US20040014774A1 - Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase - Google Patents

Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase Download PDF

Info

Publication number
US20040014774A1
US20040014774A1 US10/617,342 US61734203A US2004014774A1 US 20040014774 A1 US20040014774 A1 US 20040014774A1 US 61734203 A US61734203 A US 61734203A US 2004014774 A1 US2004014774 A1 US 2004014774A1
Authority
US
United States
Prior art keywords
dimethoxyquinazoline
hydrochloride
dimethoxyquinazoline hydrochloride
methyl
methylanilino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/617,342
Inventor
Michael Myers
Alfred Spada
Martin Maguire
Paul Persons
Asher Zilberstein
Chin-Yi Hsu
Susan Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Pharmaceuticals Inc
Original Assignee
Aventis Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1992/003736 external-priority patent/WO1992020642A1/en
Priority claimed from US08/166,199 external-priority patent/US5480883A/en
Application filed by Aventis Pharmaceuticals Inc filed Critical Aventis Pharmaceuticals Inc
Priority to US10/617,342 priority Critical patent/US20040014774A1/en
Publication of US20040014774A1 publication Critical patent/US20040014774A1/en
Assigned to RHONE-POULENC RORER PHARMACEUTICALS INC. reassignment RHONE-POULENC RORER PHARMACEUTICALS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, CHIN-YI JENNY, ZILBERSTEIN, ASHER, JOHNSON, SUSAN E., MAGUIRE, MARTIN P., MYERS, MICHAEL R., SPADA, ALFRED P., PERSONS, PAUL E.
Assigned to AVENTIS PHARMACEUTICALS PRODUCTS INC. reassignment AVENTIS PHARMACEUTICALS PRODUCTS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RHONE-POULENC RORER PHARMACEUTICALS INC.
Assigned to AVENTIS PHARMACEUTICALS INC. reassignment AVENTIS PHARMACEUTICALS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AVENTIS PHARMACEUTICALS PRODUCTS INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • C07C43/2055Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring containing more than one ether bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/233Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/50Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/74Quinazolines; Hydrogenated quinazolines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • C07D239/91Oxygen atoms with aryl or aralkyl radicals attached in position 2 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/93Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/94Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/50Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with hetero atoms directly attached to ring nitrogen atoms
    • C07D241/52Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/201,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with hetero atoms directly attached in position 4
    • C07D265/22Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • disease states are characterized by the uncontrolled growth of cells. These disease states involve a variety of cell types and include disorders such as cancer, leukemia, psoriasis, inflammatory diseases, bone diseases atherosclerosis and restenosis occuring subsequent to angioplastic procedures.
  • the inhibition of tyrosine kinases is believed to have utility in the control of deregulated cellular proliferation, i.e., cellular proliferative disorders.
  • Initiation of autophosphorylation i.e., phosphorylation of the growth factor receptor itself, and of the phosphorylation of a host of intracellular substrates are some of the biochemical events which are involved in mediator release and cell proliferation.
  • Inhibitors of p56 lck tyrosine kinase have been reported in the literature by Bolen, J. B. et al. FASEB J. 1992, 3403., Mustelin, T. et al. TIBS 1993, 215.; Eichmann, K. Angew. Chem. Int. Ed. Eng. 1993, 54.; and Klausner, R. D. Samelson, L. E. Cell 1991, 875.
  • These include compounds that are potent but nonselective inhibitors, such as staurosporine, which is competitive with ATP or compounds that are very weak tyrosine kinase inhibitors, but are somewhat selective, such as the flavonoid quercetin.
  • the present invention describes compounds which are inhibitors of the colony stimulating factor-1 receptor tyrosine kinase, CSF-1R, activity and have activity in a p56 lck cell-free assay. These compounds do not appear to have any significant serine/threonine kinase inhibitory activity and in addition, compounds within the scope of this invention do not demonstrate significant PDGF-R activity in a cell-free assay. Compounds of this invention are also weak inhibitors of PDGF-induced mitogenesis which may suggest that these compounds inhibit other sic-like tyrosine kinases involved in the signal transduction pathway.
  • Another aspect of the present invention relates to a method of inhibiting abnormal cell proliferation and/or differentiation or mediator release comprising, in admixture with a pharmaceutically acceptable carrier, a pharmaceutically effective amount of a compound of the aforementioned type.
  • Another aspect of this invention comprises compounds useful in the practice of the present method.
  • the compounds described by Formula I below constitute a class of the aforementioned mono- and bicicyclic aryl or heteroaryl quinazoline compounds for use in the practice of the present invention:
  • Ar is a substituted or unsubstituted mono- or bi-cyclic aryl or heteroaryl ring system of about 5 to about 12 atoms and where each monocyclic ring may contain 0 to about 3 hetero atoms, and each bicyclic ring may contain 0 to about 4 hetero atoms selected from N, O and S provided said hetero atoms are not vicinal oxygen and/or sulfur atoms and where the substituents may be located at any appropriate position of the ring system and are described by R;
  • X is a bond, O, S, SO, SO 2 , OCH 2 , C ⁇ C, C ⁇ C, C ⁇ S, SCH 2 , NH, NHCH 2 , NR 4 or NR 4 CH 2 ;
  • R independently includes hydrogen, alkyl, alkenyl, phenyl, aralkyl, aralkenyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, aralkoxy, aryloxy, acyloxy, halo, haloalkyl, nitro, cyano, amino, mono- and di-alkylamino, acylamino, carboxy, carboxyalkyl, carbalkoxy, carbaralkoxy, carbalkoxyalkyl, carbalkoxyalkenyl, aminoalkoxy, amido, mono- and di-alkylamido and N,N-cycloalkylamido, alkylthio, alkylsulfinyl, sulfonyl, mono- and di-alkyl sulfonyl, sulfamoyl, mono- and di-alkyl sulfamoyl, halophenyl or benzoyl;
  • R 4 is alkyl, —CH 2 —CH 2 — or —CH 2 —CH 2 —CH 2 —;
  • R 5 , R 6 and R 7 are independently hydrogen, alkyl, alkylthio, cycloalkyl, hydroxy, alkoxy, aralkoxy, aryl, halo, haloalkyl, carboxy or carbalkoxy; or
  • Preferred Ar bicyclic aryl or heteroaryl rings include substituted and unsubstituted naphthalene, tetralin, naphthyridine, benzofuran, benzothiophene, indole, 2,3-dihydroindole, 1H-indazole, indoline, benzopyrazole, 1,3-benzodioxole, benzoxazole, purine, coumarin, chromone, quinoline, tetrahydroquinoline, isoquinoline, benzimidazole, quinazoline, pyrido[2,3-b]pyrazine, pyrido[3,4-b]pyrazine, pyrido[3,2-c]pyridazine, pyrido[3,4-b]-pyridine, 1H-pyrazole[3,4-d]pyrimidine, pteridine, 2(1H)-quinolone, 1 (2H)
  • More preferred Ar rings include substituted and unsubstituted benzene, pyridine, thiophene, naphthalene, quinoline, indole, 1H-pyrazole[3,4-d]-pyrimidine and
  • R substituents include hydrogen, alkyl, alkenyl, hydroxy, alkoxy, halo, haloalkyl, amino, mono-and di-alkylamino, acylamino, carboxy, carbalkoxy, amido, mono- and di-alkylamido, N,N-cycloalkylamido, alkylthio, alkylsulfinyl, alkylsulfonyl or sulfamoyl, alkyl, alkenyl, phenyl, aralkyl, aralkenyl, and R may also form a keto group.
  • “Monocyclic aryl or heteroaryl” means a carbocyclic or heterocyclic aromatic ring.
  • Preferred rings include phenyl, thienyl, pyridyl, 2(1H)-pyridonyl, 4(1H)-pyridonyl, furyl, pyrimidinyl, imidazolyl, thiazolyl, oxazolyl and tetrazolyl.
  • “Bicyclic aryl or heteroaryl” means a bicyclic ring system composed of two fused carbocyclic and/or heterocyclic aromatic rings. Preferred rings include naphthyl, indolyl, benzothienyl, benzofuranyl, quinolinyl, chromonyl, 1(2H)-isoquinolonyl, isoquinolinyl, benzimidazolyl, benzothiazolyl, quinoxalinyl, naphthyridinyl, cinnolinyl, phthalazinyl, pyrido[2,3-b]pyrazinyl, pyrido[3,4-b]pyrazinyl, pyrido[3,2-c]pyridazinyl, pyrido[3,4-b]-pyridinyl, pteridinyl, and quinazolinyl.
  • Alkyl means a saturated aliphatic hydrocarbon, either branched- or straight-chained. Preferred alkyl is “loweralkyl” having about 1 to about 6 carbon atoms. Examples of alkyl include methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, amyl and hexyl.
  • Alkoxy refers to an alkyl-O-group. Preferred alkoxy groups include methoxy, ethoxy, propoxy and butoxy.
  • Aryloxy refers to an aryl-O-group.
  • the preferred aryloxy group is phenoxy.
  • Aralkyl means an alkyl group substituted by an aryl radical.
  • the preferred aralkyl groups are benzyl or phenethyl.
  • the preferred aralkoxy groups are benzyloxy and phenethoxy.
  • acyloxy groups are acetoxy and benzyloxy
  • Halo means halogen. Preferred halogens include chloride, bromide and fluoride.
  • the preferred haloalkyl groups are mono-, di- and trifluoromethyl.
  • Ar is phenyl or naphthyl
  • R is hydrogen, alkyl, alkoxy, hydroxy, halo or trifluoromethyl.
  • X is a bond, NH or NR 4 ;
  • R 5 , R 6 and R 7 are independently hydrogen or alkoxy.
  • Ar is phenyl
  • X is NH or NMe
  • R 5 , R 6 and R 7 are independently hydrogen or methoxy.
  • Special embodiments of this invention inhibiting the growth factor or tyrosine kinase include the following:
  • X is a bond, NR 4 , S or 0, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by CSF-1 activity.
  • X is a bond, NH, S or O
  • the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck/EGF activity.
  • X is a bond and Ar is phenyl, indolyl, pyrrolyl, thienyl, pyridyl, naphthyl, a bicyclic aryl, a bicyclic heteroaryl or substituted phenyl, indolyl, pyrrolyl, thienyl, pyridyl, naphthyl, bicyclic aryl, bicyclic heteroaryl, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck activity.
  • X is NH
  • R 6 and R 7 are alkoxy
  • Ar is phenyl having at least one substituent in the 3, 4 and/or 5 positions of hydroxy or alkoxy, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck activity.
  • the compounds of this invention may be useful in the form of the free base, in the form of salts and as a hydrate. All forms are within the scope of the invention. Acid addition salts may be formed and are simply a more convenient form for use; and in practice, use of the salt form inherently amounts to use of the base form.
  • the acids which can be used to prepare the acid addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are non-toxic to the animal organism in pharmaceutical doses of the salts, so that the beneficial properties inherent in the free base are not vitiated by side effects ascribable to the anions.
  • Pharmaceutically acceptable salts within the scope of the invention include those derived from the following acids: mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid
  • organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic
  • the corresponding acid addition salts comprise the following: hydrochloride, sulfate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate, respectively.
  • the acid addition salts of the compounds of this invention are prepared either by dissolving the free base in aqueous or aqueous-alcohol solution or other suitable solvents containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting the free base and acid in an organic solvent, in which case the salt separates directly or can be obtained by concentration of the solution.
  • the compounds of this invention may be prepared by employing procedures known in the literature starting from known compounds or readily prepared intermediates. Exemplary general procedures follow.
  • the compounds useful for the method of inhibiting cell proliferation and/or differentiation or mediator release may be prepared by the coupling reaction of a palladium catalyzed aryl or heteroarylstannane with an aryl or heteroarylhalide or triflate.
  • A is halogen or triflate and B is trialkylstannane and R is as previously described.
  • the 4-haloquinazoline starting materials are prepared in the classical way using anthranilic acid derivatives and formamide at reflux to provide the intermediate quinazolinones. Subsequent treatment with POCl 3 at about 110° C. for about two hours provides the chloroquinazolines.
  • the final products are prepared via a condensation with the appropriate aniline derivative in a polar solvent such as ethanol.
  • the metal salt preferably Na is prepared and refluxed for several hours with the appropriate haloquinazoline in a solvent such as THF.
  • the aryl and heteroarylstannanes may be prepared from the corresponding halide (preferably bromide or iodide) by conversion to the aryllithium by reaction with t-butyllithium at decreased temperatures, preferably about ⁇ 78° C. followed by reaction with a halotrialkylstannane.
  • halide preferably bromide or iodide
  • the quinazoline stannanes intermediates may be prepared by the action of trimethyltin sodium on aryl halides as described in Chem. Pharm. Bull. 1982, 30, 1731-1737:
  • Step B 4-(1-methylsulphonylindol-3-yl)-6,7-dimethoxyquinazoline
  • Compounds within the scope of this invention exhibit significant activity as protein tyrosine kinase inhibitors and possess therapeutic value as cellular antiproliferative agents for the treatment of certain conditions including psoriasis, atherosclerosis and restenosis injuries. Further, specific inhibitors of CSF-1R tyrosine kinase activity are useful for elucidating the importance of CSF-1 and CSF-1 receptor signaling in bone remodeling and hematopoeisis. Compounds within the scope of the present invention exhibit the modulation and/or inhibition of cell signaling, cell proliferation, cell inflammatory response, the control of abnormal cell growth and can be used in preventing or delaying the occurrence or reoccurrence of such conditions or otherwise treating the condition.
  • EGF-receptor purification is based on the procedure of Yarden and Schiessinger. A431 cells are grown in 80 cm 2 bottles to confluency (2 ⁇ 10 7 cells per bottle). The cells are washed twice with PBS and harvested with PBS containing 11.0 mmol EDTA (1 hour at 37° C., and centrifuged at 600 g for 10 minutes.
  • the cells are solubilized in 1 ml per 2 ⁇ 10 7 cells of cold solubilization buffer (50 mmol Hepes buffer, pH 7.6, 1% Triton X-100, 150 mmol NaCl, 5 mmol EGTA, 1 mmol PMSF, 50 ⁇ g/ml aprotinin, 25 mmol benzamidine, 5 ⁇ g/ml leupeptic, and 10 ⁇ g/ml soybean trypsin inhibitor) for 20 minutes at 4° C. After centrifugation at 100,000 g for 30 minutes, the supernatant is loaded onto a WGA-agarose column (100 ⁇ l of packed resin per 2 ⁇ 10 7 cells) and shaken for 2 hours at 4° C.
  • cold solubilization buffer 50 mmol Hepes buffer, pH 7.6, 1% Triton X-100, 150 mmol NaCl, 5 mmol EGTA, 1 mmol PMSF, 50 ⁇ g/ml aprotinin, 25 mmol
  • the unabsorbed material is removed and the resin washed twice with HTN buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl), twice with HTN buffer containing 1 M NaCl, and twice with HTNG buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, and 10% glycerol).
  • HTN buffer 50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl
  • HTNG buffer 50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, and 10% glycerol.
  • the EGF receptor is eluted batchwise with HTNG buffer containing 0.5 M N-acetyl-D-glucosamine (200 ⁇ l per 2 ⁇ 10 7 cells.).
  • the eluted material is stored in aliquots at ⁇ 70° C. and
  • WGA-purified EGF receptor from A431 cells 0.5 ⁇ g/assay is activated with EGF (0.85 ⁇ M) for 20 minutes at 4° C.
  • the assay is performed at 15° C. and initiated by addition of Mg(Ac) 2 (60 mmol), Tris-Mes buffer, pH 7.6 (50 mmol), [ 32 P]ATP (carrier free, 5 ⁇ Ci/assay), and increasing concentrations of nonradioactive ATP.
  • the assay is terminated after 10-sec by addition of SDS sample buffer.
  • the samples are run on a 6% SDS polyacrylamide gel. The gel is dried and autoradiographed as described above. The relevant radioactive bands are cut and counted in the Cerenkov mode.
  • the K m for ATP determined in this fashion is found to be 7.2 ⁇ M. With use of the 10-sec assay protocol, the EGF concentration dependence of EGF-RK autophosphorylation is determined.
  • EGF stimulation 500 ⁇ g/ml 10 minutes at 37° C.
  • immunoprecipitation is performed with anti EGF-R (Ab 108) and the autophosphorylation reaction (50 ⁇ l aliquots, 3 ⁇ Ci [ ⁇ - 32 P]ATP) sample is carried out in the presence of 2 or 10 ⁇ M of compound of the present invention, for 2 minutes at 4° C.
  • the reaction is stopped by adding hot electrophoresis sample buffer.
  • SDA-PAGE analysis (7.5% els) is followed by autoradiography and the reaction is quantitated by densitometry scanning of the x-ray films.
  • Cells termed HER 14 and K721A are prepared by transfecting NIH3T3 cells (clone 2.2) (From C. Fryling, NCl, NIH), which lack endogenous EGF-receptors, with cDNA constructs of wild-type EGF-receptor or mutant EGF-receptor lacking tyrosine kinase activity (in which Lys 721 at the ATP-binding site is replace by an Ala residue, respectively). All cells are grown in DMEM with 10% calf serum (Hyclone, Logan, Utah).
  • lck Kinase Immunoprecipitated from Jurkat Lysate.
  • Jurkat cells human T-cell leukemia, ATCC clone #E6-1 are grown in suspension in RPMI 1640 medium with 10% fetal calf serum, 100 U/ml penicillin/streptomycin, and 2 mM L-glutamine in a 37° C. incubator at 5% CO 2 .
  • B. Cells are grown to 1-1.5 ⁇ 10 6 cells/ml media, pelleted by centrifugation, and lysed in lysis buffer at 10 8 cells/ml buffer (50 mM tris (pH 8), 150 mM NaCl, 5 mM EDTA, 10% glycerol, and 1% NP-40, to which fresh protease and phosphatase inhibitors are added as described above for A431 lysate). Lysates stored at ⁇ 70° C.
  • D. Compound screening in the cell-free lck kinase assay Compounds (40 mM stocks in DMSO) are initially screened at concentrations of 10 and 100 uM in samples containing lck immuno-precipitated from 2 ⁇ 10 6 cells, 5 uM cdc2 (a p34 cdc2 -derived synthetic peptide (N6-20) prepared by R. Howk, RPR) 7 , 5 mM MnCl 2 , 5 uM ATP and 30 uCi g 32 P-ATP (6000 Ci/mmol, NEN) in 20 mM hepes (pH 7.5) for 5 min at 30° C. Samples are analyzed by 5-15% SDS-PAGE and autoradiography as described for EGFR kinase assays.
  • Samples are analyzed by immunoprecipitation (aPY (100 ul/10 8 cells), a-PLC (100 ul/10 8 cells), or a-zeta (20 ul/10 8 cells)), followed by SDS-PAGE and western blotting onto nitrocellulose and immunoblotting using RC20 recombinant aPY-HRP Transduction Labs) and ECL (Amersham).
  • aPY 100 ul/10 8 cells
  • a-PLC 100 ul/10 8 cells
  • a-zeta 20 ul/10 8 cells
  • PKA Protein Kinase
  • the compounds of the present invention can be administered to a mammalian host in a variety of forms adapted to the chosen route of administration, i.e., orally, or parenterally.
  • Parenteral administration in this respect includes administration by the following routes: intravenous, intramuscular, subcutaneous, intraocular, intrasynovial, transepithelial including transdermal, ophthalmic, sublingual and buccal; topically including ophthalmic, dermal, ocular, rectal and nasal inhalation via insufflation and aerosol and rectal systemic.
  • the active compound may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet.
  • the active compound may be incorporated with excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like
  • Such compositions and preparations should contain at least 0.1% of active compound.
  • the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 6% of the weight of the unit.
  • the amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained.
  • Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 1 and 1000 mg of active compound.
  • the tablets, troches, pills, capsules and the like may also contain the following: A binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring.
  • a binder such as gum tragacanth, acacia, corn starch or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid and the like
  • a lubricant such as magnesium stearate
  • a sweetening agent such as sucrose, lactose or saccharin may be added or a flavoring agent such as peppermint,
  • any material may be present as coatings or to otherwise modify the physical form of the dosage unit.
  • tablets, pills, or capsules may be coated with shellac, sugar or both.
  • a syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor.
  • any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed.
  • the active compound may be incorporated into sustained-release preparations and formulations.
  • the active compound may also be administered parenterally or intraperitoneally.
  • Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
  • Dispersion can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the various sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and the freeze drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.
  • the therapeutic compounds of this invention may be administered to a mammal alone or in combination with pharmaceutically acceptable carriers, as noted above, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard pharmaceutical practice.
  • the dosage of the present therapeutic agents which will be most suitable for prophylaxis or treatment will vary with the form of administration, the particular compound chosen and the physiological characteristics of the particular patient under treatment. Generally, small dosages will be used initially and if necessary, will be increased by small increments until the optimum effect under the circumstances is reached.
  • the therapeutic human dosage based on physiological studies using rats, will generally be from about 0.01 mg to about 100 mg/kg of body weight per day or from about 0.4 mg to about 10 g or higher although it may be administered in several different dosage units from once to several times a day. Oral administration requires higher dosages.

Abstract

This invention relates to the modulation and/or inhibition of cell signaling, cell proliferation, cell inflammatory response, the control of abnormal cell growth and cell reproduction. More specifically, this invention relates to the use of mono- and/or bicyclic aryl or heteroaryl quinazoline compounds in inhibiting cell proliferation, including compounds which are useful protein tyrosine kinase (PTK) inhibitors. The method of treating cell proliferation and/or differentiation or mediator release using said quinazoline compounds and their use in pharmaceutical compositions is described.

Description

  • This application is a continuation-in-part application of U.S. Ser. No. 08/299,886, filed Apr. 19, 1994, which is a continuation-in-part of Ser. No. 08/166,199, filed Dec. 10, 1993, which is a continuation-in-part of Ser. No. 07/988,515, filed Dec. 10, 1992, which is a continuation-in-part application of U.S. Ser. No. 07/698,420, filed May 10, 1991 and a continuation-in-part application of PCT International Application Serial No. PCT/US92/03736, filed May 6, 1992, which has entered the U.S. National Stage as Ser. No. 08/146,072, filed Nov. 8, 1993.[0001]
  • BACKGROUND OF THE INVENTION
  • Field of the Invention [0002]
  • This invention relates to the modulation and/or inhibition of cell signaling, cell proliferation, the control of abnormal cell growth and cell inflammatory response. More specifically, this invention relates to the use of mono- and/or bicyclic aryl or heteroaryl quinazoline compounds which exhibit selective inhibition of differentiation, proliferation or mediator release by effectively inhibiting CSF-1R tyrosine kinase activity. [0003]
  • Normal cell growth is believed to be triggered by the exposure of the cellular substrate to one or more growth factors, examples of which are insulin, epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). Receptors for such growth factor are imbedded in and penetrate through the cellular membrane. The initiation of cellular reproduction is believed to occur when a growth factor binds to the corresponding receptor on the external surface of the cellular membrane. This growth factor-receptor binding alters the chemical characteristics of that portion of the receptor which exists within the cell and which functions as an enzyme to catalyze phosphorylation of either an intracellular substrate or the receptor itself, the latter being referred to as autophosphorylation. Examples of such phosphorylating enzymes include tyrosine kinases, which catalyze phosphorylation of tyrosine amino acid residues of substrate proteins. [0004]
  • Many disease states are characterized by the uncontrolled growth of cells. These disease states involve a variety of cell types and include disorders such as cancer, leukemia, psoriasis, inflammatory diseases, bone diseases atherosclerosis and restenosis occuring subsequent to angioplastic procedures. The inhibition of tyrosine kinases is believed to have utility in the control of deregulated cellular proliferation, i.e., cellular proliferative disorders. [0005]
  • Initiation of autophosphorylation, i.e., phosphorylation of the growth factor receptor itself, and of the phosphorylation of a host of intracellular substrates are some of the biochemical events which are involved in mediator release and cell proliferation. [0006]
  • Reported Developments
  • Inhibitors of p56[0007] lck tyrosine kinase have been reported in the literature by Bolen, J. B. et al. FASEB J. 1992, 3403., Mustelin, T. et al. TIBS 1993, 215.; Eichmann, K. Angew. Chem. Int. Ed. Eng. 1993, 54.; and Klausner, R. D. Samelson, L. E. Cell 1991, 875. These include compounds that are potent but nonselective inhibitors, such as staurosporine, which is competitive with ATP or compounds that are very weak tyrosine kinase inhibitors, but are somewhat selective, such as the flavonoid quercetin.
  • A series of dihydroxy-isoquinolines have been been reported by Burke, T. R. et al. ([0008] Biorg. & Med. Chem. Lett. 1992, 1771; J. Med. Chem. 1993 3010 and J. Med. Chem. 1993, 3015) that have potent p56lck inhibiting activity. Potential therapeutic uses for selective inhibitors of p56lck-include the treatment of autoimmune diseases such as rheumatoid arthritis or transplant rejection.
  • p56[0009] lck, which is a non-receptor tyrosine kinase, has been shown to be important in intracellular signaling in T-cells. It is assumed that inhibitors of p56lck kinase activity perturb the activation of T-cells and therefore a selective inhibitor could prove useful in the treatment of T-cell mediated conditions such as organ rejection, rheumatoid arthritis or other auto-immune diseases.
  • SUMMARY OF THE INVENTION
  • The present invention describes compounds which are inhibitors of the colony stimulating factor-1 receptor tyrosine kinase, CSF-1R, activity and have activity in a p56[0010] lck cell-free assay. These compounds do not appear to have any significant serine/threonine kinase inhibitory activity and in addition, compounds within the scope of this invention do not demonstrate significant PDGF-R activity in a cell-free assay. Compounds of this invention are also weak inhibitors of PDGF-induced mitogenesis which may suggest that these compounds inhibit other sic-like tyrosine kinases involved in the signal transduction pathway.
  • Compounds within the scope of this invention are inhibitors of the colony stimulating factor-1 receptor tyrosine kinase, CSF-1R, activity. A selective inhibitor of the tyrosine kinase activity of this receptor, which is closely related to the platelet-derived growth factor receptor (PDGF-R), has never been reported. Compounds of this invention are selective inhibitors of CSF-1R tyrosine kinase activity and are useful for elucidating the importance of CSF-1 and CSF-1 receptor signaling in bone remodeling and hematopoeisis. In addition compounds inhibiting growth factor-induced CSF and/or lck signalling are described herein. [0011]
  • In accordance with the present invention, there is provided pharmaceutical compositions for inhibiting abnormal cell proliferation and/or differentiation or mediator release in a patient suffering from a disorder characterized by such proliferation activity, comprising the administration to a patient a tyrosine kinase composition which effectively inhibits CSF-1R tyrosine kinase activity in a CSF-1R inhibiting effective amount of a mono-aryl or heteroaryl quinazoline compound exhibiting inhibition of differentiation, proliferation or mediator release activity wherein each aryl group is a ring system containing 0-4 hetero atoms, said compound being optionally substituted or polysubstituted. [0012]
  • Another aspect of the present invention relates to a method of inhibiting abnormal cell proliferation and/or differentiation or mediator release comprising, in admixture with a pharmaceutically acceptable carrier, a pharmaceutically effective amount of a compound of the aforementioned type. Another aspect of this invention comprises compounds useful in the practice of the present method. [0013]
  • With respect to the aspects of this invention, the compounds described by Formula I below constitute a class of the aforementioned mono- and bicicyclic aryl or heteroaryl quinazoline compounds for use in the practice of the present invention: [0014]
    Figure US20040014774A1-20040122-C00001
  • wherein [0015]
  • Ar is a substituted or unsubstituted mono- or bi-cyclic aryl or heteroaryl ring system of about 5 to about 12 atoms and where each monocyclic ring may contain 0 to about 3 hetero atoms, and each bicyclic ring may contain 0 to about 4 hetero atoms selected from N, O and S provided said hetero atoms are not vicinal oxygen and/or sulfur atoms and where the substituents may be located at any appropriate position of the ring system and are described by R; [0016]
  • X is a bond, O, S, SO, SO[0017] 2, OCH2, C═C, C≡C, C═S, SCH2, NH, NHCH2, NR4 or NR4CH2;
  • R independently includes hydrogen, alkyl, alkenyl, phenyl, aralkyl, aralkenyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, aralkoxy, aryloxy, acyloxy, halo, haloalkyl, nitro, cyano, amino, mono- and di-alkylamino, acylamino, carboxy, carboxyalkyl, carbalkoxy, carbaralkoxy, carbalkoxyalkyl, carbalkoxyalkenyl, aminoalkoxy, amido, mono- and di-alkylamido and N,N-cycloalkylamido, alkylthio, alkylsulfinyl, sulfonyl, mono- and di-alkyl sulfonyl, sulfamoyl, mono- and di-alkyl sulfamoyl, halophenyl or benzoyl; and R and R together may also form a ketone group. [0018]
  • R[0019] 4 is alkyl, —CH2—CH2— or —CH2—CH2—CH2—; and
  • R[0020] 5, R6 and R7 are independently hydrogen, alkyl, alkylthio, cycloalkyl, hydroxy, alkoxy, aralkoxy, aryl, halo, haloalkyl, carboxy or carbalkoxy; or
  • a pharmaceutically acceptable salt thereof. [0021]
  • Preferred Ar monocyclic aryl or heteroaryl rings include substituted or unsubstituted benzene, pyrrole, thiophene, furan, thiazole, imidazole, pyrazole, 1,2,4-triazole, pyridine, 2(1H)-pyridone, 4(1H)-pyridone, pyrazine, pyrimidine, pyridazine, isothiazole, isoxazole, oxazole and tetrazole. [0022]
  • Preferred Ar bicyclic aryl or heteroaryl rings include substituted and unsubstituted naphthalene, tetralin, naphthyridine, benzofuran, benzothiophene, indole, 2,3-dihydroindole, 1H-indazole, indoline, benzopyrazole, 1,3-benzodioxole, benzoxazole, purine, coumarin, chromone, quinoline, tetrahydroquinoline, isoquinoline, benzimidazole, quinazoline, pyrido[2,3-b]pyrazine, pyrido[3,4-b]pyrazine, pyrido[3,2-c]pyridazine, pyrido[3,4-b]-pyridine, 1H-pyrazole[3,4-d]pyrimidine, pteridine, 2(1H)-quinolone, 1 (2H)-isoquinolone, 1,4-benzisoxazine, benzothiazole, quinoxaline, quinoline-N-oxide, isoquinoline-N-oxide, quinoxaline-N-oxide, quinazoline-N-oxide, benzoxazine, phthalazine, or cinnoline. [0023]
  • More preferred Ar rings include substituted and unsubstituted benzene, pyridine, thiophene, naphthalene, quinoline, indole, 1H-pyrazole[3,4-d]-pyrimidine and [0024]
  • Preferred R substituents include hydrogen, alkyl, alkenyl, hydroxy, alkoxy, halo, haloalkyl, amino, mono-and di-alkylamino, acylamino, carboxy, carbalkoxy, amido, mono- and di-alkylamido, N,N-cycloalkylamido, alkylthio, alkylsulfinyl, alkylsulfonyl or sulfamoyl, alkyl, alkenyl, phenyl, aralkyl, aralkenyl, and R may also form a keto group. [0025]
  • As employed above and throughout this disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings: [0026]
  • “Monocyclic aryl or heteroaryl” means a carbocyclic or heterocyclic aromatic ring. Preferred rings include phenyl, thienyl, pyridyl, 2(1H)-pyridonyl, 4(1H)-pyridonyl, furyl, pyrimidinyl, imidazolyl, thiazolyl, oxazolyl and tetrazolyl. [0027]
  • “Bicyclic aryl or heteroaryl” means a bicyclic ring system composed of two fused carbocyclic and/or heterocyclic aromatic rings. Preferred rings include naphthyl, indolyl, benzothienyl, benzofuranyl, quinolinyl, chromonyl, 1(2H)-isoquinolonyl, isoquinolinyl, benzimidazolyl, benzothiazolyl, quinoxalinyl, naphthyridinyl, cinnolinyl, phthalazinyl, pyrido[2,3-b]pyrazinyl, pyrido[3,4-b]pyrazinyl, pyrido[3,2-c]pyridazinyl, pyrido[3,4-b]-pyridinyl, pteridinyl, and quinazolinyl. [0028]
  • “Alkyl” means a saturated aliphatic hydrocarbon, either branched- or straight-chained. Preferred alkyl is “loweralkyl” having about 1 to about 6 carbon atoms. Examples of alkyl include methyl, ethyl, n-propyl, isopropyl, butyl, sec-butyl, t-butyl, amyl and hexyl. [0029]
  • “Cycloalkyl” means a cyclic aliphatic group comprising from about three to about seven carbon atoms. Preferred cycloalkyl groups include cyclopropyl, cyclobutyl, cyclohexyl and cycloheptyl. [0030]
  • “Alkoxy” refers to an alkyl-O-group. Preferred alkoxy groups include methoxy, ethoxy, propoxy and butoxy. [0031]
  • “Aryloxy” refers to an aryl-O-group. The preferred aryloxy group is phenoxy. [0032]
  • “Aralkyl” means an alkyl group substituted by an aryl radical. The preferred aralkyl groups are benzyl or phenethyl. [0033]
  • The preferred aralkoxy groups are benzyloxy and phenethoxy. [0034]
  • The preferred acyloxy groups are acetoxy and benzyloxy; [0035]
  • “Halo” means halogen. Preferred halogens include chloride, bromide and fluoride. [0036]
  • The preferred haloalkyl groups are mono-, di- and trifluoromethyl. [0037]
  • The more preferred compounds of this invention include those compounds of Formula I where [0038]
  • Ar is phenyl or naphthyl; [0039]
  • R is hydrogen, alkyl, alkoxy, hydroxy, halo or trifluoromethyl. [0040]
  • X is a bond, NH or NR[0041] 4; and
  • R[0042] 5, R6 and R7 are independently hydrogen or alkoxy.
  • The most preferred compounds are those described where [0043]
  • Ar is phenyl; [0044]
  • X is NH or NMe; and [0045]
  • R[0046] 5, R6 and R7 are independently hydrogen or methoxy.
  • It is intended that N-oxides of the above described aminoquinazolines are encompassed within the scope of this invention. [0047]
  • Special embodiments of this invention inhibiting the growth factor or tyrosine kinase include the following: [0048]
  • A. Compounds of Formula I where: [0049]
  • X is a bond, NR[0050] 4, S or 0, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by CSF-1 activity.
  • B. Compounds of Formula I where: [0051]
  • X is a bond, NH, S or O, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck/EGF activity. [0052]
  • C. Compounds of Formula I where: [0053]
  • X is a bond and Ar is phenyl, indolyl, pyrrolyl, thienyl, pyridyl, naphthyl, a bicyclic aryl, a bicyclic heteroaryl or substituted phenyl, indolyl, pyrrolyl, thienyl, pyridyl, naphthyl, bicyclic aryl, bicyclic heteroaryl, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck activity. [0054]
  • D. Compounds of Formula I where: [0055]
