosage form

Also Published As

Publication number Publication date
EP1166776A3 (en) 2003-02-12
DE50105229D1 (en) 2005-03-10
EP1166776A2 (en) 2002-01-02
US7413750B2 (en) 2008-08-19
PT1166776E (en) 2005-06-30
ATE288259T1 (en) 2005-02-15
US20020012701A1 (en) 2002-01-31
ES2236086T3 (en) 2005-07-16
DE10029201A1 (en) 2001-12-20
EP1166776B1 (en) 2005-02-02
JP2002020319A (en) 2002-01-23
CN1247179C (en) 2006-03-29
CN1328811A (en) 2002-01-02

Similar Documents

Publication Publication Date Title
US7413750B2 (en) Process for producing solid oral dosage forms with sustained release of active ingredient
CA2598827C (en) An hiv protease inhibitor solid dosage formulation for the treatment of hiv/aids under fasting conditions
KR101903781B1 (en) Pharmaceutical formulation for the production of rapidly disintegrating tablets
EP1138321B1 (en) Solid oral dosage forms with sustained drug release and high mechanical stability
RU2181590C2 (en) Irbesartan-containing pharmaceutical compositions
JP2015063549A (en) Pharmaceutical dosage form comprising polymeric carrier composition
US9789065B2 (en) Process for producing oral dosage forms with controlled release
US7364755B2 (en) Modified calcium phosphate excipient
KR20130041144A (en) Oral dosage form of deferasirox
US20100278909A1 (en) Process for forming solid oral dosage forms of angiotensin ii receptor antagonists
KR20040006887A (en) Compositions for controlled release acetaminophen dosage forms
TW201609195A (en) Solid antiviral dosage forms
EP3110406B1 (en) Pharmaceutical composition
JPH05255125A (en) Sustained release preparation and its preparation
KR102373089B1 (en) Pharmaceutical composition comprising ibuprofen and acetaminophen and preparation method thereof
CN107007559B (en) Stable oral pharmaceutical composition and preparation method thereof
CA3014012A1 (en) Method of producing a granulated composition
AU2012202831B2 (en) A solid pharmaceutical dosage formulation
JP2002003405A (en) Method for producing molded pharmaceutical preparation

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF SE, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:BASF AKTIENGESELLSCHAFT;REEL/FRAME:025424/0161

Effective date: 20080114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION