Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050008210 A1
Publication typeApplication
Application numberUS 10/892,348
Publication date13 Jan 2005
Filing date16 Jul 2004
Priority date9 May 2000
Also published asDE60134223D1, EP1280459A1, EP1280459B1, US7321677, US20030078500, WO2001085030A1
Publication number10892348, 892348, US 2005/0008210 A1, US 2005/008210 A1, US 20050008210 A1, US 20050008210A1, US 2005008210 A1, US 2005008210A1, US-A1-20050008210, US-A1-2005008210, US2005/0008210A1, US2005/008210A1, US20050008210 A1, US20050008210A1, US2005008210 A1, US2005008210A1
InventorsRami Evron, Tsuriel Assis, Ran Carmieli
Original AssigneePaieon, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System and method for three-dimensional reconstruction of an artery
US 20050008210 A1
Abstract
A method and system for imaging an artery contained in an arterial tree. A microprocessor generates a three-dimensional reconstruction of the arterial tree from two or more angiographic images obtained from different perspectives. The orientation of the axis of the artery in the arterial tree is then determined, and a perspective of the artery perpendicular to the axis of the artery is determined. A three dimensional reconstruction of the artery from angiographic images obtained from the determined perspective is then generated.
Images(4)
Previous page
Next page
Claims(28)
1. (canceled)
2. The system of claim 20 wherein the microprocessor is further configured to display on the display device any one or more of: an angiographic image, the three dimensional reconstruction of the artery and metrological measurements on the three dimensional reconstruction of the artery.
3. (canceled)
4. The system of claim 20 wherein the microprocessor is further configured to make measurements on the reconstruction of the artery.
5. The system according to claim 20 wherein the microprocessor is further configured to manipulate an image on the display.
6. (canceled)
7. The system of claim 2 wherein the microprocessor is configured to display on the display a view of the three-dimensional reconstruction of the artery from a selected perspective, such as a cross sectional perspective.
8-9. (canceled)
10. The method of claim 27 further comprising displaying any one or more of an angiographic image, the three-dimensional reconstruction of the artery and metrological measurements on the three dimensional reconstruction of the artery.
11. The method of claim 27 further comprising performing metrological measurements on the three-dimensional reconstruction of the artery.
12. The method according to claim 10 further comprising manipulating an image on the display.
13. (canceled)
14. The method of claim 10 further comprising displaying a view of the three-dimensional reconstruction of the artery from a selected perspective, such as a cross sectional perspective.
15-17. (canceled)
18. The method according to claim 27 wherein the arterial tree is selected from the group comprising the coronary arterial tree, the renal arterial tree, the pulmonary arterial tree, the cerebral arterial tree, and the hepatic arterial tree.
19. The method according to claim 29 wherein the stenotic artery has a lumen, the lumen has a cross-section of maximal narrowing, the cross-section of maximal narrowing has a fraction occluded by plaque, and determining the severity of the stenosis includes determining the fraction of the cross-section of maximal narrowing occluded by plaque.
20. A system for imaging an artery contained in an arterial tree, the system comprising:
a processor adapted for coupling to a display device for displaying on said display device at least two angiographic images of the arterial tree from different perspectives;
said processor being responsive to an artery of interest in the displayed angiographic images for generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images.
21. The system according to claim 4, wherein the artery of interest is a stenotic artery and the metrological measurements include a severity and length of stenosis of the artery.
22. The system according to claim 20, wherein the processor is adapted to be coupled to a manual selection device for selecting the artery of interest manually.
23. The system according to claim 20, wherein the processor is responsive to an additional perspective being selected for updating the reconstruction of the artery of interest for display by the display device.
24. The system according to claim 20, wherein:
the processor is responsive to one or more manual operator commands for image processing the reconstructed artery for display on the display device.
25. A system for imaging an artery contained in an arterial tree, the system comprising:
a display device for displaying at least two angiographic images of the arterial tree from different perspectives;
a selection device for selecting an artery of interest in the displayed angiographic images;
a processor coupled to the display device and to the selection device for generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images.
26. The system according to claim 25, wherein the selection device is a manual operator control.
27. A method for imaging an artery contained in an arterial tree, the method comprising:
displaying at least two angiographic images of the arterial tree from different perspectives;
selecting an artery of interest in the displayed angiographic images;
generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
displaying the three dimensional reconstruction of the artery of interest.
28. The method according to claim 27, wherein the artery of interest is a stenotic artery.
29. The method according to claim 28, the method further comprising analyzing the three-dimensional reconstruction of the artery to determine a severity and length of stenosis of the artery.
30. A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for imaging an artery contained in an arterial tree, the method comprising:
displaying at least two angiographic images of the arterial tree from different perspectives;
selecting an artery of interest in the displayed angiographic images;
generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
displaying the three dimensional reconstruction of the artery of interest.
31. A computer program product comprising a computer useable medium having computer readable program code embodied therein for imaging an artery contained in an arterial tree, the computer program product comprising:
computer readable program code for causing the computer to display at least two angiographic images of the arterial tree from different perspectives;
computer readable program code for causing the computer to select an artery of interest in the displayed angiographic images;
computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
computer readable program code for causing the computer to display the three dimensional reconstruction of the artery of interest.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to medical devices, and more specifically to such devices for use in angiography.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Stenosis of an artery refers to narrowing of the artery lumen due to plaque formation on the interior wall of the artery. The severity of the stenosis is the fraction of the cross-sectional area of the lumen that is occluded by plaque. Since narrowing is often asymmetrical about the axis of the artery, in order to assess the severity of a stenosis, it is necessary to obtain at least two, and preferably more, images perpendicular to the artery axis from orthogonal perspectives.
  • [0003]
    In angiography, the arterial lumen is filled with a radio-opaque substance and X-ray images of the arterial tree are obtained from different perspectives. Selection of these perspectives is partly arbitrary and partly a process of trial and error once a stenosis has been observed. However, the overall number of images that can be obtained is limited by time, safety and cost. Usually four to seven projections for the left coronary arterial system and two to four for the right coronary artery are obtained. The operator assesses the severity of the stenosis either on the basis of visual examination of the images or by computer analysis of a single image. Since these projections are in general not perpendicular to the arterial axis, estimation of stenosis severity and its length from these images is usually not accurate.
  • SUMMARY OF THE INVENTION
  • [0004]
    It is therefore an object of the invention to provide a more accurate process and system for computer reconstruction of an artery from discrete images of the artery.
  • [0005]
    Such an objective is realized in accordance with a first aspect of the invention by a system comprising means for obtaining two-dimensional angiographic images of arteries, and a microprocessor for processing the images. The images may be obtained, for example, by X-ray angiography or by ultrasound.
  • [0006]
    In accordance with a second aspect of the invention, there is provided a process for obtaining two or more angiographic images of an arterial tree. The images preferably include two images taken from perpendicular perspectives. In the case of the coronary arterial tree, all images are preferably obtained when the heart is in the same state, for example, diastole. A three dimensional (3D) reconstruction of the arterial tree is generated by the microprocessor from the images by methods known in the art. Methods of generating a 3D reconstruction of an arterial tree from discrete images can be found, for example, in anyone of the following references all of which are included herein in their entirety by reference: Faugeras, O. D., Mass. Inst. Tech. 1993; Garreau, et al., IEEE Trans Med Imag 10(2):122-131; Grosskopf, S, Dissertation, Technical University of Berlin, 1994; and Hildebrand and Grosskopf, in Proc. Comp. Assisted Radiology CAR 95 conference, Berlin Springer, pp 201-207, 1995. The arterial tree may be, for example, the coronary arterial tree, the renal arterial tree, the pulmonary arterial tree, the cerebral arterial tree, or the hepatic arterial tree.
  • [0007]
    The 3D reconstructed arterial tree may be represented on a display screen using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed tree is presented as a stereoscopic pair of images to be viewed by the operator using a stereoscopic viewer. The reconstruction may be manipulated on the screen by the operator, allowing him, for example, to zoom in on a specific region or to rotate the reconstructed artery on the screen to obtain a desired perspective.
  • [0008]
    An artery, for example, a stenotic or aneurotic artery present in any of the obtained angiographic images may be detected by analysis of the images by the microprocessor or by visual examination of the images by the operator. The microprocessor determines the orientation of the axis of the artery in the 3D reconstruction of the arterial tree. The microprocessor then calculates two or more perspectives of the artery perpendicular to the arterial axis. Preferably, two orthogonal perspectives are determined. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains angiographic images of the artery from these perspectives and the microprocessor then constructs a 3D reconstruction of the artery from the angiographic images by methods known in the art. The invention thus allows an operator to obtain images of the artery from orthogonal perspectives more rapidly than is possible by prior art methods of trial and error. This allows a smaller radio-opaque dosage to the patient and a reduced exposure of the patient and the is operator to X-rays.
  • [0009]
    The microprocessor may apply meteorological tools to the reconstructed artery. In the case of a stenotic artery, the microprocessor may provide accurate quantitative assessment of the extent and length of the stenosis. The severity of a stenosis may be described quantitatively, for example, by the fraction of the arterial lumen occupied by plaque.
  • [0010]
    The 3D reconstructed artery may be represented on a display screen using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed artery is presented as a stereoscopic pair of images to be viewed by the operator using a stereoscopic viewer. The reconstruction may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree. The reconstruction may be manipulated on the screen by the operator, allowing him, for example, to zoom in on a specific region or to rotate the reconstructed artery on the screen to obtain a desired perspective of the stenosis including a perspective showing maximal narrowing or a cross section of the artery.
  • [0011]
    Thus, in its first aspect the invention provides a system for imaging an artery contained in an arterial tree, the artery having an axis, the system comprising:
      • a a microprocessor configured to
        • aa generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
        • ab determine an orientation of the axis of the artery in the arterial tree;
        • ac determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
        • ad generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
  • [0017]
    In its second aspect, the invention provides a method for imaging an artery contained in an arterial tree, the artery having an axis, the method comprising the steps of:
      • a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b determining an orientation of the axis of the artery in the arterial tree;
      • c determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
      • d generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
  • [0022]
    In its third aspect, the invention provides a method for diagnosing stenosis in an arterial tree in an individual, the method comprising the steps of:
      • a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b detecting in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
      • c determining an orientation of the axis of the stenotic artery;
      • d determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
      • e generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective; and
      • f analyzing the three-dimensional reconstruction of the artery.
  • [0029]
    In its fourth aspect, the invention provides a program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for imaging an artery contained in an arterial tree, the artery having an axis, said method steps comprising:
      • a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b determining an orientation of the axis of the artery in the arterial tree;
      • c determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
      • d generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
  • [0034]
    In its fifth aspect, the invention provides a computer program product comprising a computer useable medium having computer readable program code embodied therein for imaging an artery contained in an arterial tree, the artery having an axis, the computer program product comprising
      • a computer readable program code for causing the computer to generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b computer readable program code for causing the computer to determining an orientation of the axis of the artery in the arterial tree;
      • c computer readable program code for causing the computer to determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
      • d computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
  • [0039]
    In its sixth aspect, the invention provides a program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for diagnosing stenosis in an arterial tree in an individual, said method steps comprising:
      • a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b detecting in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
      • c determining an orientation of the axis of the stenotic artery;
      • d determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
      • e generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective; and
      • f analyzing the three-dimensional reconstruction of the artery.
  • [0046]
    In its seventh aspect, the invention provides a computer program product comprising a computer useable medium having computer readable program code embodied therein for diagnosing stenosis in an arterial tree in an individual the computer program product comprising:
      • a computer readable program code for causing the computer to generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
      • b computer readable program code for causing the computer to detect in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
      • c computer readable program code for causing the computer to determine an orientation of the axis of the stenotic artery;
      • d computer readable program code for causing the computer to determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
      • e computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective;. and
      • f computer readable program code for causing the computer to analyze the three-dimensional reconstruction of the artery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0053]
    In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
  • [0054]
    FIG. 1 shows a cross-sectional view and two projections of a stenotic artery;
  • [0055]
    FIG. 2 is block diagram showing an embodiment of the system of the invention according to one embodiment of the invention; and
  • [0056]
    FIG. 3 is a flow chart diagram of the process of constructing a three-dimensional reconstruction of a stenotic artery.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • [0057]
    Referring first to FIG. 1, a cross section 100 of a stenotic artery is shown. The artery has a circular lumen that is partially occluded by plaque 105. In angiography, the unoccluded portion of the lumen 110, (indicated in FIG. 1 by cross-hatching) is filled with a radio-opaque substance. 115 a and 115 b are two longitudinal projections of the radio-opacity of the artery as would be obtained in angiography. The projections 115 a and 115 b are from orthogonal perspectives as indicated by the broken lines 120 a and 120 b. In the projection 115 a the stenosis appears to be non-critical. The projection 115 b, on the other hand, shows maximal narrowing of the arterial lumen indicating that the stenosis is in fact critical.
  • [0058]
    In FIG. 2, a block diagram of a preferred embodiment of the system of the invention is shown. An X-ray source 200 and an X-ray detector 205 are used to obtain angiographic images of an individual 210. An X-ray beam 212 is produced by the X-ray source 200 and is detected by the detector 205 after having passed through the body of the individual 210. The analog signal 215 produced by the detector 205 is converted into a digital signal 225 by analog-to-digital converter 220. The digital signal 225 is inputted into a microprocessor 230 and stored in a memory 240. An analog ECG signal 270 may also be simultaneously obtained from the individual 210. The analog ECG signal 270 is converted into a digital signal 280 by analog-to-digital converter 275 and the digital ECG signal 280 is inputted to the microprocessor 230 and stored in the memory 240. The detector signal 225 and the ECG signal 280 are synchronized by the microprocessor 230. An operator input 250, that may be, for example, a key board or a computer mouse, is used to allow an operator to input instructions to the microprocessor 230. A display 255 is used to display images either in real-time or images called up from the memory 240.
  • [0059]
    The orientation of the X-ray beam 212 and the plane 260 of the individual's body may be selected by the operator in order to produce an image of an arterial tree of the individual, for example, the coronary artery tree, from a desired perspective. The operator inputs the desired perspective into the microprocessor 230 by means of operator input 250. The microprocessor 230 then brings the X-ray source 200 and the detector 205 into the required orientation by activating a mechanism (not shown) that moves the X-ray source and the detector into the desired orientation relative to the individual's body, as is known in the art.
  • [0060]
    The microprocessor 230 is programmed to generate a 3D reconstruction of the arterial tree based upon the obtained images. The 3D reconstruction of the arterial tree may be represented on display 255 using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed tree is presented as a stereoscopic pair of images on display 255 to be viewed by the operator using a stereoscopic viewer. The 3D reconstruction of the arterial tree may be manipulated on the display 255 by the operator by means of operator input 250, allowing him, for example, to zoom in on a specific region or to rotate the reconstruction on the display to obtain a desired perspective.
  • [0061]
    An artery of interest, for example, a stenotic artery, in an image or in the 3D reconstructed tree is selected by the operator or detected by the microprocessor, for example, by gray level analysis as is known in the art. For example, an image or the reconstructed tree may be displayed on the display 255, and an artery selected by the operator by means of input 250. The microprocessor determines from the 3D reconstruction of the arterial tree the angular orientation of the selected artery. The microprocessor then calculates two or more perspectives perpendicular to the axis of the selected artery. The perspectives preferably include two orthogonal perspectives. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains such images. The microprocessor 230 is programmed to reconstruct a 3D image of the selected artery based upon these images. The 3D reconstruction of the artery may be represented on display 255 using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstruction is presented as a stereoscopic pair of images on display 255 to be viewed by the operator using a stereoscopic viewer. The reconstruction of the artery may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree.
  • [0062]
    The 3D reconstruction of the artery may be manipulated on the display 255 by the operator by means of operator input 250, allowing him, for example, to zoom in on a specific region or to rotate the reconstruction on the display to obtain a desired perspective, including an optimal perspective or a cross-section.
  • [0063]
    The microprocessor may optionally be programmed to determine quantitative and qualitative parameters of a stenosis based upon the 3D reconstruction. Such parameters may include, for example, the length and severity of a stenosis.
  • [0064]
    Referring now to FIG. 3, a flow chart is shown describing a preferred embodiment of the process of the invention. At step 310 the operator obtains at least two angiographic images of an arterial tree of the individual 210 from different, preferably perpendicular, perspectives. The images are displayed on the display 255 in step 315, and a 3D reconstruction of the arterial tree is generated from the obtained images 318. The 3D reconstruction may optionally be displayed on the display 255. The obtained angiographic images or the 3D reconstructed tree is examined for arteries of interest, for example, stenotic arteries. The examination may be performed either automatically by the microprocessor 230 or by visual examination by the operator (step 320). If no artery of interest is detected in any of the images or in the 3D reconstructed tree the operator decides whether additional images are to be obtained from a new perspective (step 330). If at step 330 the operator decides not to obtain additional images, the process is terminated. If, at step 330 the operator decides to obtain an additional image, a perspective is selected and the operator inputs the perspective into the microprocessor 230, and the process then returns to step 315. If in step 320 one or more arteries of interest are observed, an artery of interest is selected in step 340. In step 345 the microprocessor calculates two or more perspectives perpendicular to the axis of the selected artery (step 348). The perspectives preferably include two orthogonal perspectives. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains such images (step 348). In step 350, the microprocessor updates the 3D reconstruction of the artery. The reconstructed artery is displayed on the display 255 in step 355 together with parameters describing the artery. For example, for a stenotic artery, the parameters may include the severity and length of the stenosis. The reconstructed artery may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree. The operator may change the display using input 250, for example, by rotating the reconstructed artery on the display 255 so as to change the scale of the reconstruction of the artery or view the reconstruction from a desired perspective, including an optimal perspective or a cross-section. The operator then decides in step 360 whether he wishes to obtain a 3D reconstruction of another artery of interest in the arterial tree. If so, the process returns to step 340. If not, additional images are desired, the process terminates.
  • [0065]
    It will also be understood that the system according to the invention may be a suitably programmed computer. Likewise, the invention contemplates a computer program being readable by a computer for executing the method of the invention. The invention further contemplates a machine-readable memory tangibly embodying a program of instructions executable by the machine for executing the method of the invention.
  • [0066]
    In the method claims that follow, alphabetic characters used to designate claim steps are provided for convenience only and do not imply any particular order of performing the steps.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3357550 *23 Jun 196612 Dec 1967American Cyanamid CoCombination reel and label for surgical sutures
US4263916 *27 Mar 197828 Apr 1981University Of Southern CaliforniaImage averaging for angiography by registration and combination of serial images
US4889128 *16 Dec 198626 Dec 1989Pfizer Hospital ProductsDoppler catheter
US5175773 *7 Sep 198929 Dec 1992General Electric Cgr S.A.Method of three-dimensional reconstruction of arborescence by labeling
US5203777 *19 Mar 199220 Apr 1993Lee Peter YRadiopaque marker system for a tubular device
US5207226 *25 Jan 19914 May 1993Regents Of The University Of MinnesotaDevice and method for measurement of blood flow
US5446800 *13 Jun 199429 Aug 1995Diasonics Ultrasound, Inc.Method and apparatus for displaying angiographic data in a topographic format
US5583902 *6 Oct 199510 Dec 1996Bhb General PartnershipMethod of and apparatus for predicting computed tomography contrast enhancement
US5699799 *26 Mar 199623 Dec 1997Siemens Corporate Research, Inc.Automatic determination of the curved axis of a 3-D tube-shaped object in image volume
US5718724 *5 Jun 199517 Feb 1998Boston Scientific Technology, Inc.Bifurcated endoluminal prosthesis
US5729129 *7 Jun 199517 Mar 1998Biosense, Inc.Magnetic location system with feedback adjustment of magnetic field generator
US5732707 *5 Jun 199631 Mar 1998Molecular Biosystems, Inc.Method of ultrasonically quantitating myocardial perfusion using as intravenously injected tracer
US5734384 *15 Oct 199631 Mar 1998Picker International, Inc.Cross-referenced sectioning and reprojection of diagnostic image volumes
US5840025 *21 Nov 199724 Nov 1998Biosense, Inc.Apparatus and method for treating cardiac arrhythmias
US5912945 *23 Jun 199715 Jun 1999Regents Of The University Of CaliforniaX-ray compass for determining device orientation
US5978439 *5 Feb 19982 Nov 1999U.S. Philips CorporationX-ray imaging method involving a series of images from different perspectives
US6027460 *14 Sep 199522 Feb 2000Shturman Cardiology Systems, Inc.Rotatable intravascular apparatus
US6047080 *19 Jun 19964 Apr 2000Arch Development CorporationMethod and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US6094591 *10 Apr 199825 Jul 2000Sunnybrook Health Science CentreMeasurement of coronary flow reserve with MR oximetry
US6167296 *30 Sep 199926 Dec 2000The Board Of Trustees Of The Leland Stanford Junior UniversityMethod for volumetric image navigation
US6190353 *11 Oct 199620 Feb 2001Transvascular, Inc.Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6195577 *28 Jan 199927 Feb 2001Regents Of The University Of MinnesotaMethod and apparatus for positioning a device in a body
US6233476 *18 May 199915 May 2001Mediguide Ltd.Medical positioning system
US6246898 *8 May 199812 Jun 2001Sonometrics CorporationMethod for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6249695 *20 Nov 199819 Jun 2001Fonar CorporationPatient movement during image guided surgery
US6290673 *20 May 199918 Sep 2001Conor Medsystems, Inc.Expandable medical device delivery system and method
US6301498 *16 Apr 19999 Oct 2001Cornell Research Foundation, Inc.Method of determining carotid artery stenosis using X-ray imagery
US6317621 *27 Apr 200013 Nov 2001Siemens AktiengesellschaftMethod and device for catheter navigation in three-dimensional vascular tree exposures
US6332034 *19 Mar 199918 Dec 2001U.S. Philips CorporationImage processing method including steps for the segmentation of a multidimensional image, and medical imaging apparatus utilizing this method
US6334964 *14 Jul 19991 Jan 2002Littelfuse, Inc.Varistor ink formulations
US6351513 *30 Jun 200026 Feb 2002Siemens Corporate Research, Inc.Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6381350 *2 Jul 199930 Apr 2002The Cleveland Clinic FoundationIntravascular ultrasonic analysis using active contour method and system
US6385332 *19 Feb 19997 May 2002The John P. Roberts Research InstituteAutomated segmentation method for 3-dimensional ultrasound
US6389104 *30 Jun 200014 May 2002Siemens Corporate Research, Inc.Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6463309 *11 May 20008 Oct 2002Hanna IliaApparatus and method for locating vessels in a living body
US6501848 *20 Nov 199931 Dec 2002University Technology CorporationMethod and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images and analytical techniques applied thereto
US6503203 *16 Jan 20017 Jan 2003Koninklijke Philips Electronics N.V.Automated ultrasound system for performing imaging studies utilizing ultrasound contrast agents
US6505064 *22 Aug 20007 Jan 2003Koninklijke Philips Electronics, N.V.Diagnostic imaging systems and methods employing temporally resolved intensity tracing
US6535756 *7 Apr 200018 Mar 2003Surgical Navigation Technologies, Inc.Trajectory storage apparatus and method for surgical navigation system
US6544230 *31 Mar 19998 Apr 2003Transvascular, Inc.Catheters, systems and methods for percutaneous in situ arterio-venous bypass
US6709444 *17 May 200123 Mar 2004Transvascular, Inc.Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits
US6748259 *15 Jun 20008 Jun 2004Spectros CorporationOptical imaging of induced signals in vivo under ambient light conditions
US6990369 *13 Apr 200524 Jan 2006The United States Of America As Represented By The Department Of Health And Human ServicesProbe using diffuse-reflectance spectroscopy
US7321677 *2 Mar 200122 Jan 2008Paieon Inc.System and method for three-dimensional reconstruction of an artery
US20020057825 *10 Apr 200116 May 2002Rami EvronMethod for processing images of coronary arteries
US20030032866 *8 May 200213 Feb 2003Winter Kathryn P.Neurocognitive assessment apparatus and method
US20030199759 *15 Apr 200323 Oct 2003Richard Merwin F.Coronary catheter with radiopaque length markers
US20030208116 *6 Jun 20016 Nov 2003Zhengrong LiangComputer aided treatment planning and visualization with image registration and fusion
US20040102697 *15 Oct 200127 May 2004Rami EvronMethod and system for positioning a device in a tubular organ
US20040136491 *23 Jul 200315 Jul 2004Maria IatrouMethods and systems for detecting components of plaque
US20050113686 *21 Nov 200326 May 2005Peckham John E.Rotational markers
US20060036167 *5 Jul 200516 Feb 2006Shina Systems Ltd.Vascular image processing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US781354926 Nov 200412 Oct 2010Koninklijke Philips Electronics N.V.Image segmentation in a volume data set
US786028322 Nov 200628 Dec 2010Rcadia Medical Imaging Ltd.Method and system for the presentation of blood vessel structures and identified pathologies
US787319422 Nov 200618 Jan 2011Rcadia Medical Imaging Ltd.Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure
US79409708 Mar 200710 May 2011Rcadia Medical Imaging, LtdMethod and system for automatic quality control used in computerized analysis of CT angiography
US794097722 Nov 200610 May 2011Rcadia Medical Imaging Ltd.Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies
US810307422 Jun 201124 Jan 2012Rcadia Medical Imaging Ltd.Identifying aorta exit points from imaging data
US829022817 May 201016 Oct 2012Sync-Rx, Ltd.Location-sensitive cursor control and its use for vessel analysis
US829814723 Jun 200630 Oct 2012Volcano CorporationThree dimensional co-registration for intravascular diagnosis and therapy
US846300717 May 201011 Jun 2013Sync-Rx, Ltd.Automatic generation of a vascular skeleton
US848061825 Nov 20099 Jul 2013Corindus Inc.Catheter system
US84946168 Mar 200723 Jul 2013Christie Medical Holdings, Inc.Method and apparatus for projection of subsurface structure onto an object's surface
US854290030 Dec 200924 Sep 2013Sync-Rx Ltd.Automatic reduction of interfering elements from an image stream of a moving organ
US860047716 Aug 20053 Dec 2013Corinduc, Inc.Image-guided navigation for catheter-based interventions
US867060313 Aug 201311 Mar 2014Sync-Rx, Ltd.Apparatus and methods for masking a portion of a moving image stream
US869375613 Aug 20138 Apr 2014Sync-Rx, Ltd.Automatic reduction of interfering elements from an image stream of a moving organ
US869415724 Feb 20118 Apr 2014Corindus, Inc.Catheter control system and graphical user interface
US870013018 Jun 200915 Apr 2014Sync-Rx, Ltd.Stepwise advancement of a medical tool
US878119318 Nov 200915 Jul 2014Sync-Rx, Ltd.Automatic quantitative vessel analysis
US879029714 Sep 201129 Jul 2014Corindus, Inc.Remote catheter system with steerable catheter
US88557445 Dec 20137 Oct 2014Sync-Rx, Ltd.Displaying a device within an endoluminal image stack
US900836730 Dec 201314 Apr 2015Sync-Rx, Ltd.Apparatus and methods for reducing visibility of a periphery of an image stream
US900875430 Dec 200914 Apr 2015Sync-Rx, Ltd.Automatic correction and utilization of a vascular roadmap comprising a tool
US901445330 Dec 201321 Apr 2015Sync-Rx, Ltd.Automatic angiogram detection
US90953135 Dec 20134 Aug 2015Sync-Rx, Ltd.Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US909568125 Nov 20094 Aug 2015Corindus Inc.Catheter system
US91012865 Dec 201311 Aug 2015Sync-Rx, Ltd.Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US9129418 *25 Apr 20128 Sep 2015Pie Medical Imaging B.V.Method and apparatus for determining optimal image viewing direction
US91443944 Dec 201329 Sep 2015Sync-Rx, Ltd.Apparatus and methods for determining a plurality of local calibration factors for an image
US921606517 May 201022 Dec 2015Sync-Rx, Ltd.Forming and displaying a composite image
US922056811 Apr 201229 Dec 2015Corindus Inc.Catheter system with percutaneous device movement algorithm
US926595116 Jul 201023 Feb 2016The Brigham And Women's HospitalSystem and method for automated adjustment of cardiac resynchronization therapy control parameters
US926595426 Jul 201323 Feb 2016Medtronic, Inc.Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US926595526 Jul 201323 Feb 2016Medtronic, Inc.Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US927821915 Mar 20138 Mar 2016Medtronic, Inc.Closed loop optimization of control parameters during cardiac pacing
US927822023 Jul 20138 Mar 2016Medtronic, Inc.Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US928290723 Jul 201315 Mar 2016Medtronic, Inc.Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US930533421 Jun 20125 Apr 2016Sync-Rx, Ltd.Luminal background cleaning
US930805230 Dec 200912 Apr 2016Sync-Rx, Ltd.Pre-deployment positioning of an implantable device within a moving organ
US932044627 Mar 201426 Apr 2016Medtronic, Inc.Bioelectric sensor device and methods
US937516418 Jun 201528 Jun 2016Sync-Rx, Ltd.Co-use of endoluminal data and extraluminal imaging
US940297711 Jun 20132 Aug 2016Corindus Inc.Catheter system
US940612916 Apr 20142 Aug 2016Medtronic, Inc.Method and system for ranking instruments
US947445726 Feb 201425 Oct 2016Medtronic, Inc.Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US948615126 Feb 20148 Nov 2016Medtronic, Inc.Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US95107632 May 20126 Dec 2016Medtronic, Inc.Assessing intra-cardiac activation patterns and electrical dyssynchrony
US95860504 May 20157 Mar 2017Medtronic, Inc.Systems and methods for configuration of atrioventricular interval
US95860524 May 20157 Mar 2017Medtronic, Inc.Systems and methods for evaluating cardiac therapy
US959198224 Apr 201514 Mar 2017Medtronic, Inc.Systems and methods for evaluating cardiac therapy
US96232097 Oct 201518 Apr 2017Corindus, Inc.Robotic catheter system
US96295718 Sep 201125 Apr 2017Sync-Rx, Ltd.Co-use of endoluminal data and extraluminal imaging
US963343129 May 201525 Apr 2017Covidien LpFluoroscopic pose estimation
US96494977 Mar 201616 May 2017Medtronic, Inc.Closed loop optimization of control parameters during cardiac pacing
US966881815 Oct 20146 Jun 2017Medtronic, Inc.Method and system to select an instrument for lead stabilization
US97074004 May 201518 Jul 2017Medtronic, Inc.Systems, methods, and interfaces for configuring cardiac therapy
US971741530 Dec 20091 Aug 2017Sync-Rx, Ltd.Automatic quantitative vessel analysis at the location of an automatically-detected tool
US97641434 May 201519 Sep 2017Medtronic, Inc.Systems and methods for configuration of interventricular interval
US977600920 Mar 20143 Oct 2017Medtronic, Inc.Non-invasive detection of phrenic nerve stimulation
US20070225598 *26 Nov 200427 Sep 2007Koninklijke Philips Electronics NvImage Segmentation in a Volume Data Set
US20070276216 *16 Aug 200529 Nov 2007Refael BeyarImage-Guided Navigation for Catheter-Based Interventions
US20080103389 *22 Nov 20061 May 2008Rcadia Medical Imaging Ltd.Method and system for automatic analysis of blood vessel structures to identify pathologies
US20080170763 *22 Nov 200617 Jul 2008Rcadia Medical Imaging Ltd.Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure
US20080212871 *12 Feb 20084 Sep 2008Lars DohmenDetermining a three-dimensional model of a rim of an anatomical structure
US20080219530 *8 Mar 200711 Sep 2008Rcadia Medical Imaging, LtdMethod and system for automatic quality control used in computerized analysis of ct angiography
US20080221439 *10 Mar 200811 Sep 2008Sync-Rx, Ltd.Tools for use with moving organs
US20080221440 *10 Mar 200811 Sep 2008Sync-Rx, Ltd.Imaging and tools for use with moving organs
US20090306547 *18 Jun 200910 Dec 2009Sync-Rx, Ltd.Stepwise advancement of a medical tool
US20100157041 *30 Dec 200924 Jun 2010Sync-Rx, Ltd.Automatic stabilization of an image stream of a moving organ
US20100160764 *29 Dec 200924 Jun 2010Sync-Rx, Ltd.Automatic generation and utilization of a vascular roadmap
US20100161022 *30 Dec 200924 Jun 2010Sync-Rx, Ltd.Pre-deployment positioning of an implantable device within a moving organ
US20100161023 *30 Dec 200924 Jun 2010Sync-Rx, Ltd.Automatic tracking of a tool upon a vascular roadmap
US20100171819 *18 Nov 20098 Jul 2010Sync-Rx, Ltd.Automatic reduction of interfering elements from an image stream of a moving organ
US20100172556 *31 Dec 20098 Jul 2010Sync-Rx, Ltd.Automatic enhancement of an image stream of a moving organ
US20100191102 *30 Dec 200929 Jul 2010Sync-Rx, Ltd.Automatic correction and utilization of a vascular roadmap comprising a tool
US20100220917 *17 May 20102 Sep 2010Sync-Rx, Ltd.Automatic generation of a vascular skeleton
US20100222671 *17 May 20102 Sep 2010Sync-Rx, Ltd.Identification and presentation of device-to-vessel relative motion
US20100290693 *17 May 201018 Nov 2010Sync-Rx, Ltd.Location-sensitive cursor control and its use for vessel analysis
US20120293498 *25 Apr 201222 Nov 2012Ron Hubertus SchormansMethod and Apparatus for Determining Optimal Image Viewing Direction
WO2006018841A216 Aug 200523 Feb 2006Navicath Ltd.Image-guided navigation for catheter-based interventions
WO2010058398A218 Nov 200927 May 2010Sync-Rx, Ltd.Image processing and tool actuation for medical procedures
WO2014201125A111 Jun 201418 Dec 2014Medtronic, Inc.Implantable electrode location selection
WO2014201126A111 Jun 201418 Dec 2014Medtronic, Inc.Implantable electrode location selection
WO2015013574A125 Jul 201429 Jan 2015Medtronic, Inc.Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
WO2015088998A19 Dec 201418 Jun 2015Medtronic, Inc.Noninvasive cardiac therapy evaluation
WO2015089002A19 Dec 201418 Jun 2015Medtronic, Inc.Noninvasive cardiac therapy evaluation
WO2015164013A124 Mar 201529 Oct 2015Medtronic, Inc.Guidance system for localization and cannulation of the coronary sinus
WO2016025805A114 Aug 201518 Feb 2016Medtronic, Inc.Systems, methods, and interfaces for configuring cardiac therapy
Classifications
U.S. Classification382/130, 382/131
International ClassificationA61B6/02, A61B6/00, G06T1/00, A61B8/06, G06T17/40, G06T11/00
Cooperative ClassificationG06T19/20, G06T2219/2016, Y10S128/922, G06T2211/404, A61B6/504
European ClassificationA61B6/50H, G06T19/00