  • X is NH, R[0056] 6 and R7 are alkoxy and Ar is phenyl having at least one substituent in the 3, 4 and/or 5 positions of hydroxy or alkoxy, the inhibiting cell proliferation and/or differentiation or mediator release is especially characterized by lck activity.
  • The compounds of this invention may be useful in the form of the free base, in the form of salts and as a hydrate. All forms are within the scope of the invention. Acid addition salts may be formed and are simply a more convenient form for use; and in practice, use of the salt form inherently amounts to use of the base form. The acids which can be used to prepare the acid addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are non-toxic to the animal organism in pharmaceutical doses of the salts, so that the beneficial properties inherent in the free base are not vitiated by side effects ascribable to the anions. Although pharmaceutically acceptable salts of said basic compound are preferred, all acid addition salts are useful as sources of the free base form even if the particular salt per se is desired only as an intermediate product as, for example, when the salt is formed only for purposes of purification and identification, or when it is used as an intermediate in preparing a pharmaceutically acceptable salt by ion exchange procedures. [0057]
  • Pharmaceutically acceptable salts within the scope of the invention include those derived from the following acids: mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like. [0058]
  • The corresponding acid addition salts comprise the following: hydrochloride, sulfate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate, respectively. [0059]
  • The acid addition salts of the compounds of this invention are prepared either by dissolving the free base in aqueous or aqueous-alcohol solution or other suitable solvents containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting the free base and acid in an organic solvent, in which case the salt separates directly or can be obtained by concentration of the solution. [0060]
  • The compounds of this invention may be prepared by employing procedures known in the literature starting from known compounds or readily prepared intermediates. Exemplary general procedures follow. [0061]
  • In general the compounds useful for the method of inhibiting cell proliferation and/or differentiation or mediator release may be prepared by the coupling reaction of a palladium catalyzed aryl or heteroarylstannane with an aryl or heteroarylhalide or triflate. [0062]
    Figure US20040014774A1-20040122-C00002
  • where A is halogen or triflate and B is trialkylstannane and R is as previously described. [0063]
  • The 4-haloquinazoline starting materials are prepared in the classical way using anthranilic acid derivatives and formamide at reflux to provide the intermediate quinazolinones. Subsequent treatment with POCl[0064] 3 at about 110° C. for about two hours provides the chloroquinazolines. The final products are prepared via a condensation with the appropriate aniline derivative in a polar solvent such as ethanol. In the case of the phenoxy or thiophenoxy derivatives, the metal salt (preferably Na) is prepared and refluxed for several hours with the appropriate haloquinazoline in a solvent such as THF.
    Figure US20040014774A1-20040122-C00003
  • The aryl and heteroarylstannanes may be prepared from the corresponding halide (preferably bromide or iodide) by conversion to the aryllithium by reaction with t-butyllithium at decreased temperatures, preferably about −78° C. followed by reaction with a halotrialkylstannane. [0065]
    Figure US20040014774A1-20040122-C00004
  • Of course these products may also be prepared in the reverse manner using the aryl or heteroarylhalides with the the corresponding stannane. [0066]
    Figure US20040014774A1-20040122-C00005
  • The quinazoline stannanes intermediates may be prepared by the action of trimethyltin sodium on aryl halides as described in [0067] Chem. Pharm. Bull. 1982, 30, 1731-1737:
  • The preparation of the compounds useful in this invention are described in Applicants' copending applications U.S. Ser. No. 08/166,199, filed Dec. 10, 1993 and U.S. Ser. No. 08/229,886, filed Apr. 19, 1994 of which this application claims priority. U.S. Ser. No. 08/166,199 and U.S. Ser. No. 08/229,886 are hereby incorporated herein by reference. [0068]
  • Further, the following examples are representative of the processes used to synthesis the compounds of this invention. [0069]
  • The below examples and those described in U.S. Ser. No. 08/166,199 may be followed to prepare any of the desired compounds of this invention. A representative list of compounds which may be prepared is shown below.[0070]
  • EXAMPLE 1
  • 4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline [0071]
  • THF (5 ml) and NaH (60% disp in oil, approx. 28 mg) is added to a dry flask maintained under inert atmosphere at room temperature. 3-Chlorophenol (0.09 g) is added as a soln. in THF (1 mL) and stirring is continued until the solution became clear. 4-Chloro-6,7-dimethoxyquinazoline is added all at once (as the solid) and stirring was maintained overnight at RT. The solution is partitioned between CH[0072] 2Cl2 and 5% NaOH. The organic layer is washed with brine, dried (Na2SO4) and concentrated. Flash column chromatography (40% EtOAc/Hex) provided the pure compound. An analytical sample is obtained by recrystallization from EtOAc/Hex to provide 4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline (0.05 g), white needles, m.p. 152-153° C.
  • EXAMPLE 2
  • 4-(1-methylsulphonylindol-3-yl)-6,7-dimethoxyquinazoline [0073]
  • Step A N-methylsulfonyl-3-trimethylstannylindole [0074]
  • A solution of 5 g (15.57 mmol) of N-methylsulfonyl-3-iodoindole (5.1 g; 15.57 mmol) of hexamethylditin and 0.89 g (0.78 mmol) of Pd (PPh[0075] 3)4 in 75 mL of dry toluene is flushed thoroughly with nitrogen and heated to 90° C. for 4 hours. The mixture is then evaporated and chromatographed on silica gel (eluting with hexane and then with 10% ethyl acetate/hexane to give N-methylsulfonyl-3-trimethylstannylindole which is used directly in the next step.
  • Step B 4-(1-methylsulphonylindol-3-yl)-6,7-dimethoxyquinazoline [0076]
  • A solution of 1.33 g (4.01 mmol) of N-methylsulfonyl-3-trimethylstannylindole, 750 mg (3.34 mmol) of 4-chloro-6,7-dimethoxyquinazoline and 0.19 g (5 mol % 0.16 mmol) of Pd (PPh[0077] 3)4 in 10 ml of dry dimethylformamide is flushed thoroughly with nitrogen and heated to 90° C. for 12 hours. The reaction mixture is diluted with methylene chloride washed with 10% ammonium hydroxide and stirred vigorously and then washed with water and the combined organics are washed with brine (75 mL), dried (MgSO4) and evaporated to dryness. Recrystallization from ethyl acetate yields 4-(1-methylsulphonylindol-3-yl)-6,7-dimethoxyquinazoline
  • (m.p.>220° C.). [0078]
  • The above examples may be followed to prepare any of the desired compounds of this invention. A representative list of compounds which may be prepared are shown below. [0079]
  • 6,7-dimethoxy-4-naphthalen-2-ylethynylquinazoline, m.p. 158-161° C. [0080]
  • 4-(4-hydroxyphenyl)-6,7-dimethoxyquinazolinehydrochloride, m.p.>270° C. (dec) [0081]
  • 4-(naphthalen-1-yl)-6,7-dimethoxyquinazoline, m.p. 144-147° C. [0082]
  • 4-(naphthalen-2-yl)-6,7-dimethoxyquinazoline, m.p. 115-118° C. [0083]
  • 4-phenylacetylenyl-6,7-dimethoxyquinazoline, m.p. 146-148° C. [0084]
  • 4-(3-fluoro-4-methoxyphenyl)-6,7-dimethoxyquinazoline, m.p. 207-210° C. [0085]
  • 4-(3-phenylphenyl)-6,7-dimethoxyquinazoline, m.p. 160-163° C. [0086]
  • 4-(2-phenylethylenyl)-6,7-dimethoxyquinazoline, m.p. 168-169° C. [0087]
  • 4-(2-methoxypyridin-5-yl)6,7-dimethoxyquinazoline, m.p. 175-176° C. [0088]
  • 4-(1-benzylindol-3-yl)-6,7-dimethoxyquinazoline, m.p. 148-150° C. [0089]
  • 4-(indol-3-yl)-6,7-dimethoxyquinazoline, m.p.>240° C. (dec) [0090]
  • 4-(1-methylindol-3-yl)-6,7-dimethoxyquinazoline hydrochloride, m.p.>230° C. (dec) [0091]
  • 4-(1-methylsulphonylindol-3-yl)-6,7-dimethoxyquinazoline, m.p.>220° C. (dec) [0092]
  • 4-(4-phenylpiperidin-1-yl)-6,7-dimethoxyquinazoline, m.p. 150-151° C. [0093]
  • 4-[4-(3-chlorophenyl)piperazin-1-yl]-6,7-dimethoxyquinazoline, m.p. 155-156° C. [0094]
  • 4-(N-methyl-3,4,5-trimethoxyanilino)-6,7-dimethoxyquinazoline, m.p. 149-151° C. [0095]
  • (+−)-4-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride, m.p. 198-201° C. (dec) [0096]
  • 4-(1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride, m.p. 195-197° C. (dec) [0097]
  • 4-(N-methyl-4-methoxyanilino)-6,7-dimethoxyquinazoline hydrochloride, m.p. 202-205° C. [0098]
  • 4-(N-methyl-4-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride, m.p. 220-222° C. [0099]
  • 4-(2,3-dihydroindol-1-yl)-6,7-dimethoxyquinazoline hydrochloride, m.p. 226-229° C. (dec) [0100]
  • N-(6,7-dimethoxyquinazolin-4-yl)-N-methyl-N-(3-trifluoromethylphenyl)amine hydrochloride, m.p. 240-243° C. [0101]
  • N-(3-chlorophenyl)-N-(6,7-dimethoxyquinazolin-4-yl)-N-methylamine hydrochloride, m.p. 235-237° C. [0102]
  • N-(3-chlorophenyl)-N-(quinazolin-4-yl)-N-methyl-amine hydrochloride, m.p. 233-235° C. [0103]
  • 6,7-dimethoxy-4-naphthalen-1-yl-ethynylquinazoline, m.p. 175-177° C. [0104]
  • 4-(thien-3-yl)-6,7-dimethoxyquinazoline, m.p. 148.5-151.5° C. [0105]
  • 4-benzyl-6,7-dimethoxyquinazoline, m.p. 122.5-125° C. [0106]
  • (6,7-dimethoxyquinazolin-4-yl)-5-indazolylamine hydrochloride, m.p. 261-263° C. (dec) [0107]
  • N-(6,7-dimethoxyquinazolin-4-yl)-N-phenyl-N-ethylamine hydrochloride, m.p. 227-230° C. (dec) [0108]
  • N-benzyl-N-(6,7-dimethoxyquinazolin-4-yl)-N-phenylamine hydrochloride, m.p. 269-271° C. [0109]
  • N-(6-chloroquinazolin-4-yl)-N-methyl-N-phenylamine, m.p. 106-108° C. [0110]
  • N-(3-chloro-phenyl)-N-(6,7-dimethoxyquinazolin-4-yl)-N-ethylamine hydrochloride, m.p. 261-263° C. [0111]
  • N-(6,7-dimethoxyquinazolin-4-yl)-N-methyl-N-p-tolylamine hydrochloride, m.p. 230-234° C. (dec) [0112]
  • N-benzyl-N-(6,7-dimethoxyquinazolin-4-yl)amine, m.p 220-225° C. [0113]
  • N-(4-methoxybenzyl)-N-(6,7-dimethoxyquinazolin-4-yl)amine, m.p. 194-198° C. [0114]
  • N-(3,5-dimethoxybenzyl)-N-(6,7-dimethoxyquinazolin-4-yl)amine hydrochloride, m.p. 265-269° C. [0115]
  • 4-(3,4,5-trimethoxyphenoxy)-6,7-dimethoxyquinazoline, m.p. 228-232° C. [0116]
  • N-(quinazolin-4-yl)-N-phenyl-N-methylamine hydrochloride, m.p. 242-246° C. (dec) [0117]
  • N-(6,7-dimethoxyquinazolin-4-yl)-N-(4-morpholin-4-ylphenyl)amine hydrochloride, m.p. 231-235° C. (dec) [0118]
  • 4-(3-methoxythiophenoxy)-6,7-dimethoxyquinazoline, m.p. 139.5-141.5° C. [0119]
  • 4-[N-(5-indanyl)amino]-6,7-dimethoxyquinazoline hydrochloride, m.p. 244-246° C. (dec) [0120]
  • 4-(3-chlorothiophenoxy)-6,7-dimethoxyquinazoline, m.p. 152-153.5° C. [0121]
  • 4-(3-aminopyrazolyl)-6,7-dimethoxyquinazoline hydrochloride, m.p. 262-264° C. (dec) [0122]
  • 4-(1,4-benzodioxan-6-ylamino)-6,7-dimethoxyquinazoline hydrochloride, m.p. 267-269° C. (dec) [0123]
  • 6,7-dimethoxy-4-(α-naphthylamino)quinazoline hydrochloride, m.p.>250° C. [0124]
  • 6,7-dimethoxy-4-(β-naphthylamino)quinazoline hydrochloride, m.p.>250° C. [0125]
  • 4-(cyclohexylanilino)-6,7-dimethoxyquinazoline, m.p. 239-244° C. [0126]
  • 4-(3,4,5-trimethoxyanilino)-6,7-dimethoxyquinazoline hydrochloride, m.p 260-265° C. [0127]
  • 6,7-dimethoxy-4-(N-methylanilino)quinazoline hydrochloride, m.p.>230° C. [0128]
  • 4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline, m.p. 152-153° C. [0129]
  • 6,7-dimethoxy-4-(1-naphthylthio)-quinazoline, m. p. 174.5-176.5° C. [0130]
  • 6,7-dimethoxy-4-(2-naphthylthio)-quinazoline, m. p. 178-179° C. [0131]
  • 6,7-dimethoxy-4-(1-naphthyloxy)-quinazoline, m. p. 214-215.5° C. [0132]
  • 6,7-dimethoxy-4-(2-naphthyloxy)-quinazoline, m. p. 169-170° C. [0133]
  • N-(6,7-dimethoxy-quinolazolin-4-yl)-N-(naphth-2-yl)-N-ethylamine hydrochloride, m. p. 236-239° C. (dec) [0134]
  • 6,7-dimethoxy-4-(naphthalene-2-sulfinyl)quinazoline, m. p. 182.5-185° C. [0135]
  • 6,7-dimethoxy-4-(naphthalene-2-sulfonyl)quinazoline [0136]
  • 4-(3-chloroanilino)-6,7-dimethylquinazoline hydrochloride, m.p. 271-274° C. [0137]
  • 4-(3,5-dimethylanilino)-6,7-dimethylquinazoline hydrochloride, m.p.>275° C. [0138]
  • 4-(N-methyl-4-methylanilino)-6,7-dimethylquinazoline hydrochloride, m.p. 235-238° C. [0139]
  • 6,7-dimethyl-4-(1-naphthylamino)quinazoline hydrochloride, m.p. 244-247° C. [0140]
  • 6,7-dimethyl-4-(7-trifluoromethyl-3,4-dihydro-2H-quinolin-1-yl)quinazoline hydrochloride, m.p. 240° C. [0141]
  • 4-(N-methyl-3-methylanilino)-6,7-dimethylquinazoline hydrochloride, m.p. 205-207° C. [0142]
  • 4-(3-chlorophenylthio)-6,7-dimethylquinazoline hydrochloride, mp. 197-202° C. [0143]
  • 4-(1-naphthylthio)-6,7-dimethylquinazoline hydrochloride, m.p. 204-209° C. [0144]
  • 4-(3,4-dimethoxyphenylthio)quinazoline, m.p. 115-117° C. [0145]
  • Preparation of Pharmaceutical Compositions and Pharmacological Test Section
  • Compounds within the scope of this invention exhibit significant activity as protein tyrosine kinase inhibitors and possess therapeutic value as cellular antiproliferative agents for the treatment of certain conditions including psoriasis, atherosclerosis and restenosis injuries. Further, specific inhibitors of CSF-1R tyrosine kinase activity are useful for elucidating the importance of CSF-1 and CSF-1 receptor signaling in bone remodeling and hematopoeisis. Compounds within the scope of the present invention exhibit the modulation and/or inhibition of cell signaling, cell proliferation, cell inflammatory response, the control of abnormal cell growth and can be used in preventing or delaying the occurrence or reoccurrence of such conditions or otherwise treating the condition. [0146]
  • To determine the effectiveness of compounds of this invention, the pharmacological tests described below, which are accepted in the art and recognized to correlate with pharmacological activity in mammals, are utilized. Compounds within the scope of this invention have been subjected to these various tests, and the results obtained are believed to correlate to useful cellular differentiation mediator activity. The below described tests are useful in determining the inhibition of the colony stimulating factor-1 receptor tyrosine kinase (CSF-1R) activity. The ability to inhibit the p56[0147] lck tyrosine kinase activity of compounds disclosed herein is described. The results of these tests are believed to provide sufficient information to persons skilled in the pharmacological and medicinal chemistry arts to determine the parameters for using the studied compounds in one or more of the therapies described herein.
  • EGF-Receptor Purification [0148]
  • EGF-receptor purification is based on the procedure of Yarden and Schiessinger. A431 cells are grown in 80 cm[0149] 2 bottles to confluency (2×107 cells per bottle). The cells are washed twice with PBS and harvested with PBS containing 11.0 mmol EDTA (1 hour at 37° C., and centrifuged at 600 g for 10 minutes. The cells are solubilized in 1 ml per 2×107 cells of cold solubilization buffer (50 mmol Hepes buffer, pH 7.6, 1% Triton X-100, 150 mmol NaCl, 5 mmol EGTA, 1 mmol PMSF, 50 μg/ml aprotinin, 25 mmol benzamidine, 5 μg/ml leupeptic, and 10 μg/ml soybean trypsin inhibitor) for 20 minutes at 4° C. After centrifugation at 100,000 g for 30 minutes, the supernatant is loaded onto a WGA-agarose column (100 μl of packed resin per 2×107 cells) and shaken for 2 hours at 4° C. The unabsorbed material is removed and the resin washed twice with HTN buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl), twice with HTN buffer containing 1 M NaCl, and twice with HTNG buffer (50 mmol Hepes, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, and 10% glycerol). The EGF receptor is eluted batchwise with HTNG buffer containing 0.5 M N-acetyl-D-glucosamine (200 μl per 2×107 cells.). The eluted material is stored in aliquots at −70° C. and diluted before use with TMTNG buffer (50 mmol Tris-Mes buffer, pH 7.6, 0.1% Triton X-100, 150 mmol NaCl, 10% glycerol).
  • ATP and EGF Dependence of Autophosphorylation [0150]
  • WGA-purified EGF receptor from A431 cells (0.5 μg/assay is activated with EGF (0.85 μM) for 20 minutes at 4° C. The assay is performed at 15° C. and initiated by addition of Mg(Ac)[0151] 2 (60 mmol), Tris-Mes buffer, pH 7.6 (50 mmol), [32P]ATP (carrier free, 5 μCi/assay), and increasing concentrations of nonradioactive ATP. The assay is terminated after 10-sec by addition of SDS sample buffer. The samples are run on a 6% SDS polyacrylamide gel. The gel is dried and autoradiographed as described above. The relevant radioactive bands are cut and counted in the Cerenkov mode. The Km for ATP determined in this fashion is found to be 7.2 μM. With use of the 10-sec assay protocol, the EGF concentration dependence of EGF-RK autophosphorylation is determined.
  • Inhibition of EGF-R Autophosphorylation [0152]
  • A431 cells are grown to confluence on human fibronectin coated tissue culture dishes. After washing 2 times with ice-cold PBS, cells are lysed by the addition of 500 μl/dish of lysis buffer (50 mmol Hepes, pH 7.5, 150 mmol NaCl, 1.5 mmol MgCl[0153] 2, 1 mmol EGTA, 10% glycerol, 1% triton X-100, 1 mmol PMSF, 1 mg/ml aprotinin, 1 mg/ml leupeptin) and incubating 5 minutes at 4° C. After EGF stimulation (500 μg/ml 10 minutes at 37° C.) immunoprecipitation is performed with anti EGF-R (Ab 108) and the autophosphorylation reaction (50 μl aliquots, 3 μCi [γ-32P]ATP) sample is carried out in the presence of 2 or 10 μM of compound of the present invention, for 2 minutes at 4° C. The reaction is stopped by adding hot electrophoresis sample buffer. SDA-PAGE analysis (7.5% els) is followed by autoradiography and the reaction is quantitated by densitometry scanning of the x-ray films.
  • Cell Culture [0154]
  • Cells termed HER 14 and K721A (=DK) are prepared by transfecting NIH3T3 cells (clone 2.2) (From C. Fryling, NCl, NIH), which lack endogenous EGF-receptors, with cDNA constructs of wild-type EGF-receptor or mutant EGF-receptor lacking tyrosine kinase activity (in which Lys 721 at the ATP-binding site is replace by an Ala residue, respectively). All cells are grown in DMEM with 10% calf serum (Hyclone, Logan, Utah). [0155]
  • Further tests which show the effectiveness and selectivity of compounds of this invention to inhibit cell proliferation and/or differentiation or mediator release are as follows. [0156]
  • CSF-1R Cell-Free Autophosphorylation Assay [0157]
    For a regular 28 tube assay (14 samples per 15 well gel):
    In 2 ml eppendorf tube: 140 mg protein A sepharose (5 mg/sample)
    Swell in 20 mM Hepes pH 7.5 and wash 2x in Hepes
    Add 280 λ α-CSF-1R
    20 min RT shaking
    Wash 3x in HNTG pH 7.5:  20 mM Hepes
    150 mM NaCl
    0.1% triton X-100
     10% glycerol
    In 15 ml tube: 2.8 ml lysate
    lysis buffer:   20 mM Hepes
     1.5 mM MgCl2
     150 mM NaCl
      1 mM EGTA
     10% glycerol
      1% triton X-100
    Protease inhibitors added fresh:
    PMSF: 8 mg/ml = 2500x in 100% EtOH, store frozen, add 100 λ/
    10 ml lysis buffer
    Aprotinin: 10 mg/ml = 250x in H2O, store frozen, add
    40 λ/10 ml lysis buffer
    Leupeptin: 1 mg/ml = 250x in H2O, store frozen, add 40 λ/
    10 ml lysis buffer
    Add washed beads to stimulated lysate and incubate 90 min 4° C. on
    rotator or shaking
    prepare 28 compound tubes:
    make 40 mM solutions of compounds in 100% DMSO
    make serial dilutions in 50 mM Tris pH 7.5 + 10 mM MnCl2
    aliquot 10 λ compound solution into each 1 ml eppendorf reaction
    tube waiting on ice, control blanks get 10 λ buffer
    Wash beads 1x HNTG, 2x 10 mM Tris pH 7.5
    Add 10 λ ATP solution: 312 λ 50 mM Tris pH 7.5 +
    10 mM MnCl2
    2.7 λ cold ATP (stock of 10 mM in 50
    mM Tris = 20 μM final)
    35I 32P-ATP (10 μ Ci/sample)
    Vortex, incubate 10 min on ice
    Add 45 λ 2x SDS-sample buffer, heat 95° C. 6 min
    7.5% SDS-PAGE, fix, dry, expose (usually 4 hrs)
  • lck Kinase: Immunoprecipitated from Jurkat Lysate. [0158]
  • A. Jurkat cells (human T-cell leukemia, ATCC clone #E6-1) are grown in suspension in RPMI 1640 medium with 10% fetal calf serum, 100 U/ml penicillin/streptomycin, and 2 mM L-glutamine in a 37° C. incubator at 5% CO[0159] 2.
  • B. Cells are grown to 1-1.5×10[0160] 6 cells/ml media, pelleted by centrifugation, and lysed in lysis buffer at 108 cells/ml buffer (50 mM tris (pH 8), 150 mM NaCl, 5 mM EDTA, 10% glycerol, and 1% NP-40, to which fresh protease and phosphatase inhibitors are added as described above for A431 lysate). Lysates stored at −70° C.
  • C. Immunoprecipitation: 3-4 mg Protein-A sepharose/sample washed 2×20 mM Hepes (pH 7.5). 1 ul α-lck antibody (prepared as polyclonals in rabbits using a peptide antigen corresponding to the N-terminal region of human lck) per sample added to the Protein-A and shaken 20 min at room temperature. After washing 3×HNTG, lysate from 2×10[0161] 6 cells is added to each sample, rotated 2 hr at 4° C., then washed 3×HNTG (2nd wash containing 0.5 N NaCl). If all samples contain identical concentrations of the enzyme, then the immuno-precipitation can be done in bulk and alloquoted to appropriate numbers of tubes prior to assay set-up.
  • D. Compound screening in the cell-free lck kinase assay: Compounds (40 mM stocks in DMSO) are initially screened at concentrations of 10 and 100 uM in samples containing lck immuno-precipitated from 2×10[0162] 6 cells, 5 uM cdc2 (a p34cdc2-derived synthetic peptide (N6-20) prepared by R. Howk, RPR)7, 5 mM MnCl2, 5 uM ATP and 30 uCi g32P-ATP (6000 Ci/mmol, NEN) in 20 mM hepes (pH 7.5) for 5 min at 30° C. Samples are analyzed by 5-15% SDS-PAGE and autoradiography as described for EGFR kinase assays.
  • E. Intact cell activation/inhibition studies:˜5×10[0163] 7 cells per sample in 1 ml media are activated with either 10 ug a-CD3 (clone Cris 7, Biodesign) for 1 min at 37° C. or 20 ng PMA and 10 ug PHA for 20 min at 37° C. in the presence and absence of compound (added earlier so that the total time of compound incubation is 30 min). Incubations are terminated by centrifugation and lysis (as described). Samples are analyzed by immunoprecipitation (aPY (100 ul/108 cells), a-PLC (100 ul/108 cells), or a-zeta (20 ul/108 cells)), followed by SDS-PAGE and western blotting onto nitrocellulose and immunoblotting using RC20 recombinant aPY-HRP Transduction Labs) and ECL (Amersham).
  • cAMP-Dependent Protein Kinase (PKA) Assay [0164]
  • Selectivity assay for compounds is performed as follows. Each sample contains 0.4 pmolar units PKA (from rabbit muscle, Sigma), 1 uM cAMP, 50 uM Tris-HCL (pH 7), 10 mM MgAc, 50 ug BSA, 16 uM Kemptide substrate (specific cAMP kinase phosphate acceptor whose sequence corresponds to the pig liver pyruvate kinase phosphorlyation site), 16 uM ATP, 16 uCi [0165] 32P-ATP (6000 Ci/mmol, NEN), +/−compound and dH2O to a final volume of 200 ul. Reactions proceed for 5 min. at 30° C., and are terminated by the addition of 100 ul 375 mM H3PO4. 50 ul each sample spotted onto Whatman P81 phosphocellulose filters, which are washed 3× (15 min.) in 75 mM H3PO4, followed by an acetone rinse and dry (Cerenkov) counting.
  • In view of the results of the above test, compounds of the present invention can be shown to be selective. [0166]
  • The following tables show examples of representative compounds of this invention and their test results as determined by the above inhibition of CSR-1 R and lck procedures. [0167]
    Structure Ick activity CSF-R activity
    Figure US20040014774A1-20040122-C00006
    IC50 (μM) IC50 (μM)
    Figure US20040014774A1-20040122-C00007
    >10 6
    Figure US20040014774A1-20040122-C00008
    100 7
    Figure US20040014774A1-20040122-C00009
    >50 0.18
    Figure US20040014774A1-20040122-C00010
    >50 0.5
    Figure US20040014774A1-20040122-C00011
    >50 4.0
    Figure US20040014774A1-20040122-C00012
    10 >100
    Figure US20040014774A1-20040122-C00013
    0.5 >100
    Figure US20040014774A1-20040122-C00014
    50 >50
    Figure US20040014774A1-20040122-C00015
    10 >50
    Figure US20040014774A1-20040122-C00016
    2.5 >50
    Figure US20040014774A1-20040122-C00017
    10 >20
    Figure US20040014774A1-20040122-C00018
    20 ≧20
    Figure US20040014774A1-20040122-C00019
    1 >50
    Figure US20040014774A1-20040122-C00020
    2.5 3
    Figure US20040014774A1-20040122-C00021
    5 1
    Figure US20040014774A1-20040122-C00022
    5 >50
    Figure US20040014774A1-20040122-C00023
    2.9 15
  • The results obtained by the above experimental methods evidence the useful CSF-1R receptor protein tyrosine kinase inhibition properties of compounds within the scope of the present invention and possess therapeutic value as cellular antiproliferative agents. The above pharmacological test results may be used to determine the dosage and mode of administration for the particular therapy sought. [0168]
  • The compounds of the present invention can be administered to a mammalian host in a variety of forms adapted to the chosen route of administration, i.e., orally, or parenterally. Parenteral administration in this respect includes administration by the following routes: intravenous, intramuscular, subcutaneous, intraocular, intrasynovial, transepithelial including transdermal, ophthalmic, sublingual and buccal; topically including ophthalmic, dermal, ocular, rectal and nasal inhalation via insufflation and aerosol and rectal systemic. [0169]
  • The active compound may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 6% of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 1 and 1000 mg of active compound. [0170]
  • The tablets, troches, pills, capsules and the like may also contain the following: A binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and formulations. [0171]
  • The active compound may also be administered parenterally or intraperitoneally. Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersion can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. [0172]
  • The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the for must be sterile and must be fluid to the extent that easy syringability exists. It may be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin. [0173]
  • Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof. [0174]
  • The therapeutic compounds of this invention may be administered to a mammal alone or in combination with pharmaceutically acceptable carriers, as noted above, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard pharmaceutical practice. [0175]
  • The dosage of the present therapeutic agents which will be most suitable for prophylaxis or treatment will vary with the form of administration, the particular compound chosen and the physiological characteristics of the particular patient under treatment. Generally, small dosages will be used initially and if necessary, will be increased by small increments until the optimum effect under the circumstances is reached. The therapeutic human dosage, based on physiological studies using rats, will generally be from about 0.01 mg to about 100 mg/kg of body weight per day or from about 0.4 mg to about 10 g or higher although it may be administered in several different dosage units from once to several times a day. Oral administration requires higher dosages. [0176]

Claims (8)

What is claimed:
1. A method for the treatment of bone disease in a patient suffering from such disorder comprising administering to said patient an effective amount of a composition having the formula:
Figure US20040014774A1-20040122-C00024
wherein
Ar is a substituted or unsubstituted mono- or bi-cyclic aryl or heteroaryl ring system of about 5 to about 12 atoms and where each monocyclic ring may contain 0 to about 3 hetero atoms, and each bicyclic ring may contain 0 to about 4 hetero atoms selected from N, O, and S provided said hetero atoms are not vicinal oxygen and/or sulfur atoms and where the substituents may be located at any appropriate position of the ring system and are described by R;
X is a bond, O, S, SO, SO2, OCH2, C═C, C≡C, C═S, SCH2, NH, NHCH2, NR4, or NR4CH2;
R independently includes hydrogen, alkyl, phenyl, aralkyl, aralkenyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, aralkoxy, aryloxy, acyloxy, halo, haloalkyl, nitro, cyano, amino, mono- and di-alkylamino, acylamino, carboxy, carboxyalkyl, carbalkoxy, carbaralkoxy, carbalkoxyalkyl, carbalkoxyalkenyl, aminoalkoxy, amido, mono- and di-alkylamido, and N,N-cycloalkylamido, sulfonyl, mono- and di-alkyl sulfonyl, sulfamoyl, mono- and di-alkyl sulfamoyl, halophenyl, or benzoyl, and R and R together may also form a ketone group;
R4 is alkyl, —CH2—CH2— or —CH2—CH2—CH2—; and
R5, R6, and R7 are independently hydrogen, alkyl, alkylthio, cycloalkyl, hydroxy, alkoxy, aralkoxy, aryl, halo, haloalkyl, carboxy or carbalkoxy; or
a pharmaceutically acceptable salt thereof.
2. A method for the treatment of inflammation in a patient suffering from such disorder comprising administering to said patient an effective amount of a composition having the formula:
Figure US20040014774A1-20040122-C00025
wherein
Ar is a substituted or unsubstituted mono- or bi-cyclic aryl or heteroaryl ring system of about 5 to about 12 atoms and where each monocyclic ring may contain 0 to about 3 hetero atoms, and each bicyclic ring may contain 0 to about 4 hetero atoms selected from N, O, and S provided said hetero atoms are not vicinal oxygen and/or sulfur atoms and where the substituents may be located at any appropriate position of the ring system and are described by R;
X is a bond, O, S, SO, SO2, OCH2, C═C, C≡C, C═S, SCH2, NH, NHCH2, NR4, or NR4CH2;
R independently includes hydrogen, alkyl, phenyl, aralkyl, aralkenyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, aralkoxy, aryloxy, acyloxy, halo, haloalkyl, nitro, cyano, amino, mono- and di-alkylamino, acylamino, carboxy, carboxyalkyl, carbalkoxy, carbaralkoxy, carbalkoxyalkyl, carbalkoxyalkenyl, aminoalkoxy, amido, mono- and di-alkylamido, and N,N-cycloalkylamido, sulfonyl, mono- and di-alkyl sulfonyl, sulfamoyl, mono- and di-alkyl sulfamoyl, halophenyl, or benzoyl, and R and R together may also form a ketone group;
R4 is alkyl, —CH2—CH2— or —CH2—CH2—CH2—; and
R5, R6, and R7 are independently hydrogen, alkyl, alkylthio, cycloalkyl, hydroxy, alkoxy, aralkoxy, aryl, halo, haloalkyl, carboxy or carbalkoxy; or
a pharmaceutically acceptable salt thereof.
3. A method of inhibiting cell proliferation, differentiation, or mediator release in a patient suffering from a disorder characterized by such proliferation and/or differentiation and/or mediator release comprising administering to a patient a composition selected from:
4-(naphthalen-2-ylethynyl)-6,7-dimethoxyquinazoline,
4-(4-hydroxyphenyl)-6,7-dimethoxyquinazoline hydrochloride
4-phenylacetylenyl-6,7-dimethoxyquinazoline,
4-(2-phenylphenyl)-6,7-dimethoxyquinazoline,
4-(1-methylindol-3-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(4-phenylpiperidin-1-yl)-6,7-dimethoxyquinazoline,
4-[4-(3-chlorophenyl)piperazin-1-yl]-6,7-dimethoxyquinazoline,
(±)-4-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methoxyanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-chloro-anilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(2,3-dihydroindol-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-trifluoromethylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)quinazoline hydrochloride and
4-(naphthalen-1-ylethynyl)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
4. The method of claim 3 where said composition administered is selected from:
4-(indazol-5-ylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6-chloroquinazoline,
4-(N-ethyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylamino)-6,7-dimethoxyquinazoline,
4-(4-methoxybenzylamino)-6,7-dimethoxyquinazoline,
4-(3,5-dimethoxybenzylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)quinazolin-4-yl) hydrochloride,
4-(4-morpholin-4-ylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(3-methoxythiophenoxy)-6,7-dimethoxyquinazoline,
4-[N-(5-indanyl)amino]-6,7-dimethoxyquinazoline hydrochloride,
4-(3-chlorothiophenoxy)-6,7-dimethoxyquinazoline,
4-(3-aminopyrazolyl)-6,7-dimethoxyquinazoline hydrochloride,
4-(1,4-benzodioxan-6-ylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(α-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(β-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(cyclohexylanilino)-6,7-dimethoxyquinazoline,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride, and
4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
5. A pharmaceutical composition for effectively inhibiting CSF-1R tyrosine kinase activity by exhibiting inhibition of cell proliferation and/or differentiation and/or mediator release comprising a CSF-1R receptor inhibiting effective amount of a compound selected from:
4-(naphthalen-2-ylethynyl)-6,7-dimethoxyquinazoline,
4-(4-hydroxyphenyl)-6,7-dimethoxyquinazoline hydrochloride
4-phenylacetylenyl-6,7-dimethoxyquinazoline,
4-(2-phenylphenyl)-6,7-dimethoxyquinazoline,
4-(1-methylindol-3-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(4-phenylpiperidin-1-yl)-6,7-dimethoxyquinazoline,
4-[4-(3-chlorophenyl)piperazin-1-yl]-6,7-dimethoxyquinazoline,
(±)-4-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methoxyanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-chloro-anilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(2,3-dihydroindol-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-trifluoromethylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)quinazoline hydrochloride and
4-(naphthalen-1-ylethynyl)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
6. The pharmaceutical composition of claim 5 where said composition is selected from:
4-(indazol-5-ylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6-chloroquinazoline,
4-(N-ethyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylamino)-6,7-dimethoxyquinazoline,
4-(4-methoxybenzylamino)-6,7-dimethoxyquinazoline,
4-(3, 5-dimethoxybenzylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)quinazolin-4-yl) hydrochloride,
4-(4-morpholin-4-ylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(3-methoxythiophenoxy)-6,7-dimethoxyquinazoline,
4-[N-(5-indanyl)amino]-6,7-dimethoxyquinazoline hydrochloride,
4-(3-chlorothiophenoxy)-6,7-dimethoxyquinazoline,
4-(3-aminopyrazolyl)-6,7-dimethoxyquinazoline hydrochloride,
4-(1,4-benzodioxan-6-ylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(α-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(β-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(cyclohexylanilino)-6,7-dimethoxyquinazoline,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride, and
4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
7. A compound selected from:
4-(indazol-5-ylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)-6-chloroquinazoline,
4-(N-ethyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-benzylamino)-6,7-dimethoxyquinazoline,
4-(4-methoxybenzylamino)-6,7-dimethoxyquinazoline,
4-(3,5-dimethoxybenzylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methylanilino)quinazolin-4-yl) hydrochloride,
4-(4-morpholin-4-ylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(3-methoxythiophenoxy)-6,7-dimethoxyquinazoline,
4-[N-(5-indanyl)amino]-6,7-dimethoxyquinazoline hydrochloride,
4-(3-chlorothiophenoxy)-6,7-dimethoxyquinazoline,
4-(3-aminopyrazolyl)-6,7-dimethoxyquinazoline hydrochloride,
4-(3,6-dioxananilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(α-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(β-naphthylamino)-6,7-dimethoxyquinazoline hydrochloride,
4-(cyclohexylanilino)-6,7-dimethoxyquinazoline,
4-(N-methylanilino)-6,7-dimethoxyquinazoline hydrochloride, and
4-(3-chlorophenoxy)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
8. A compound selected from:
4-(naphthalen-2-ylethynyl)-6,7-dimethoxyquinazoline,
4-(4-hydroxyphenyl)-6,7-dimethoxyquinazoline hydrochloride
4-phenylacetylenyl-6,7-dimethoxyquinazoline,
4-(2-phenylphenyl)-6,7-dimethoxyquinazoline,
4-(1-methylindol-3-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(4-phenylpiperidin-1-yl)-6,7-dimethoxyquinazoline,
4-[4-(3-chlorophenyl)piperazin-1-yl]-6,7-dimethoxyquinazoline,
(±)-4-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(1,2,3,4-tetrahydroquinolin-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-methoxyanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-4-chloro-anilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(2,3-dihydroindol-1-yl)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-trifluoromethylanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)-6,7-dimethoxyquinazoline hydrochloride,
4-(N-methyl-3-chloroanilino)quinazoline hydrochloride and
4-(naphthalen-1-ylethynyl)-6,7-dimethoxyquinazoline; or
a pharmaceutically acceptable salt thereof.
US10/617,342 1991-05-10 2003-07-10 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase Abandoned US20040014774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/617,342 US20040014774A1 (en) 1991-05-10 2003-07-10 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US69842091A 1991-05-10 1991-05-10
PCT/US1992/003736 WO1992020642A1 (en) 1991-05-10 1992-05-06 Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
US98851592A 1992-12-10 1992-12-10
US08/166,199 US5480883A (en) 1991-05-10 1993-12-10 Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US29988694A 1994-09-01 1994-09-01
US08/521,852 US6645969B1 (en) 1991-05-10 1995-05-18 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US10/617,342 US20040014774A1 (en) 1991-05-10 2003-07-10 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/521,852 Division US6645969B1 (en) 1991-05-10 1995-05-18 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Publications (1)

Publication Number Publication Date
US20040014774A1 true US20040014774A1 (en) 2004-01-22

Family

ID=30449667

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/521,852 Expired - Fee Related US6645969B1 (en) 1991-05-10 1995-05-18 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US10/617,342 Abandoned US20040014774A1 (en) 1991-05-10 2003-07-10 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/521,852 Expired - Fee Related US6645969B1 (en) 1991-05-10 1995-05-18 Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Country Status (1)

Country Link
US (2) US6645969B1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060160880A1 (en) * 2003-12-23 2006-07-20 Jan Kehler 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRI
US20060287382A1 (en) * 2005-06-17 2006-12-21 Jan Kehler 2-(1H-indolylsulfanyl)-aryl amine derivatives
US20060287386A1 (en) * 2005-06-17 2006-12-21 Jan Kehler Benzo[b]furane and benzo[b]thiophene derivatives
US20070032512A1 (en) * 2005-08-08 2007-02-08 Qun-Sheng Ji 6,6-Bicyclic ring substituted sulfur containing heterobicyclic protein kinase inhibitors
US20070060600A1 (en) * 2004-02-03 2007-03-15 Universidade Estadual De Campinas-Unicamp 4-Anilinequinazolines with adenosine-kiase inhibitor properties
US20070149521A1 (en) * 2005-12-02 2007-06-28 Crew Andrew P Bicyclic protein kinase inhibitors
US20070208044A1 (en) * 2003-07-03 2007-09-06 Myriad Genetics, Incorporated Compounds and therapeutical use thereof
US20070287707A1 (en) * 2006-02-28 2007-12-13 Arrington Mark P Phosphodiesterase 10 inhibitors
WO2008012326A1 (en) * 2006-07-28 2008-01-31 Novartis Ag 2,4-substituted quinazolines as lipid kinase inhibitors
US20080027074A1 (en) * 2004-07-16 2008-01-31 Jan Kehler 2-(1H-Indolysulfanyl)-Aryl Amine Derivatives for Use in the Treatment of Affective Disorders, Pain, Adhd and Stress Urinary Incontinence
US20080267957A1 (en) * 2005-12-19 2008-10-30 Arnold Lee D Combination cancer therapy
US7459554B2 (en) 2003-10-15 2008-12-02 Osi Pharmaceuticals, Inc. Imidazopyrazine tyrosine kinase inhibitors
US20090118499A1 (en) * 2004-04-02 2009-05-07 Osi Pharmaceuticals, Inc. 6,6-Bicyclic Ring Substituted Heterobicyclic Protein Kinase Inhibitors
US20090209607A1 (en) * 2007-02-07 2009-08-20 Seefeld Mark A Inhibitors of akt activity
US20090286768A1 (en) * 2008-05-19 2009-11-19 Osi Pharmaceuticals, Inc. Substituted imidazopyr- and imidazotri-azines
US7741324B2 (en) 2004-07-20 2010-06-22 Osi Pharmaceuticals, Inc. Imidazotriazines as protein kinase inhibitors
US20100197754A1 (en) * 2009-01-30 2010-08-05 Chen Pingyun Y CRYSTALLINE N--5-chloro-4-(4-chloro-1-methyl-1H-pyrazol-5-yl)-2-thiophenecarboxamide hydrochloride
US20100286155A1 (en) * 2009-05-07 2010-11-11 Osi Pharmaceuticals, Inc. Adrenocortical carcinoma treatment
US20110046144A1 (en) * 2008-01-18 2011-02-24 Mulvihill Mark J Imidazopyrazinol derivatives for the treatment of cancers
US7989462B2 (en) 2003-07-03 2011-08-02 Myrexis, Inc. 4-arylamin-or-4-heteroarylamino-quinazolines and analogs as activators of caspases and inducers of apoptosis and the use thereof
US8258145B2 (en) 2005-01-03 2012-09-04 Myrexis, Inc. Method of treating brain cancer
US8309562B2 (en) 2003-07-03 2012-11-13 Myrexis, Inc. Compounds and therapeutical use thereof
US8513415B2 (en) 2009-04-20 2013-08-20 OSI Pharmaceuticals, LLC Preparation of C-pyrazine-methylamines
US8575184B2 (en) 2009-09-03 2013-11-05 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US8697875B2 (en) 2008-12-23 2014-04-15 The Trustees Of Columbia University In The City Of New York Phosphodiesterase inhibitors and uses thereof
WO2016182988A1 (en) 2015-05-08 2016-11-17 Memorial Sloan Kettering Cancer Center Compositions and methods for treatment of glioma
WO2018081276A1 (en) * 2016-10-25 2018-05-03 Tesaro, Inc. Compounds
US11613548B2 (en) 2021-02-19 2023-03-28 Sudo Biosciences Limited Substituted pyridines, pyridazines, pyrimidines, and 1,2,4-triazines as TYK2 inhibitors

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645969B1 (en) * 1991-05-10 2003-11-11 Aventis Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
IL142359A0 (en) * 1998-10-08 2002-03-10 Astrazeneca Ab Quinazoline derivatives
NZ530832A (en) 1999-02-10 2005-05-27 Astrazeneca Ab Quinazoline derivatives as angiogenesis inhibitors
SK287401B6 (en) 1999-11-05 2010-09-07 Astrazeneca Ab Quinazoline derivatives, process for preparing the same and pharmaceutical composition containing the same and the use of them
DE60211317T2 (en) * 2001-03-23 2007-04-12 Bayer Corp. RHO-KINASE INHIBITORS
ATE353889T1 (en) * 2001-03-23 2007-03-15 Bayer Pharmaceuticals Corp RHO KINASE INHIBITORS
EP2292615A1 (en) * 2002-02-01 2011-03-09 AstraZeneca AB Quinazoline compounds
US7456189B2 (en) * 2003-09-30 2008-11-25 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
US7767670B2 (en) * 2003-11-13 2010-08-03 Ambit Biosciences Corporation Substituted 3-carboxamido isoxazoles as kinase modulators
GB0330002D0 (en) 2003-12-24 2004-01-28 Astrazeneca Ab Quinazoline derivatives
WO2005080352A2 (en) * 2004-02-19 2005-09-01 Rexahn Corporation Quinazoline derivatives and therapeutic use thereof
AU2005282721A1 (en) * 2004-09-03 2006-03-16 Memory Pharmaceuticals Corporation 4-substituted 4, 6-dialkoxy-cinnoline derivatives as phospodiesterase 10 inhibitors for the treatment of psychiatric or neurological syndroms
EP1921070A1 (en) * 2006-11-10 2008-05-14 Boehringer Ingelheim Pharma GmbH & Co. KG Bicyclic heterocycles, medicaments comprising them, their use and process for their preparation
AU2008212999A1 (en) * 2007-02-06 2008-08-14 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof
US20080190689A1 (en) * 2007-02-12 2008-08-14 Ballard Ebbin C Inserts for engine exhaust systems
KR101660050B1 (en) 2008-01-04 2016-09-26 인텔리카인, 엘엘씨 Certain chemical entities, compositions and methods
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
RS52573B (en) * 2008-02-07 2013-04-30 Boehringer Ingelheim International Gmbh Spirocyclic heterocycles, medicaments containing said compounds, use thereof and method for their production
US8648191B2 (en) * 2008-08-08 2014-02-11 Boehringer Ingelheim International Gmbh Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them
MX347708B (en) 2011-01-10 2017-05-09 Infinity Pharmaceuticals Inc Processes for preparing isoquinolinones and solid forms of isoquinolinones.
US8828998B2 (en) 2012-06-25 2014-09-09 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
CN109045032A (en) 2014-01-01 2018-12-21 麦迪威森技术有限责任公司 Aminopyridines and application method
WO2015160975A2 (en) 2014-04-16 2015-10-22 Infinity Pharmaceuticals, Inc. Combination therapies
US11147818B2 (en) 2016-06-24 2021-10-19 Infinity Pharmaceuticals, Inc. Combination therapies

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715358A (en) * 1967-12-01 1973-02-06 Merck & Co Inc Method of treating inflammation
US3718743A (en) * 1970-11-19 1973-02-27 Merck & Co Inc 5-phenyl-2-piperidones and 5-phenyl-2-thiopiperidones in compositions and methods for treating pain, fever and inflammation
US3800039A (en) * 1970-10-21 1974-03-26 Mead Johnson & Co Antithrombogenic process employing substituted 6,7-dialkoxyquinazolines
US3971783A (en) * 1973-03-07 1976-07-27 Pfizer Inc. 4-Aminoquinazoline derivatives as cardiac stimulants
US3985749A (en) * 1975-12-22 1976-10-12 Eastman Kodak Company Process for preparation of 4-aminoquinazoline
US4001422A (en) * 1974-07-25 1977-01-04 Pfizer Inc. 4-aminoquinazoline cardiac stimulants
US4322420A (en) * 1978-09-11 1982-03-30 Sankyo Company Limited Method of using 4-anilinoquinazoline derivatives as analgesic and anti-inflammatory agents
US4343940A (en) * 1979-02-13 1982-08-10 Mead Johnson & Company Anti-tumor quinazoline compounds
US4465686A (en) * 1981-09-08 1984-08-14 Sterling Drug Inc. 5-(Hydroxy- and/or amino-phenyl)-6-(lower-alkyl)-2-(1H)-pyridinones, their cardiotonic use and preparation
US4599423A (en) * 1982-04-26 1986-07-08 Sterling Drug Inc. Preparation of 5-(hydroxy- and/or aminophenyl-6-lower-alkyl)-2(1H)-pyridinones
US4661499A (en) * 1985-06-18 1987-04-28 Merck Frosst Canada, Inc. 2-[(substituted)-phenoxymethyl]quinolines
US5134148A (en) * 1989-02-28 1992-07-28 Imperial Chemical Industries Plc Heterocycles for use as inhibitors of leukotrienes
US5457105A (en) * 1992-01-20 1995-10-10 Zeneca Limited Quinazoline derivatives useful for treatment of neoplastic disease
US5569658A (en) * 1993-07-19 1996-10-29 Zeneca Limited Tricyclic derivatives
US5580870A (en) * 1992-12-10 1996-12-03 Zeneca Limited Quinazoline derivatives
US5710158A (en) * 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5714493A (en) * 1991-05-10 1998-02-03 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US6057320A (en) * 1991-05-10 2000-05-02 Aventis Pharmaceuticals Products Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6645969B1 (en) * 1991-05-10 2003-11-11 Aventis Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199768A (en) 1966-10-31 1970-07-22 Pfizer & Co C Nitrogen Heterocycles and process for their preparation
CS163564B1 (en) * 1973-02-27 1975-09-15
GB1543560A (en) 1976-04-27 1979-04-04 Shell Int Research Herbicidal compositions containing phenylquinoxaline compounds
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
NZ243082A (en) 1991-06-28 1995-02-24 Ici Plc 4-anilino-quinazoline derivatives; pharmaceutical compositions, preparatory processes, and use thereof
TW213903B (en) 1991-08-16 1993-10-01 Boehringer Ingelheim Kg
US6177401B1 (en) 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
GB9314893D0 (en) 1993-07-19 1993-09-01 Zeneca Ltd Quinazoline derivatives
US5700823A (en) 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
RU2137762C1 (en) 1994-02-23 1999-09-20 Пфайзер Инк. 4-heterocyclyl-substituted derivative of quinazoline, pharmaceutical composition
WO1995024190A2 (en) 1994-03-07 1995-09-14 Sugen, Inc. Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof
GB9510757D0 (en) 1994-09-19 1995-07-19 Wellcome Found Therapeuticaly active compounds
TW321649B (en) 1994-11-12 1997-12-01 Zeneca Ltd
CA2222545A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Quinazolines and pharmaceutical compositions
EP0860433B1 (en) 1995-11-07 2002-07-03 Kirin Beer Kabushiki Kaisha Quinoline derivatives and quinazoline derivatives inhibiting autophosphorylation of growth factor receptor originating in platelet and pharmaceutical compositions containing the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715358A (en) * 1967-12-01 1973-02-06 Merck & Co Inc Method of treating inflammation
US3800039A (en) * 1970-10-21 1974-03-26 Mead Johnson & Co Antithrombogenic process employing substituted 6,7-dialkoxyquinazolines
US3718743A (en) * 1970-11-19 1973-02-27 Merck & Co Inc 5-phenyl-2-piperidones and 5-phenyl-2-thiopiperidones in compositions and methods for treating pain, fever and inflammation
US3971783A (en) * 1973-03-07 1976-07-27 Pfizer Inc. 4-Aminoquinazoline derivatives as cardiac stimulants
US4001422A (en) * 1974-07-25 1977-01-04 Pfizer Inc. 4-aminoquinazoline cardiac stimulants
US3985749A (en) * 1975-12-22 1976-10-12 Eastman Kodak Company Process for preparation of 4-aminoquinazoline
US4322420A (en) * 1978-09-11 1982-03-30 Sankyo Company Limited Method of using 4-anilinoquinazoline derivatives as analgesic and anti-inflammatory agents
US4464375A (en) * 1978-09-11 1984-08-07 Sankyo Co., Ltd. 4-Anilinoquinazoline compounds and pharmaceutical compositions thereof
US4343940A (en) * 1979-02-13 1982-08-10 Mead Johnson & Company Anti-tumor quinazoline compounds
US4465686A (en) * 1981-09-08 1984-08-14 Sterling Drug Inc. 5-(Hydroxy- and/or amino-phenyl)-6-(lower-alkyl)-2-(1H)-pyridinones, their cardiotonic use and preparation
US4599423A (en) * 1982-04-26 1986-07-08 Sterling Drug Inc. Preparation of 5-(hydroxy- and/or aminophenyl-6-lower-alkyl)-2(1H)-pyridinones
US4661499A (en) * 1985-06-18 1987-04-28 Merck Frosst Canada, Inc. 2-[(substituted)-phenoxymethyl]quinolines
US5134148A (en) * 1989-02-28 1992-07-28 Imperial Chemical Industries Plc Heterocycles for use as inhibitors of leukotrienes
US5710158A (en) * 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5714493A (en) * 1991-05-10 1998-02-03 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US6057320A (en) * 1991-05-10 2000-05-02 Aventis Pharmaceuticals Products Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6645969B1 (en) * 1991-05-10 2003-11-11 Aventis Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US5457105A (en) * 1992-01-20 1995-10-10 Zeneca Limited Quinazoline derivatives useful for treatment of neoplastic disease
US5580870A (en) * 1992-12-10 1996-12-03 Zeneca Limited Quinazoline derivatives
US5569658A (en) * 1993-07-19 1996-10-29 Zeneca Limited Tricyclic derivatives

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039479A1 (en) * 2003-07-03 2008-02-14 Myriad Genetics, Incorporated Compounds and therapeutical use thereof
US20070249601A1 (en) * 2003-07-03 2007-10-25 Myriad Genetics, Incorporated Compounds and therapeutical use thereof
US7989462B2 (en) 2003-07-03 2011-08-02 Myrexis, Inc. 4-arylamin-or-4-heteroarylamino-quinazolines and analogs as activators of caspases and inducers of apoptosis and the use thereof
US8309562B2 (en) 2003-07-03 2012-11-13 Myrexis, Inc. Compounds and therapeutical use thereof
US20070208044A1 (en) * 2003-07-03 2007-09-06 Myriad Genetics, Incorporated Compounds and therapeutical use thereof
US20070244113A1 (en) * 2003-07-03 2007-10-18 Myriad Genetics, Incorporated Compounds and therapeutical use thereof
US7459554B2 (en) 2003-10-15 2008-12-02 Osi Pharmaceuticals, Inc. Imidazopyrazine tyrosine kinase inhibitors
US20090181940A1 (en) * 2003-10-15 2009-07-16 Osi Pharmaceuticals, Inc. Imidazopyrazine Tyrosine Kinase Inhibitors
US7737170B2 (en) 2003-12-23 2010-06-15 H. Lundbeck A/S Uses of 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRIS
US7563908B2 (en) 2003-12-23 2009-07-21 Jan Kehler 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRI
US20060160880A1 (en) * 2003-12-23 2006-07-20 Jan Kehler 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRI
US20080176922A1 (en) * 2003-12-23 2008-07-24 H. Lundbeck A/S Uses of 2-(1h-indolylsulfanyl)-benzyl amine derivatives as ssris
US20080214645A1 (en) * 2003-12-23 2008-09-04 H. Lundbeck A/S Uses of 2-(1h-indolylsulfanyl)-benzyl amine derivatives as ssris
US20080214644A1 (en) * 2003-12-23 2008-09-04 H. Lundbeck A/S 2-(1h-indolylsulfanyl)-benzyl amine derivatives as ssri
US7652150B2 (en) 2003-12-23 2010-01-26 H. Lundbeck A/S 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRIs
US7737171B2 (en) 2003-12-23 2010-06-15 H. Lundbeck A/S Uses of 2-(1H-indolylsulfanyl)-benzyl amine derivatives as SSRIS
US8513267B2 (en) 2004-02-03 2013-08-20 Universidade Estadual De Campinas-Unicamp 4-anilinoquinazoline derivatives with adenosine-kinase inhibitor properties
US20070060600A1 (en) * 2004-02-03 2007-03-15 Universidade Estadual De Campinas-Unicamp 4-Anilinequinazolines with adenosine-kiase inhibitor properties
US20090118499A1 (en) * 2004-04-02 2009-05-07 Osi Pharmaceuticals, Inc. 6,6-Bicyclic Ring Substituted Heterobicyclic Protein Kinase Inhibitors
US7534797B2 (en) 2004-04-02 2009-05-19 Osi Pharmaceuticals, Inc. 6,6-Bicyclic ring substituted heterobicyclic protein kinase inhibitors
US8101613B2 (en) 2004-04-02 2012-01-24 OSI Pharmaceuticals, LLC 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors
US7820662B2 (en) 2004-04-02 2010-10-26 Osi Pharmaceuticals, Inc. 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors
US8735405B2 (en) 2004-04-02 2014-05-27 OSI Pharmaceuticals, LLC 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors
US8653268B2 (en) 2004-04-02 2014-02-18 OSI Pharmaceuticals, LLC 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors
US8367826B2 (en) 2004-04-02 2013-02-05 OSI Pharmaceuticals, LLC 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors
US20090325928A1 (en) * 2004-04-02 2009-12-31 Osi Pharmaceuticals, Inc. 6,6-Bicyclic Ring Substituted Heterobicyclic Protein Kinase Inhibitors
US7678800B2 (en) 2004-07-16 2010-03-16 H. Lundbeck A/S 2-(1H-indolylsulfanyl)-aryl amine derivatives for use in the treatment of affective disorders, pain, ADHD and stress urinary incontinence
US20080027074A1 (en) * 2004-07-16 2008-01-31 Jan Kehler 2-(1H-Indolysulfanyl)-Aryl Amine Derivatives for Use in the Treatment of Affective Disorders, Pain, Adhd and Stress Urinary Incontinence
US7741324B2 (en) 2004-07-20 2010-06-22 Osi Pharmaceuticals, Inc. Imidazotriazines as protein kinase inhibitors
US8258145B2 (en) 2005-01-03 2012-09-04 Myrexis, Inc. Method of treating brain cancer
US20090192213A1 (en) * 2005-06-17 2009-07-30 H. Lundbeck A/S Benzo[b]furane And Benzo[b]thiophene Derivatives
US7534791B2 (en) 2005-06-17 2009-05-19 H. Lundbeck A/S Benzo[b]furane and benzo[b]thiophene derivatives
US20060287382A1 (en) * 2005-06-17 2006-12-21 Jan Kehler 2-(1H-indolylsulfanyl)-aryl amine derivatives
US7629473B2 (en) 2005-06-17 2009-12-08 H. Lundbeck A/S 2-(1H-indolylsulfanyl)-aryl amine derivatives
US20060287386A1 (en) * 2005-06-17 2006-12-21 Jan Kehler Benzo[b]furane and benzo[b]thiophene derivatives
US20070032512A1 (en) * 2005-08-08 2007-02-08 Qun-Sheng Ji 6,6-Bicyclic ring substituted sulfur containing heterobicyclic protein kinase inhibitors
US7566721B2 (en) 2005-08-08 2009-07-28 Osi Pharmaceuticals, Inc. Substituted thienol[2,3-d]pyrimidines as kinase inhibitors
US7648987B2 (en) 2005-12-02 2010-01-19 Osi Pharmaceuticals, Inc. Bicyclic protein kinase inhibitors
US20070149521A1 (en) * 2005-12-02 2007-06-28 Crew Andrew P Bicyclic protein kinase inhibitors
US8575164B2 (en) 2005-12-19 2013-11-05 OSI Pharmaceuticals, LLC Combination cancer therapy
US20080267957A1 (en) * 2005-12-19 2008-10-30 Arnold Lee D Combination cancer therapy
US20070287707A1 (en) * 2006-02-28 2007-12-13 Arrington Mark P Phosphodiesterase 10 inhibitors
WO2008012326A1 (en) * 2006-07-28 2008-01-31 Novartis Ag 2,4-substituted quinazolines as lipid kinase inhibitors
JP2009544664A (en) * 2006-07-28 2009-12-17 ノバルティス アクチエンゲゼルシャフト 2,4-Substituted quinazolines as lipid kinase inhibitors
US20100041726A1 (en) * 2007-02-07 2010-02-18 Smithkline Beecham Corporation INHIBITORS OF Akt ACTIVITY
US8273782B2 (en) 2007-02-07 2012-09-25 Glaxosmithkline Llc Inhibitors of Akt activity
US8946278B2 (en) 2007-02-07 2015-02-03 Glaxosmithkline Llc Inhibitors of AkT activity
US20090209607A1 (en) * 2007-02-07 2009-08-20 Seefeld Mark A Inhibitors of akt activity
US8410158B2 (en) 2007-02-07 2013-04-02 Glaxosmithkline Llc Inhibitors of Akt activity
US20110071182A1 (en) * 2007-02-07 2011-03-24 Smithkline Beecham Corporation Inhibitors of AKT Activity
US20110046144A1 (en) * 2008-01-18 2011-02-24 Mulvihill Mark J Imidazopyrazinol derivatives for the treatment of cancers
US20090286768A1 (en) * 2008-05-19 2009-11-19 Osi Pharmaceuticals, Inc. Substituted imidazopyr- and imidazotri-azines
US8481733B2 (en) 2008-05-19 2013-07-09 OSI Pharmaceuticals, LLC Substituted imidazopyr- and imidazotri-azines
US9974782B2 (en) 2008-12-23 2018-05-22 The Trustees Of Columbia University In The City Of New York Phosphodiesterase inhibitors and uses thereof
US8697875B2 (en) 2008-12-23 2014-04-15 The Trustees Of Columbia University In The City Of New York Phosphodiesterase inhibitors and uses thereof
US9422242B2 (en) 2008-12-23 2016-08-23 The Trustees Of Columbia University In The City Of New York Phosphodiesterase inhibitors and uses thereof
US8609711B2 (en) 2009-01-30 2013-12-17 Glaxosmithkline Llc Crystalline N-{(1S)-2-amino-1-[(3-fluorophenyl)methyl]ethyl}-5-chloro-4-(4-chloro-1-methyl-1H-pyrazol-5-yl)-2-thiophenecarboxamic hydrochloride
US20100197754A1 (en) * 2009-01-30 2010-08-05 Chen Pingyun Y CRYSTALLINE N--5-chloro-4-(4-chloro-1-methyl-1H-pyrazol-5-yl)-2-thiophenecarboxamide hydrochloride
US8513415B2 (en) 2009-04-20 2013-08-20 OSI Pharmaceuticals, LLC Preparation of C-pyrazine-methylamines
US20100286155A1 (en) * 2009-05-07 2010-11-11 Osi Pharmaceuticals, Inc. Adrenocortical carcinoma treatment
US10676460B2 (en) 2009-09-03 2020-06-09 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US9458114B2 (en) 2009-09-03 2016-10-04 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US9822096B2 (en) 2009-09-03 2017-11-21 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US11008306B2 (en) 2009-09-03 2021-05-18 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US8575184B2 (en) 2009-09-03 2013-11-05 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US10214511B2 (en) 2009-09-03 2019-02-26 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
WO2016182988A1 (en) 2015-05-08 2016-11-17 Memorial Sloan Kettering Cancer Center Compositions and methods for treatment of glioma
WO2018081276A1 (en) * 2016-10-25 2018-05-03 Tesaro, Inc. Compounds
US11613548B2 (en) 2021-02-19 2023-03-28 Sudo Biosciences Limited Substituted pyridines, pyridazines, pyrimidines, and 1,2,4-triazines as TYK2 inhibitors

Also Published As

Publication number Publication date
US6645969B1 (en) 2003-11-11

Similar Documents

Publication Publication Date Title
US6645969B1 (en) Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
EP0871448B1 (en) Aryl and heteroaryl quinazoline compounds which inhibit csf-1r receptor tyrosine kinase
US5714493A (en) Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
USRE37650E1 (en) Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
US5795889A (en) Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
EP1107959B1 (en) Quinazoline derivatives as medicaments
AU696456B2 (en) Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
US20070293500A1 (en) Quinazoline derivatives as medicaments
CZ304061B6 (en) Quinazoline derivative, pharmaceutical composition and medicament containing thereof
JP2008519762A (en) Compounds and compositions as protein kinase inhibitors
TW200301123A (en) New use
JP2003502280A (en) Substituted aza-oxindole derivatives
US20040259881A1 (en) Nitrogenous heterocyclic compounds
AU739382B2 (en) Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase

Legal Events

Date Code Title Description
AS Assignment

Owner name: RHONE-POULENC RORER PHARMACEUTICALS INC., PENNSYLV

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYERS, MICHAEL R.;SPADA, ALFRED P.;MAGUIRE, MARTIN P.;AND OTHERS;REEL/FRAME:017229/0484;SIGNING DATES FROM 19950516 TO 19950617

AS Assignment

Owner name: AVENTIS PHARMACEUTICALS PRODUCTS INC., PENNSYLVANI

Free format text: CHANGE OF NAME;ASSIGNOR:RHONE-POULENC RORER PHARMACEUTICALS INC.;REEL/FRAME:017251/0125

Effective date: 19991215

AS Assignment

Owner name: AVENTIS PHARMACEUTICALS INC., NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:AVENTIS PHARMACEUTICALS PRODUCTS INC.;REEL/FRAME:017820/0699

Effective date: 20011231

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION