US20020019644A1 - Magnetically guided atherectomy - Google Patents

Magnetically guided atherectomy Download PDF

Info

Publication number
US20020019644A1
US20020019644A1 US09/777,018 US77701801A US2002019644A1 US 20020019644 A1 US20020019644 A1 US 20020019644A1 US 77701801 A US77701801 A US 77701801A US 2002019644 A1 US2002019644 A1 US 2002019644A1
Authority
US
United States
Prior art keywords
catheter
distal tip
distal
tip
located proximate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/777,018
Inventor
Roger Hastings
Andrew Hall
Jonathan Sell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stereotaxis Inc
Original Assignee
Stereotaxis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stereotaxis Inc filed Critical Stereotaxis Inc
Priority to US09/777,018 priority Critical patent/US20020019644A1/en
Assigned to STEREOTAXIS, INC. reassignment STEREOTAXIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALL, ANDREW F., HASTINGS, ROGER N., SELL, JONATHAN C.
Publication of US20020019644A1 publication Critical patent/US20020019644A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/28Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for heating a thermal probe or absorber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00061Light spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • A61B2017/22042Details of the tip of the guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320004Surgical cutting instruments abrasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M2025/0166Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0127Magnetic means; Magnetic markers

Definitions

  • the present invention relates generally to the removal of occlusive material from body lumens, and more particularly both methods and devices for magnetically guided atherectomy of totally occluded arterial vasculature. Catheters which employ thermal as well as other energy sources are disclosed along with complementary equipment for carrying out the procedures.
  • Arteriolosclerosis is a progressive disease marked by deposits within the lumen of arterial vessels. Removal of these deposits restores blood flow and is a preferred treatment for this disease. In instances where the vessel cannot be salvaged, bypass grafts may be used to treat the disorder.
  • the atherectomy devices according to the invention include a magnetic element that allows for the remote manipulation of the distal end of working tip of the device by a magnetic surgery system (MSS) or other magnetic field generator operated outside of the patient.
  • MSS magnetic surgery system
  • the application of external fields and gradients allows the physician to control the orientation and location of the distal tip of the catheter in the vessel at the treatment site. This permits the use of small and potentially single size catheters to treat either partial or total occlusions in the vasculature.
  • the device In operation the device is moved to various treatment sites or locations in a vessel under the guidance of the MSS.
  • the methods of the invention may be partially automated in the sense that the physician can image the current location of the device and program a desired location with the MSS and designate a location or orientation of the device in a vessel.
  • the MSS system can provide feedback to the physician to help the physician direct the device as “planned” with the MSS workstation.
  • Robotic control of the device is also contemplated wherein the motion of the device in the vessel is entirely under software control. In this instance physician observation and transducer feedback manages the procedure.
  • any of a variety of energy sources can be used to carry out the recannalization process of the invention, although thermal energy is preferred and is used as an illustrative energy source.
  • the source of heat may include optical or radio frequency energy sources.
  • the device is also useful with hydraulic energy, direct laser sources, ultrasonic energy sources, or mechanical energy sources. Physician supplied energy is contemplated as well in the sense that a doddering wire may be manipulated by the physician and guided magnetically to treat the occlusion.
  • Devices which rely on heat or which generate heat in the body may include fluid cooling to manage the distribution of heat, several device with adjunctive fluid delivery are shown as illustrative of the invention.
  • Additional “delivery” structures are present in some embodiments of the device and may be used to accommodate various medical techniques and methods. For example lumens for “over the wire” and “rapid exchange” delivery of the catheters are shown. Also these lumens may be used with imaging and localization devices to carry out the methods of the invention. These lumens may also be used to introduce contrast agent into the treatment site.
  • MRI Magnetic Resonance Imaging
  • CT Computed Tomography
  • Ultrasound scans provide a “roadmap” for the procedure while X-ray, Doppler ultrasound, or other localization techniques are used to display the current real time position of the device in the lumen.
  • the “open” lumens of the device can be used with ultrasonic, optical coherence tomographic, or laser based imaging systems to characterize the nature of the occlusion.
  • FIG. 1 is schematic diagram of a thermal catheter in a vessel
  • FIG. 2 is a schematic diagram of a bipolar thermal catheter
  • FIG. 3 is a schematic diagram of a resistance heated thermal catheter
  • FIG. 4 is a schematic of a laser-heated catheter
  • FIG. 5 is a schematic of a thermal catheter having an additional lumen
  • FIG. 6 is a RF heated catheter with a rapid exchange lumen
  • FIG. 7 is an ultrasound atherectomy device driven by an external horn
  • FIG. 8 is a hydraulic catheter
  • FIG. 9 is an optically heated catheter in a sheath
  • FIG. 10 is an optically heated device with an auxiliary lumen
  • FIG. 11 is an optically heated device with multiple lumens
  • FIG. 12 is an optically heated device with a distal port
  • FIG. 13 is a schematic overview of the automated workstation.
  • FIG. 14 is an exploded perspective view of a second embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 15 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the second embodiment
  • FIG. 16 is a perspective view of the distal end portion of the magnetically guided atherectomy device of the second embodiment
  • FIG. 17 is an exploded perspective view of a third embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 18 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the third embodiment
  • FIG. 19 is a perspective view of the distal end portion of the magnetically guided atherectomy device of the third embodiment.
  • FIG. 20 is an exploded perspective view of a fourth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 21 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the fourth embodiment
  • FIG. 22 is a longitudinal cross-sectional view of a first alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 23 is a longitudinal cross-sectional view of a second alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 24 is a longitudinal cross-sectional view of a third alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 25 is a longitudinal cross-sectional view of a first alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 26 is a longitudinal cross-sectional view of a second alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 27 is a longitudinal cross-sectional view of a third alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.
  • FIG. 1 shows a thermal catheter 10 in a vessel 12 .
  • the distal tip section 14 of the device is shown in a vessel while the proximal section 15 is illustrated as a fragment located outside of the vessel 12 .
  • the construction of the proximal end of the device and configuration and power couplings are within the ordinary skill of this art and are illustrated schematically in FIG. 1.
  • the detailed disclosure is directed to the distal tip structures.
  • the devices are intended for use in coronary vessels, the overall length of devices in accordance with this invention are 30 or more inches long and typical are between 2 and 12 French in diameter. It should be understood that coronary use is merely illustrative and other vessels and body lumens may be addressed therapeutically using the invention.
  • the proximal end will carry suitable hubs and connections for the wires and lumens discussed in connection with the distal tip.
  • FIG. 1 the distal tip 14 of the catheter 10 abuts a total occlusion 16 .
  • a guide wire 18 shown in phantom, and sheath 20 may be used together to deliver the catheter 10 to the treatment site near the occlusion 16 .
  • Either or both of the guide wire or sheath may have a magnetic element 22 included in its design to assist in access to the treatment site.
  • the guide wire 18 may have a magnet 22 located at its distal tip.
  • the sheath may have a magnetic tube 24 located at its distal tip.
  • the magnetic elements on the guide wire or sheath permit the applied field or gradient to orient the distal tip.
  • the forces generated on the tip by an external magnet are shown by vectors indicated by reference numeral 9 .
  • the physician can advance the guide wire or sheath by pushing on the proximal end of end of the device with the distal tip direction determined in part by the magnetic forces represented at 9 .
  • the magnetic orientation of the tip coupled with physical motion applied to the proximal end of the device positions the device.
  • the physical motion can be supplied by either the physician or a robotic element.
  • the thermal catheter embodiment of FIG. 1 has a heated tip 26 .
  • this tip is formed from Hiperco or other magnetically active metallic material.
  • iron-containing alloys of steel which are attracted to magnets are suitable choices for the tip material.
  • the distal tips are shown in hemispheric in shape for consistency of explanation it should be understood that other forms and shapes are operable so the shape should be understood as illustrative and not limiting.
  • heat is delivered by the tip 26 . More specifically the tip generates heat in the tissue distal to the tip.
  • the lines located by reference numeral 38 represent heat transfer to the occlusion 16 , which allows the tip 26 to move through the occlusion 16 .
  • the tip 26 is heated with RF energy from an RF source 28 .
  • the RF source is coupled to the tip by a wire 32 .
  • a patch electrode 34 having a large area may be placed on the patient to complete the circuit to the RF source 28 through wire 36 .
  • This configuration may be called “monopolar” in contrast to the “bipolar configuration shown in FIG. 2.
  • a coating 27 may be applied to the surface of the distal tip to prevent sticking or adhesions.
  • the coating 27 may also increase biocompatibility or improve heat transfer through the device. Both polymeric materials such as Teflon and metallic materials such as titanium nickel alloy are suitable for this application. Therefore the illustrative embodiments of the invention should be considered to be “composite” constructions where individual elements may be made of more than one material as indicated by coating 29 .
  • FIG. 2 shows a distal tip embodiment for a thermal catheter 10 , which includes two metal structures that are insulated from each other.
  • the first structure is the distal tip 40 which is metal and may be magnetically active.
  • the wire 32 couples this tip to the RF source 28 .
  • the second element is the return electrode 42 .
  • this function is served by metallic ring or bank 42 which is coupled to the RF source 28 through the wire 36 .
  • one or both of the metallic elements may be magnetically active.
  • partial rings which surround only part of the catheter are contemplated within the scope of the invention although they are not preferred. In general the exact shape of the distal rings will not be critical to the operation of the invention.
  • FIG. 3 shows a resistance-heated embodiment of a thermal catheter 10 where the distal tip 44 is magnetically active metal.
  • the tip 44 is electrically isolated from, but in thermal contact with the resistance wire heater 46 located near the tip.
  • Wire 48 and wire 50 couple the heater 46 to the electrical power source 52 which may be an AC or DC source which may be modulated to control the energy delivery to the tip.
  • FIG. 4 shows a laser-heated embodiment of the thermal catheter device 10 .
  • the tip 60 absorbs radiation from the optical wave guide 62 coupled to the laser source 64 .
  • the laser energy source may operate continuously or intermittently to deliver energy to the tip 60 .
  • the laser light impinges on the tip structure and it is absorbed and converted to heat.
  • the distal tip 60 may be magnetic or may be made from a magnetically active material. In general, and depending on detail design issues the surface of the tip may or may not be electrically conductive. In this particular embodiment it should be clear that the thermal requirements of the tip are significant in contrast to other embodiments where electrical conductivity is critical. It is contemplated that the distal tip may be made of ceramic or “glassy” material.
  • FIG. 5 shows an embodiment of the invention wherein thermal catheter 10 has a distal tip 70 which has a tube 71 that has an open lumen 72 which communicates to the proximal end of the device.
  • This lumen 72 can be used for several purposes.
  • the lumen can accommodate either an imaging wire 76 , ultrasonic or laser imaging, or a guide wire 74 .
  • the preferred ultrasonic imaging wire can be used to visualize and locate the occlusion. Once the occlusion has been located and characterized, the correct amount of power can be delivered to the distal tip 70 .
  • the ultrasound imaging wire would be withdrawn and parked in the lumen 72 proximally to prevent heat damage to the transducer of the imaging wire.
  • the lumen can be used with guide wire 74 to access the treatment site.
  • the lumen can also be used with an optical fiber to perform laser induced florescence spectroscopy or optical low coherence reflectometry or optical coherence tomography. These procedures can be used to “look at” and evaluate the obstruction during treatment.
  • FIG. 6 is an example of a “rapid exchange” delivery configuration for the thermal catheter 10 .
  • the distal tip 80 as an open lumen 82 which is relatively short and exits the side of the catheter body 84 at a location distal of the proximal end of the device 10 .
  • This opening can receive a guide wire which can be used to position the device near the occlusion.
  • FIG. 7 represents an ultrasound energy source catheter 92 .
  • the ultrasonic hom 94 is coupled to the waveguide 96 which in turn terminates in a distal tip 90 .
  • the waveguide may extend beyond the tip.
  • the delivery of ultrasound energy to the distal tip results in the formation of very small bubbles which dislodge the nearby plaque or other obstructing material.
  • the distal tip 90 may be formed of Hiperco or other magnetically active material.
  • FIG. 8 represents a hydraulic catheter 91 which uses the force of a jet of fluid emerging from nozzle 93 to disrupt the occlusive material.
  • the distal tip 100 may be made from Hiperco or another magnetically active material.
  • FIG. 9 shows the device 10 of FIG. 5 located in a sheath 120 .
  • the space between the sheath and the catheter body 122 can be flooded with contrast agent to reveal the location of the catheter with respect to the occlusion.
  • the space can be used to conduct cooling fluid to the tip to help regulate the temperature and temperature distribution of the device 124 .
  • Saline injection can also be used to prevent implosion of vapors in the blood at the treatment site.
  • FIG. 10 shows the device 78 of FIG. 5 in a sheath that limits the movement of the distal tip 70 .
  • the sheath 130 positions the distal tip 70 near the guide magnets 134 . This allows the physician to move the tip with the MSS and to control the exit of fluid from the sheath.
  • FIG. 11 represents a multi-lumen construction where a fluid supply lumen 140 is provided to irrigate the tip 144 of the catheter 146 .
  • An offset guide wire lumen 148 is provided for used with imaging and locating devices.
  • FIG. 12 shows an embodiment of the catheter where the fluid exiting the tip through a port 150 serves to cool the catheter body 152 .
  • the exterior wall of the catheter forms a central lumen which may be filled with a cooling solution. In general this volume may be too large to use for contrast injection.
  • the fluid pressure in this sheath could also be reversed to create a vacuum on the occlusive material and remove it from the body during ablation.
  • FIG. 13 is a schematic diagram of a MSS system for using the catheters in a patient.
  • the physician user interacts with the patient 302 and the workstation console 300 .
  • the software used by the workstation coordinates several separate sources of data and control certain hardware as well.
  • information from a preoperative scan 305 is loaded into the workstation 300 to provide a template of the treatment site.
  • This preoperative data may be collected from MRI, CT, ultrasound, or other diagnostic imaging scans.
  • Real time biplane x-ray data is supplied by an x-ray machine 303 and 304 to the workstation as well for display against the template and for interaction with the physician.
  • orthogonal coils 301 and 302 may be used with an RF location system to localize the position of the catheter.
  • a fiducial marker on the catheter allows the preoperative scan and the real time scans to be appropriately merged.
  • the user can define a location on the MSS workstation 300 with a mouse or other pointing device which identifies the desired location of the therapy.
  • the MSS workstation computes the forces and required fields and gradients required to navigate the catheter to the new location. This information controls the magnet system 308 .
  • An appropriate set of catheter actuators 306 may be provided to allow the MSS to move the catheter as well.
  • a second embodiment of a magnetically guided atherectomy device is indicated generally as 400 in FIGS. 14 - 16 .
  • the magnetically guided atherectomy device 400 comprises an elongate catheter 402 , having a proximal end (not shown) and a distal end 406 , with a lumen 408 therebetween.
  • the catheter 402 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax.
  • a support 410 is mounted in the lumen adjacent the distal end 406 .
  • This support 410 can be permanently affixed within the catheter 402 , with only the distal portion of the support projecting beyond the distal end 406 of the catheter.
  • the support 410 is preferably made of a transparent, biocompatible material, such as polyethylene, polycarbonate, Pebax, or other suitable material.
  • the support 410 includes passages for the ablation electrode conductor, and imaging, and preferably also includes compartments for receiving magnet body as described in more detail below.
  • the magnetically guided atherectomy device further includes an ablation electrode 414 , on the distal end of the support 412 .
  • the ablation electrode 414 has a smoothly contoured, rounded shape, with a radius of curvature selected to selectively heat the material in front of, and closely adjacent to, the ablation electrode.
  • An electrode conductor 416 extends from the proximal side of the electrode 414 , through a conductor passage 418 in the support 410 and through the catheter 402 to the proximal end.
  • One or more optical fibers terminate in the body, facing generally radially outwardly for imaging the vessel in which the device 400 is located.
  • there are two optical fibers 420 and 422 having beveled distal ends 424 and 426 , respectively.
  • the optical fibers 420 and 422 extend proximally to the proximal end of the catheter 402 , where the optical fibers are connected an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • Optical coherence tomography provides imaging capability within the blood vessel and has been used in navigable medical devices such as Colston et al., U.S. Pat. No. 6,175,669, Teamey et al., U.S.
  • the catheter 402 can be rotated, or the individual optical fibers 420 and 422 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device 400 .
  • the magnet members 432 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material such as hiperco.
  • the magnet members are sized and shaped so that they tend to align the distal end portion of the device 400 with an externally applied magnetic field.
  • the distal end of the device can be oriented in any selected direction.
  • the magnetically guided atherectomy device 400 is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end.
  • the device 400 encounters plaque or other atheramatous material, heat can be applied to the blockage to destroy it by applying energy to the electrode 414 via conductor 416 .
  • a grounding pad applied to the patient provides a current path. The current density is so great in the material immediately adjacent (within a few millimeters) the electrode 414 that the material heats up and is ablated, while the vessel walls and other tissues are not damaged.
  • an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position.
  • a controller for example a computer or other microprocessor based controller
  • Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to automatically control the device 400 to clear the indicated size and shape.
  • a third embodiment of a magnetically guided atherectomy device is indicated generally as 500 in FIGS. 17 - 19 .
  • the magnetically guided atherectomy device 500 comprises an elongate catheter 502 , having a proximal end (not shown) and a distal end 506 , with a plurality of lumens 508 therebetween.
  • the catheter 502 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax, and is preferably transparent.
  • a conduit 514 can extend through a generally central passageway 516 in the catheter 502 and through the opening 512 in the electrode 510 , to make an electrical connection with the electrode, and provide energy to the electrode 510 for ablating atheramatous material that the electrode contacts.
  • the conduit 514 can be extended relative to the distal end and/or the catheter can be retracted relative to the conduit 514 to leave the conduit 514 as a guide so that the catheter 500 can be quickly and easily navigated to the surgical site.
  • the ablation electrode 510 has a smoothly contoured, rounded shape, with a radius of curvature selected to selectively heat the material in front of, and closely adjacent to, the ablation electrode.
  • the catheter 502 includes passages for the conduit 514 and for optical fibers for imaging, and compartment for receiving magnet bodies as described in more detail below.
  • One or more optical fibers terminate in the catheter 502 , facing generally radially outwardly for imaging the vessel in which the device 500 is located.
  • there are two optical fibers 518 and 520 having beveled distal ends 518 and 520 , respectively.
  • the optical fibers 522 and 524 extend proximally to the proximal end of the catheter 502 , where the optical fibers are connected an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • the catheter 502 can be rotated, or the individual optical fibers 518 and 520 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device 500 .
  • there are two magnet members 526 each having a D-shaped transverse cross-section, and disposed in correspondingly shaped passages 528 in the distal end of the device 506 ; .
  • the magnet members 526 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, such as hiperco.
  • the magnet members 526 are sized and shaped so that they tend to align the distal end portion of the device 500 with an externally applied magnetic field.
  • the distal end of the device can be oriented in any selected direction.
  • the magnetically guided atherectomy device is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end.
  • the device 500 encounters plaque or other atheramatous material, heat can be applied to the blockage to destroy it by applying energy to the electrode 510 via conduit 514 .
  • a grounding pad applied to the patient provides a current path. The current density is so great in the material immediately adjacent (within a few millimeters) the electrode 510 that the material heats up and is ablated, while the vessel walls and other tissues are not damaged.
  • an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position.
  • a controller for example a computer or other microprocessor based controller
  • Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to can automatically adjust the magnetic surgery system to move the device to clear the indicated desired path.
  • a fourth embodiment of a magnetically guided atherectomy device is indicated generally as 600 in FIGS. 20 - 21 .
  • the magnetically guided atherectomy device 600 comprises an elongate catheter 602 , having a proximal end (not shown) and a distal end 606 , with at least one lumen 608 therebetween.
  • the catheter 602 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax, and is preferably transparent.
  • the cutting head 610 has a centrally opening an annular cutting edge 612 aligned with the lumen of the catheter.
  • the smooth, dome shape allows distal end of the device to be manipulated within the blood vessel without damaging the inside structure of the blood vessels.
  • the opening allows material that has been cored from the blood vessel to pass through the cutting head 610 to the lumen of the catheter where it can be accumulated or flushed out of the system.
  • One or more optical fibers terminate in the body, facing generally radially outwardly for imaging the vessel in which the device 600 is located.
  • there is a single optical fiber 614 having a beveled distal end 616 .
  • the optical fiber extends proximally to the proximal end of the catheter 602 , where the optical fiber is connected to an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • the catheter 602 can be rotated, or the individual optical fiber 614 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device 600 .
  • there is a single magnet member 618 having a generally C-shaped transverse crosssection, and disposed in correspondingly shaped passages 620 in the distal end of the device 600 .
  • the magnet member 618 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • the magnet members are sized and shaped so that they tend to align the distal end portion of the device 600 with an externally applied magnetic field.
  • the distal end of the device can be oriented in any selected direction.
  • the magnetically guided atherectomy device is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end.
  • the device 600 encounters plaque or other atheramatous material, the device is advanced against the material so that the head 610 cuts a passage through the atheramatous.
  • an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position.
  • a controller for example a computer or other microprocessor based controller
  • Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to can automatically adjust the magnetic surgery system to move the device to clear the indicated desired path.
  • a fifth embodiment of a magnetically guided atherectomy device is indicated generally as 700 in FIGS. 22 - 25 .
  • a first alternate construction of the device 700 is shown in FIG. 22.
  • the device 700 comprises a catheter 702 having a proximal end 704 and a distal end 706 , and a lumen 708 therebetween.
  • a rotatable cutting member 710 having a proximal end 712 and a distal end 714 , is disposed in the lumen 708 .
  • the rotatable cutting member 710 comprises a flexible drive shaft 716 , which may be for example a flexible coil, with a cutting head 718 thereon.
  • the cutting head 718 has a distal annular cutting edge 720 , and an axial passage 722 for receiving material “cored” by the annular cutting edge.
  • the flexible drive shaft 716 is preferably surrounded by a sheath 724 to protect in the inner wall of the catheter 702 .
  • the sheath 724 includes an optical fiber 726 , having a bevel distal end 728 , facing generally radially outwardly for imaging the vessel in which the device 700 is located.
  • the optical fiber 726 extends proximally to the proximal end of the catheter 702 , where the optical fiber is connected an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • At least one magnet member is disposed in the distal end portion of the device 700 .
  • the magnet member can be disposed in the wall of the catheter 702 , or somehow associated with the rotatable cutting member 718 , such as by making the cutting member 718 out of a magnetic or a magnetically permeable material.
  • the magnet member may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • FIG. 23 A second alternate construction of the device 700 ′ is shown in FIG. 23.
  • the device 700 ′ is similar in construction to device 700 , and corresponding parts are identified with corresponding reference numerals.
  • the device 700 ′ comprises a catheter 702 ′ having a proximal end 704 and a distal end 706 , and a lumen 708 therebetween.
  • a rotatable cutting member 710 ′ having a proximal end 712 and a distal end 714 , is disposed in the lumen 708 .
  • the rotatable cutting member 710 ′ comprises a flexible drive shaft 716 , which may be for example a flexible coil, with a cutting head 718 ′ thereon.
  • the cutting head 718 ′ unlike cutting head 718 of device 700 , has an oblate spheroidal shape, i.e., it is generally football shaped, having a roughed distal surface for cutting atheramatous material.
  • the catheter 702 ′ includes an optical fiber 726 , having a bevel distal end 728 , facing generally radially outwardly for imaging the vessel in which the device 700 ′ is located.
  • the optical fiber 726 extends proximally to the proximal end of the catheter 702 ′, where the optical fiber is connected an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • the catheter 702 ′ can be rotated so that the imaging system acquires an image of substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device 700 ′.
  • the magnet member can be disposed in the wall of the catheter 702 ′, or somehow associated with the rotatable cutting member 718 ′, such as by making the cutting member 718 ′ out of a magnetic or a magnetically permeable material.
  • the magnet members may be made of a permanent magnetic material, for example a boron-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • FIG. 24 A third alternate construction of the device 700 ′′ is shown in FIG. 24.
  • the device 700 ′′ is similar in construction to devices 700 and 700 ′, and corresponding parts are identified with corresponding reference numerals.
  • the device 700 ′′ comprises a catheter 702 ′′ having a proximal end 704 and a distal end 706 , and a lumen 708 therebetween.
  • a rotatable cutting member 710 ′′ having a proximal end 712 and a distal end 714 , is disposed in the lumen 708 .
  • the rotatable cutting member 710 ′′ comprises a flexible drive shaft 716 , which may be for example a flexible coil, with a cutting head 718 ′′ thereon.
  • the cutting head 718 ′′ like cutting head 718 ′ of device 700 ′, but unlike cutting head 718 of device 700 , has an oblate spheroidal shape, i.e., it is generally football shaped, having a roughed distal surface for cutting atheramatous material.
  • the sheath 720 ′′ includes an optical fiber 726 , having a beveled distal end 728 , facing generally radially outwardly for imaging the vessel in which the device 700 ′′ is located.
  • the optical fiber 726 extends proximally to the proximal end of the catheter 702 , where the optical fiber is connected an imaging system.
  • the imaging system may be an optical imaging system, or preferably an optical coherence tomography system.
  • the optical fiber 726 rotates so that the imaging system acquires an image of substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device 700 ′′.
  • the magnet member can be disposed in the wall of the catheter 702 , or somehow associated with the rotatable cutting member 710 ′′, such as by making the cutting head 718 ′′ out of a magnetic or a magnetically permeable material.
  • the magnet members may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • a sixth embodiment of a magnetically guided atherectomy device is indicated generally as 800 in FIGS. 25 - 27 .
  • a first alternate construction of the magnetically guided atherectomy device is indicated generally as 800 in FIG. 26.
  • the device 800 comprises a catheter 802 , having a proximal end 804 , and a distal end 806 , and a lumen 808 therebetween.
  • a laser ablation tool 810 is disposed in the lumen of the catheter 802 . The laser can heat the material distal to the distal end directly or heat the tip to heat this material.
  • the laser ablation tool 810 has a distal end 812 , and a first lumen 814 opening at the distal end, for receiving an optical fiber 816 for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool.
  • the tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800 .
  • Magnet members can be provided in wall of the catheter 802 , and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material.
  • an annular magnet member 820 is incorporated into the sidewall of the catheter 802 .
  • irrigating fluid can be delivered to the treatment site through the annular space between the catheter 802 and the tool 810 .
  • FIG. 26 A second alternate construction of the device of the sixth embodiment, indicated generally as 800 ′ is shown in FIG. 26.
  • the device 800 ′ is similar in construction to device 800 , and corresponding parts are identified with corresponding reference numerals.
  • the device 800 ′ comprises a catheter 802 ′, having a proximal end 804 , and a distal end 806 , and a lumen 808 therebetween.
  • a laser ablation tool 810 is disposed in the lumen of the catheter 802 .
  • the laser ablation tool 810 has a distal end 812 , and a first lumen 814 opening at the distal end, for receiving an optical fiber 816 for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool.
  • the tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800 .
  • Magnet members can be provided in wall of the catheter 802 , and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material.
  • magnet member 820 ′ is incorporated into the tool 810 , just proximal to the distal end.
  • the magnet member 820 has passages therein for accommodating the optical fiber and the guide wire.
  • irrigating fluid can be delivered to the treatment site through the annular space between the catheter 802 and the tool 810 ′.
  • FIG. 26 A third second alternate construction of the device of the sixth embodiment, indicated generally as 800 ′′ is shown in FIG. 26.
  • the device 800 ′′ is similar in construction to device 800 , and corresponding parts are identified with corresponding reference numerals.
  • the device 800 ′′ comprises a catheter 802 , having a proximal end 804 , and a distal end 806 , and a lumen 808 therebetween.
  • a laser ablation tool 810 ′′ is disposed in the lumen of the catheter 802 .
  • the laser ablation tool 810 ′′ has a distal end 812 , and a first lumen (not shown) opening at the distal end, for receiving an optical fiber (not shown) for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool.
  • the tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800 .
  • the tool 800 ′′ has a closed loop path 822 for the circulation of cooling fluid to cool the distal end portion of the tool 810 ′′.
  • Magnet members can be provided in wall of the catheter 802 , and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material.
  • magnet member 820 ′′ is incorporated into the tool 810 , just proximal to the distal end.
  • the magnet member 820 ′′ has passages therein for accommodating the optical fiber and the guide wire.
  • irrigating fluid can be delivered to the treatment site through the annular space between the catheter 802 and the tool 810 ′.

Abstract

Atherectomy device are guided by and manipulated by externally applied magnetic fields to treat total or partial occlusions of a patient's vasculature.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 09/352,161 filed Jul. 12, 1999, incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to the removal of occlusive material from body lumens, and more particularly both methods and devices for magnetically guided atherectomy of totally occluded arterial vasculature. Catheters which employ thermal as well as other energy sources are disclosed along with complementary equipment for carrying out the procedures. [0002]
  • DESCRIPTION OF THE PRIOR ART
  • Arteriolosclerosis is a progressive disease marked by deposits within the lumen of arterial vessels. Removal of these deposits restores blood flow and is a preferred treatment for this disease. In instances where the vessel cannot be salvaged, bypass grafts may be used to treat the disorder. [0003]
  • A wide range of recannalization techniques have been developed over time. The primary technique in clinical use today is balloon angioplasty. This is a “mechanical” treatment where a balloon at the treatment site is inflated to compress obstructive material against the vessel wall. In most treatment protocols the recannalization device is navigated to the treatment site through the patent's vasculature. The so-called “Seldinger” technique is used most often to gain access to and navigate through the blood vessels. In this technique the catheter enters the body in the groin area and is moved through the vasculature to the heart with the assistance of both guide wire and occasionally guide catheters or sheaths. [0004]
  • Although balloon angioplasty is probably the most common procedure, there are several drawbacks to this type of device. One problem is that the vascular occlusion must first be crossed with a guide wire to position the balloon. The balloon device follows the guide wire through the lesion and the wire biases the balloon against the walls of the vessel. If the vessel is totally occluded the wire cannot cross the lesion and therefore cannot be used to guide the balloon. [0005]
  • Energy sources for recannalization have been proposed and studied as well. For example, Carter, U.S. Pat. No. 5,318,014, (incorporated herein by reference), teaches a device to treat occlusions with ultrasound. Drasler, U.S. Pat. No. 5,370,609, (incorporated herein by reference) teaches the use of a high-energy rearward facing water jet to remove occlusive material. The art also teaches the use of rotating mechanical burrs or blades for removing material. See for example Pannek, U.S. Pat. No. 5,224,945 (incorporated herein by reference). Also the use of heat to reform and remodel a vessel is known from Eggers, U.S. Pat. No. 4,998,933, among others. [0006]
  • SUMMARY
  • The atherectomy devices according to the invention include a magnetic element that allows for the remote manipulation of the distal end of working tip of the device by a magnetic surgery system (MSS) or other magnetic field generator operated outside of the patient. [0007]
  • The application of external fields and gradients allows the physician to control the orientation and location of the distal tip of the catheter in the vessel at the treatment site. This permits the use of small and potentially single size catheters to treat either partial or total occlusions in the vasculature. In operation the device is moved to various treatment sites or locations in a vessel under the guidance of the MSS. The methods of the invention may be partially automated in the sense that the physician can image the current location of the device and program a desired location with the MSS and designate a location or orientation of the device in a vessel. The MSS system can provide feedback to the physician to help the physician direct the device as “planned” with the MSS workstation. Robotic control of the device is also contemplated wherein the motion of the device in the vessel is entirely under software control. In this instance physician observation and transducer feedback manages the procedure. [0008]
  • Any of a variety of energy sources can be used to carry out the recannalization process of the invention, although thermal energy is preferred and is used as an illustrative energy source. The source of heat may include optical or radio frequency energy sources. However, the device is also useful with hydraulic energy, direct laser sources, ultrasonic energy sources, or mechanical energy sources. Physician supplied energy is contemplated as well in the sense that a doddering wire may be manipulated by the physician and guided magnetically to treat the occlusion. [0009]
  • Devices which rely on heat or which generate heat in the body may include fluid cooling to manage the distribution of heat, several device with adjunctive fluid delivery are shown as illustrative of the invention. [0010]
  • Additional “delivery” structures are present in some embodiments of the device and may be used to accommodate various medical techniques and methods. For example lumens for “over the wire” and “rapid exchange” delivery of the catheters are shown. Also these lumens may be used with imaging and localization devices to carry out the methods of the invention. These lumens may also be used to introduce contrast agent into the treatment site. [0011]
  • Localization structures are disclosed for use in the procedure. Preoperative Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or Ultrasound scans provide a “roadmap” for the procedure while X-ray, Doppler ultrasound, or other localization techniques are used to display the current real time position of the device in the lumen. [0012]
  • It is also contemplated that the “open” lumens of the device can be used with ultrasonic, optical coherence tomographic, or laser based imaging systems to characterize the nature of the occlusion.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Throughout the various figures of the drawing like reference numerals refer to identical structure. A typical and exemplary set of embodiments of the invention are shown in the drawing but various changes to the devices may be made without departing from the scope of the invention wherein: [0014]
  • FIG. 1 is schematic diagram of a thermal catheter in a vessel; [0015]
  • FIG. 2 is a schematic diagram of a bipolar thermal catheter; [0016]
  • FIG. 3 is a schematic diagram of a resistance heated thermal catheter; [0017]
  • FIG. 4 is a schematic of a laser-heated catheter; [0018]
  • FIG. 5 is a schematic of a thermal catheter having an additional lumen; [0019]
  • FIG. 6 is a RF heated catheter with a rapid exchange lumen; [0020]
  • FIG. 7 is an ultrasound atherectomy device driven by an external horn; [0021]
  • FIG. 8 is a hydraulic catheter; [0022]
  • FIG. 9 is an optically heated catheter in a sheath; [0023]
  • FIG. 10 is an optically heated device with an auxiliary lumen; [0024]
  • FIG. 11 is an optically heated device with multiple lumens; [0025]
  • FIG. 12 is an optically heated device with a distal port; and [0026]
  • FIG. 13 is a schematic overview of the automated workstation. [0027]
  • FIG. 14 is an exploded perspective view of a second embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0028]
  • FIG. 15 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the second embodiment; [0029]
  • FIG. 16 is a perspective view of the distal end portion of the magnetically guided atherectomy device of the second embodiment; [0030]
  • FIG. 17 is an exploded perspective view of a third embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0031]
  • FIG. 18 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the third embodiment; [0032]
  • FIG. 19 is a perspective view of the distal end portion of the magnetically guided atherectomy device of the third embodiment; [0033]
  • FIG. 20 is an exploded perspective view of a fourth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0034]
  • FIG. 21 is a longitudinal cross-sectional view of the distal end portion of the magnetically guided atherectomy device of the fourth embodiment; [0035]
  • FIG. 22 is a longitudinal cross-sectional view of a first alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0036]
  • FIG. 23 is a longitudinal cross-sectional view of a second alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0037]
  • FIG. 24 is a longitudinal cross-sectional view of a third alternate construction of a fifth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0038]
  • FIG. 25 is a longitudinal cross-sectional view of a first alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; [0039]
  • FIG. 26 is a longitudinal cross-sectional view of a second alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention; and [0040]
  • FIG. 27 is a longitudinal cross-sectional view of a third alternate construction of a sixth embodiment of a magnetically guided atherectomy device constructed according to the principles of this invention.[0041]
  • DETAILED DESCRIPTION THE INVENTION
  • FIG. 1 shows a [0042] thermal catheter 10 in a vessel 12. The distal tip section 14 of the device is shown in a vessel while the proximal section 15 is illustrated as a fragment located outside of the vessel 12. In general, the construction of the proximal end of the device and configuration and power couplings are within the ordinary skill of this art and are illustrated schematically in FIG. 1. For clarity the detailed disclosure is directed to the distal tip structures. However it should be recognized that the devices are intended for use in coronary vessels, the overall length of devices in accordance with this invention are 30 or more inches long and typical are between 2 and 12 French in diameter. It should be understood that coronary use is merely illustrative and other vessels and body lumens may be addressed therapeutically using the invention. The proximal end will carry suitable hubs and connections for the wires and lumens discussed in connection with the distal tip.
  • In FIG. 1 the [0043] distal tip 14 of the catheter 10 abuts a total occlusion 16. A guide wire 18 shown in phantom, and sheath 20 may be used together to deliver the catheter 10 to the treatment site near the occlusion 16. Either or both of the guide wire or sheath may have a magnetic element 22 included in its design to assist in access to the treatment site. For instance the guide wire 18 may have a magnet 22 located at its distal tip. Similarly the sheath may have a magnetic tube 24 located at its distal tip. However, for the purpose of this disclosure the magnetic elements on the guide wire or sheath permit the applied field or gradient to orient the distal tip. In FIG. 1 the forces generated on the tip by an external magnet are shown by vectors indicated by reference numeral 9. The physician can advance the guide wire or sheath by pushing on the proximal end of end of the device with the distal tip direction determined in part by the magnetic forces represented at 9. The magnetic orientation of the tip coupled with physical motion applied to the proximal end of the device positions the device. The physical motion can be supplied by either the physician or a robotic element.
  • The thermal catheter embodiment of FIG. 1 has a [0044] heated tip 26. Preferably this tip is formed from Hiperco or other magnetically active metallic material. In this context iron-containing alloys of steel which are attracted to magnets are suitable choices for the tip material. Although the distal tips are shown in hemispheric in shape for consistency of explanation it should be understood that other forms and shapes are operable so the shape should be understood as illustrative and not limiting. In use heat is delivered by the tip 26. More specifically the tip generates heat in the tissue distal to the tip. The lines located by reference numeral 38 represent heat transfer to the occlusion 16, which allows the tip 26 to move through the occlusion 16. In this embodiment the tip 26 is heated with RF energy from an RF source 28. The RF source is coupled to the tip by a wire 32. A patch electrode 34 having a large area may be placed on the patient to complete the circuit to the RF source 28 through wire 36. This configuration may be called “monopolar” in contrast to the “bipolar configuration shown in FIG. 2. A coating 27 may be applied to the surface of the distal tip to prevent sticking or adhesions. The coating 27 may also increase biocompatibility or improve heat transfer through the device. Both polymeric materials such as Teflon and metallic materials such as titanium nickel alloy are suitable for this application. Therefore the illustrative embodiments of the invention should be considered to be “composite” constructions where individual elements may be made of more than one material as indicated by coating 29.
  • FIG. 2 shows a distal tip embodiment for a [0045] thermal catheter 10, which includes two metal structures that are insulated from each other. The first structure is the distal tip 40 which is metal and may be magnetically active. The wire 32 couples this tip to the RF source 28. The second element is the return electrode 42. Preferably this function is served by metallic ring or bank 42 which is coupled to the RF source 28 through the wire 36. In this embodiment one or both of the metallic elements may be magnetically active. Also partial rings which surround only part of the catheter are contemplated within the scope of the invention although they are not preferred. In general the exact shape of the distal rings will not be critical to the operation of the invention.
  • FIG. 3 shows a resistance-heated embodiment of a [0046] thermal catheter 10 where the distal tip 44 is magnetically active metal. The tip 44 is electrically isolated from, but in thermal contact with the resistance wire heater 46 located near the tip. Wire 48 and wire 50 couple the heater 46 to the electrical power source 52 which may be an AC or DC source which may be modulated to control the energy delivery to the tip.
  • FIG. 4 shows a laser-heated embodiment of the [0047] thermal catheter device 10. In this embodiment the tip 60 absorbs radiation from the optical wave guide 62 coupled to the laser source 64. In operation the laser energy source may operate continuously or intermittently to deliver energy to the tip 60. In operation the laser light impinges on the tip structure and it is absorbed and converted to heat. The distal tip 60 may be magnetic or may be made from a magnetically active material. In general, and depending on detail design issues the surface of the tip may or may not be electrically conductive. In this particular embodiment it should be clear that the thermal requirements of the tip are significant in contrast to other embodiments where electrical conductivity is critical. It is contemplated that the distal tip may be made of ceramic or “glassy” material.
  • FIG. 5 shows an embodiment of the invention wherein [0048] thermal catheter 10 has a distal tip 70 which has a tube 71 that has an open lumen 72 which communicates to the proximal end of the device. This lumen 72 can be used for several purposes. For example, the lumen can accommodate either an imaging wire 76, ultrasonic or laser imaging, or a guide wire 74. In operation the preferred ultrasonic imaging wire can be used to visualize and locate the occlusion. Once the occlusion has been located and characterized, the correct amount of power can be delivered to the distal tip 70. Typically the ultrasound imaging wire would be withdrawn and parked in the lumen 72 proximally to prevent heat damage to the transducer of the imaging wire. During device placement the lumen can be used with guide wire 74 to access the treatment site.
  • The lumen can also be used with an optical fiber to perform laser induced florescence spectroscopy or optical low coherence reflectometry or optical coherence tomography. These procedures can be used to “look at” and evaluate the obstruction during treatment. [0049]
  • FIG. 6 is an example of a “rapid exchange” delivery configuration for the [0050] thermal catheter 10. The distal tip 80 as an open lumen 82 which is relatively short and exits the side of the catheter body 84 at a location distal of the proximal end of the device 10. This opening can receive a guide wire which can be used to position the device near the occlusion.
  • FIG. 7 represents an ultrasound [0051] energy source catheter 92. The ultrasonic hom 94 is coupled to the waveguide 96 which in turn terminates in a distal tip 90. The waveguide may extend beyond the tip. In operation the delivery of ultrasound energy to the distal tip results in the formation of very small bubbles which dislodge the nearby plaque or other obstructing material. In this embodiment the distal tip 90 may be formed of Hiperco or other magnetically active material.
  • FIG. 8 represents a [0052] hydraulic catheter 91 which uses the force of a jet of fluid emerging from nozzle 93 to disrupt the occlusive material. In this device the distal tip 100 may be made from Hiperco or another magnetically active material.
  • FIG. 9 shows the [0053] device 10 of FIG. 5 located in a sheath 120. The space between the sheath and the catheter body 122 can be flooded with contrast agent to reveal the location of the catheter with respect to the occlusion. At some power levels the space can be used to conduct cooling fluid to the tip to help regulate the temperature and temperature distribution of the device 124. Saline injection can also be used to prevent implosion of vapors in the blood at the treatment site.
  • FIG. 10 shows the device [0054] 78 of FIG. 5 in a sheath that limits the movement of the distal tip 70. In this version of the device the sheath 130 positions the distal tip 70 near the guide magnets 134. This allows the physician to move the tip with the MSS and to control the exit of fluid from the sheath.
  • FIG. 11 represents a multi-lumen construction where a [0055] fluid supply lumen 140 is provided to irrigate the tip 144 of the catheter 146. An offset guide wire lumen 148 is provided for used with imaging and locating devices.
  • FIG. 12 shows an embodiment of the catheter where the fluid exiting the tip through a [0056] port 150 serves to cool the catheter body 152. In this device the exterior wall of the catheter forms a central lumen which may be filled with a cooling solution. In general this volume may be too large to use for contrast injection. The fluid pressure in this sheath could also be reversed to create a vacuum on the occlusive material and remove it from the body during ablation.
  • FIG. 13 is a schematic diagram of a MSS system for using the catheters in a patient. In operation the physician user interacts with the [0057] patient 302 and the workstation console 300. The software used by the workstation coordinates several separate sources of data and control certain hardware as well. For example information from a preoperative scan 305 is loaded into the workstation 300 to provide a template of the treatment site. This preoperative data may be collected from MRI, CT, ultrasound, or other diagnostic imaging scans. Real time biplane x-ray data is supplied by an x-ray machine 303 and 304 to the workstation as well for display against the template and for interaction with the physician. As an alternative, orthogonal coils 301 and 302 may be used with an RF location system to localize the position of the catheter.
  • In general a fiducial marker on the catheter allows the preoperative scan and the real time scans to be appropriately merged. In operation the user can define a location on the [0058] MSS workstation 300 with a mouse or other pointing device which identifies the desired location of the therapy. Next the MSS workstation computes the forces and required fields and gradients required to navigate the catheter to the new location. This information controls the magnet system 308. An appropriate set of catheter actuators 306 may be provided to allow the MSS to move the catheter as well.
  • A second embodiment of a magnetically guided atherectomy device is indicated generally as [0059] 400 in FIGS. 14-16. The magnetically guided atherectomy device 400 comprises an elongate catheter 402, having a proximal end (not shown) and a distal end 406, with a lumen 408 therebetween. The catheter 402 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax.
  • A [0060] support 410 is mounted in the lumen adjacent the distal end 406. This support 410 can be permanently affixed within the catheter 402, with only the distal portion of the support projecting beyond the distal end 406 of the catheter. The support 410 is preferably made of a transparent, biocompatible material, such as polyethylene, polycarbonate, Pebax, or other suitable material. The support 410 includes passages for the ablation electrode conductor, and imaging, and preferably also includes compartments for receiving magnet body as described in more detail below.
  • The magnetically guided atherectomy device further includes an [0061] ablation electrode 414, on the distal end of the support 412. The ablation electrode 414 has a smoothly contoured, rounded shape, with a radius of curvature selected to selectively heat the material in front of, and closely adjacent to, the ablation electrode. An electrode conductor 416 extends from the proximal side of the electrode 414, through a conductor passage 418 in the support 410 and through the catheter 402 to the proximal end.
  • One or more optical fibers terminate in the body, facing generally radially outwardly for imaging the vessel in which the [0062] device 400 is located. In this preferred embodiment there are two optical fibers 420 and 422, having beveled distal ends 424 and 426, respectively. The optical fibers 420 and 422 extend proximally to the proximal end of the catheter 402, where the optical fibers are connected an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. Optical coherence tomography provides imaging capability within the blood vessel and has been used in navigable medical devices such as Colston et al., U.S. Pat. No. 6,175,669, Teamey et al., U.S. Pat. No. 6,134,003, Selmon et al., U.S. Pat. No. 6,120,516, Gregory, U.S. Pat. No. 6,117,128, Townsend et al., U.S. Pat. No. 6,066,102, Whayne et al., U.S. Pat. No. 6,047,218, Selmon et al., U.S. Pat. No., 6,010,449, Selmon et al., U.S. Pat. No. 5,968,064, Swanson et al., U.S. Pat. No. 5,804,651, McGee, U.S. Pat. No. 5,752,518, Hanson et al., U.S. Pat. No. 5,741,270, McGee, U.S. Pat. No. 5,722,403, the disclosures of which are incorporated herein by reference. The catheter 402 can be rotated, or the individual optical fibers 420 and 422 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the [0063] device 400. In this second preferred embodiment, there are two magnet members 432, each having a D-shaped transverse cross-section, and disposed in correspondingly shaped passages 434 in the support 410. The magnet members 432 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material such as hiperco. The magnet members are sized and shaped so that they tend to align the distal end portion of the device 400 with an externally applied magnetic field. Thus, through the application of the appropriate field with the magnet(s) of an external magnetic surgical system, the distal end of the device can be oriented in any selected direction.
  • The magnetically guided [0064] atherectomy device 400 is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end. When the device 400 encounters plaque or other atheramatous material, heat can be applied to the blockage to destroy it by applying energy to the electrode 414 via conductor 416. A grounding pad applied to the patient provides a current path. The current density is so great in the material immediately adjacent (within a few millimeters) the electrode 414 that the material heats up and is ablated, while the vessel walls and other tissues are not damaged.
  • Through a combination of localization, for example with bi-planar fluoroscopic imaging, and imaging, for example with OCT, the location and orientation of the device within the walls of the vessel, an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position. Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to automatically control the [0065] device 400 to clear the indicated size and shape.
  • A third embodiment of a magnetically guided atherectomy device is indicated generally as [0066] 500 in FIGS. 17-19. The magnetically guided atherectomy device 500 comprises an elongate catheter 502, having a proximal end (not shown) and a distal end 506, with a plurality of lumens 508 therebetween. The catheter 502 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax, and is preferably transparent.
  • There is a disc-shaped [0067] electrode 510 on the distal end of the catheter 502. The electrode 510 has an opening 512 therein, generally transverse to the plane of the disc. A conduit 514 can extend through a generally central passageway 516 in the catheter 502 and through the opening 512 in the electrode 510, to make an electrical connection with the electrode, and provide energy to the electrode 510 for ablating atheramatous material that the electrode contacts. In this preferred embodiment the conduit 514 can be extended relative to the distal end and/or the catheter can be retracted relative to the conduit 514 to leave the conduit 514 as a guide so that the catheter 500 can be quickly and easily navigated to the surgical site.
  • The [0068] ablation electrode 510 has a smoothly contoured, rounded shape, with a radius of curvature selected to selectively heat the material in front of, and closely adjacent to, the ablation electrode.
  • The [0069] catheter 502 includes passages for the conduit 514 and for optical fibers for imaging, and compartment for receiving magnet bodies as described in more detail below.
  • One or more optical fibers terminate in the [0070] catheter 502, facing generally radially outwardly for imaging the vessel in which the device 500 is located. In this preferred embodiment there are two optical fibers 518 and 520, having beveled distal ends 518 and 520, respectively. The optical fibers 522 and 524 extend proximally to the proximal end of the catheter 502, where the optical fibers are connected an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. The catheter 502 can be rotated, or the individual optical fibers 518 and 520 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the device [0071] 500. In this second preferred embodiment, there are two magnet members 526, each having a D-shaped transverse cross-section, and disposed in correspondingly shaped passages 528 in the distal end of the device 506; . The magnet members 526 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, such as hiperco. The magnet members 526 are sized and shaped so that they tend to align the distal end portion of the device 500 with an externally applied magnetic field. Thus, through the application of the appropriate field with the magnet(s) of an external magnetic surgical system, the distal end of the device can be oriented in any selected direction.
  • The magnetically guided atherectomy device is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end. When the device [0072] 500 encounters plaque or other atheramatous material, heat can be applied to the blockage to destroy it by applying energy to the electrode 510 via conduit 514. A grounding pad applied to the patient provides a current path. The current density is so great in the material immediately adjacent (within a few millimeters) the electrode 510 that the material heats up and is ablated, while the vessel walls and other tissues are not damaged.
  • Through a combination of localization, for example with bi-planar fluoroscopic imaging, and imaging, for example with OCT, the location and orientation of the device within the walls of the vessel, an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position. Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to can automatically adjust the magnetic surgery system to move the device to clear the indicated desired path. [0073]
  • A fourth embodiment of a magnetically guided atherectomy device is indicated generally as [0074] 600 in FIGS. 20-21. The magnetically guided atherectomy device 600 comprises an elongate catheter 602, having a proximal end (not shown) and a distal end 606, with at least one lumen 608 therebetween. The catheter 602 can be made of any flexible, biocompatible material conventionally used for medical catheters, for example Pebax, and is preferably transparent.
  • There is a dome-shaped [0075] cutting head 610 on the distal end of the elongate catheter 602. The cutting head 610 has a centrally opening an annular cutting edge 612 aligned with the lumen of the catheter. The smooth, dome shape allows distal end of the device to be manipulated within the blood vessel without damaging the inside structure of the blood vessels. The opening allows material that has been cored from the blood vessel to pass through the cutting head 610 to the lumen of the catheter where it can be accumulated or flushed out of the system.
  • One or more optical fibers terminate in the body, facing generally radially outwardly for imaging the vessel in which the [0076] device 600 is located. In this preferred embodiment there is a single optical fiber 614, having a beveled distal end 616. The optical fiber extends proximally to the proximal end of the catheter 602, where the optical fiber is connected to an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. The catheter 602 can be rotated, or the individual optical fiber 614 can be rotated to imaging substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the [0077] device 600. In this fourth preferred embodiment, there is a single magnet member 618, having a generally C-shaped transverse crosssection, and disposed in correspondingly shaped passages 620 in the distal end of the device 600. The magnet member 618 may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco. The magnet members are sized and shaped so that they tend to align the distal end portion of the device 600 with an externally applied magnetic field. Thus, through the application of the appropriate field with the magnet(s) of an external magnetic surgical system, the distal end of the device can be oriented in any selected direction.
  • The magnetically guided atherectomy device is oriented in the desired direction by the application of the appropriate magnetic fields with the magnetic surgery system, and the device is advanced, for example by mechanically pushing the proximal end. When the [0078] device 600 encounters plaque or other atheramatous material, the device is advanced against the material so that the head 610 cuts a passage through the atheramatous. Through a combination of localization, for example with bi-planar fluoroscopic imaging, and imaging, for example with OCT, the location and orientation of the device within the walls of the vessel, an image of the device and its position and orientation in the vessel can be displayed so that through a simply user interface, for example an interface that allows the user to “click” on a cross-sectional image of the device within a vessel, and cause a controller (for example a computer or other microprocessor based controller) to operate the magnetic surgery system to change the field to cause the device to move in the indicated desired direction, or to cause the device to move to the indicated desired position. Complex movement patterns can also be programmed, for example the physician could indicate a size and or shape for the lumen of the vessel, and through the processing of information obtained from the localization and imaging system the controller to can automatically adjust the magnetic surgery system to move the device to clear the indicated desired path.
  • A fifth embodiment of a magnetically guided atherectomy device is indicated generally as [0079] 700 in FIGS. 22-25. A first alternate construction of the device 700 is shown in FIG. 22. The device 700 comprises a catheter 702 having a proximal end 704 and a distal end 706, and a lumen 708 therebetween. A rotatable cutting member 710, having a proximal end 712 and a distal end 714, is disposed in the lumen 708. The rotatable cutting member 710 comprises a flexible drive shaft 716, which may be for example a flexible coil, with a cutting head 718 thereon. The cutting head 718 has a distal annular cutting edge 720, and an axial passage 722 for receiving material “cored” by the annular cutting edge. The flexible drive shaft 716 is preferably surrounded by a sheath 724 to protect in the inner wall of the catheter 702.
  • In this first alternate construction of the fifth preferred embodiment the [0080] sheath 724 includes an optical fiber 726, having a bevel distal end 728, facing generally radially outwardly for imaging the vessel in which the device 700 is located. The optical fiber 726 extends proximally to the proximal end of the catheter 702, where the optical fiber is connected an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. As the rotatable cutting member 710 rotates, the sheath 724 and the optical fiber rotates with it, and the imaging system acquires an image of substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the [0081] device 700. The magnet member can be disposed in the wall of the catheter 702, or somehow associated with the rotatable cutting member 718, such as by making the cutting member 718 out of a magnetic or a magnetically permeable material. The magnet member may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • A second alternate construction of the [0082] device 700′ is shown in FIG. 23. The device 700′ is similar in construction to device 700, and corresponding parts are identified with corresponding reference numerals. As shown in FIG. 23, the device 700′ comprises a catheter 702′ having a proximal end 704 and a distal end 706, and a lumen 708 therebetween. A rotatable cutting member 710′, having a proximal end 712 and a distal end 714, is disposed in the lumen 708. The rotatable cutting member 710′ comprises a flexible drive shaft 716, which may be for example a flexible coil, with a cutting head 718′ thereon. The cutting head 718′ unlike cutting head 718 of device 700, has an oblate spheroidal shape, i.e., it is generally football shaped, having a roughed distal surface for cutting atheramatous material.
  • In this second alternate construction of the fifth preferred embodiment the [0083] catheter 702′ includes an optical fiber 726, having a bevel distal end 728, facing generally radially outwardly for imaging the vessel in which the device 700′ is located. The optical fiber 726 extends proximally to the proximal end of the catheter 702′, where the optical fiber is connected an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. As the rotatable cutting member 710 rotates, the catheter 702′ can be rotated so that the imaging system acquires an image of substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the [0084] device 700′. The magnet member can be disposed in the wall of the catheter 702′, or somehow associated with the rotatable cutting member 718′, such as by making the cutting member 718′ out of a magnetic or a magnetically permeable material. The magnet members may be made of a permanent magnetic material, for example a boron-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • A third alternate construction of the [0085] device 700″ is shown in FIG. 24. The device 700″ is similar in construction to devices 700 and 700′, and corresponding parts are identified with corresponding reference numerals. As shown in FIG. 24, the device 700″ comprises a catheter 702″ having a proximal end 704 and a distal end 706, and a lumen 708 therebetween. A rotatable cutting member 710″, having a proximal end 712 and a distal end 714, is disposed in the lumen 708. The rotatable cutting member 710″ comprises a flexible drive shaft 716, which may be for example a flexible coil, with a cutting head 718″ thereon. The cutting head 718″, like cutting head 718′ of device 700′, but unlike cutting head 718 of device 700, has an oblate spheroidal shape, i.e., it is generally football shaped, having a roughed distal surface for cutting atheramatous material. There is a sheath 720″ surrounding the flexible drive shaft 716.
  • In this third alternate construction of the fifth preferred embodiment the [0086] sheath 720″ includes an optical fiber 726, having a beveled distal end 728, facing generally radially outwardly for imaging the vessel in which the device 700″ is located. The optical fiber 726 extends proximally to the proximal end of the catheter 702, where the optical fiber is connected an imaging system. The imaging system may be an optical imaging system, or preferably an optical coherence tomography system. As the rotatable cutting member 710″ rotates, the optical fiber 726 rotates so that the imaging system acquires an image of substantially the entire (and preferably the entire) interior circumference of the vessel in which the device is located.
  • At least one magnet member is disposed in the distal end portion of the [0087] device 700″. The magnet member can be disposed in the wall of the catheter 702, or somehow associated with the rotatable cutting member 710″, such as by making the cutting head 718″ out of a magnetic or a magnetically permeable material. The magnet members may be made of a permanent magnetic material, for example a neodymium-iron-boron (Nd—Fe—B) material, or a permeable magnetic material, for example hiperco.
  • A sixth embodiment of a magnetically guided atherectomy device is indicated generally as [0088] 800 in FIGS. 25-27. A first alternate construction of the magnetically guided atherectomy device is indicated generally as 800 in FIG. 26. The device 800 comprises a catheter 802, having a proximal end 804, and a distal end 806, and a lumen 808 therebetween. A laser ablation tool 810 is disposed in the lumen of the catheter 802. The laser can heat the material distal to the distal end directly or heat the tip to heat this material. The laser ablation tool 810 has a distal end 812, and a first lumen 814 opening at the distal end, for receiving an optical fiber 816 for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool. The tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800.
  • Magnet members can be provided in wall of the [0089] catheter 802, and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material. In the first alternate construction shown in FIG. 25, an annular magnet member 820 is incorporated into the sidewall of the catheter 802.
  • As shown in FIG. 25, irrigating fluid can be delivered to the treatment site through the annular space between the [0090] catheter 802 and the tool 810.
  • A second alternate construction of the device of the sixth embodiment, indicated generally as [0091] 800′ is shown in FIG. 26. The device 800′ is similar in construction to device 800, and corresponding parts are identified with corresponding reference numerals. The device 800′ comprises a catheter 802′, having a proximal end 804, and a distal end 806, and a lumen 808 therebetween. A laser ablation tool 810 is disposed in the lumen of the catheter 802. The laser ablation tool 810 has a distal end 812, and a first lumen 814 opening at the distal end, for receiving an optical fiber 816 for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool. The tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800.
  • Magnet members can be provided in wall of the [0092] catheter 802, and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material. In the second alternate construction shown in FIG. 26, magnet member 820′ is incorporated into the tool 810, just proximal to the distal end. The magnet member 820 has passages therein for accommodating the optical fiber and the guide wire.
  • As shown in FIG. 26, irrigating fluid can be delivered to the treatment site through the annular space between the [0093] catheter 802 and the tool 810′.
  • A third second alternate construction of the device of the sixth embodiment, indicated generally as [0094] 800″ is shown in FIG. 26. The device 800″ is similar in construction to device 800, and corresponding parts are identified with corresponding reference numerals. The device 800″ comprises a catheter 802, having a proximal end 804, and a distal end 806, and a lumen 808 therebetween. A laser ablation tool 810″ is disposed in the lumen of the catheter 802. The laser ablation tool 810″ has a distal end 812, and a first lumen (not shown) opening at the distal end, for receiving an optical fiber (not shown) for conducting ablating laser energy to the distal end of the tool to ablate atheramatous material distal to the tool. The tool 810 also includes a passage 818 for accommodating a guide wire to facilitate the navigation and control of the device 800. In addition the tool 800″ has a closed loop path 822 for the circulation of cooling fluid to cool the distal end portion of the tool 810″.
  • Magnet members can be provided in wall of the [0095] catheter 802, and/or a portion of the tool 810 can be made of a magnetic material, or a magnetically permeable material. In the third alternate construction shown in FIG. 27, magnet member 820″ is incorporated into the tool 810, just proximal to the distal end. The magnet member 820″ has passages therein for accommodating the optical fiber and the guide wire.
  • As was shown in FIGS. 25 and 26, irrigating fluid can be delivered to the treatment site through the annular space between the [0096] catheter 802 and the tool 810′.

Claims (26)

What is claimed is:
1. A catheter for treating an occluded vessel comprising:
a catheter body having a proximal end and a distal end, said distal end terminating in a distal tip;
an energy source coupled to said distal tip for supplying energy to the distal tip for treating an occlusion;
a magnetically active element located proximate said distal tip responsive to externally applied magnetic fields whereby said externally applied magnetic fields direct and orient said distal tip.
2. The catheter of claim 1 wherein said magnetically active element forms at least a portion of said distal tip.
3. The catheter of claim 1 further including a lumen positioned in said catheter body extending form said proximal end to said distal end.
4. The catheter of claim 1 further including one or more electrical coils located proximate said distal tip for cooperation with a localization device.
5. A sheath for use with a catheter of claim 1 for treating a vessel occlusion comprising:
a sheath body having a proximal end and having a distal end;
a lumen extending from said proximal end to said distal end;
a magnetically active element located proximate said distal tip.
6. A system for treating a vessel occlusion comprising:
a sheath, having a sheath body, said sheath body having a proximal end and having a distal end;
a lumen extending through said sheath body from said proximal end to said distal end;
a catheter having a catheter body having a proximal end and a distal end terminating in distal tip;
an energy source coupled to said distal tip;
a magnetically active element located proximate said distal tip of said catheter body.
7. A system for treating a vessel occlusion comprising: a sheath, having a sheath body, said sheath body having a proximal end and having a distal end;
a lumen extending through said sheath body from said proximal end to said distal end;
a catheter having a catheter body having a proximal end and a distal end;
an energy source coupled to said distal tip for delivering therapeutic energy to a vessel occlusion;
a magnetically active element forming a portion of said distal tip of said sheath body.
8. The catheter of claim 1 including a first metallic element located proximate said distal tip adapted for coupling to a remote radio frequency energy source whereby RF energy coupled to said metallic element heats said metallic element.
9. The catheter of claim 8 wherein said metallic element forms one pole of a monopolar energy distribution system.
10. The catheter of claim 9 further comprising a second metallic element proximate said distal tip forming a pole of a bipolar energy distribution system.
11. The catheter of claim 1 including a thermally conductive element located proximate said distal tip adapted for coupling to a remote optical laser energy source whereby optical energy coupled to said thermally conductive element heats said thermally conductive element.
12. The catheter of claim 11 wherein said thermally conductive element is metallic.
13. The catheter of claim 1 further including an ultrasonic waveguide element located proximate said distal tip adapted for coupling to a remote ultrasonic frequency energy source.
14. The catheter of claim 1 further including a resistance heating element located proximate said distal tip adapted for coupling to a remote electrical energy source.
15. The catheter of claim 14 further including a resistance heating element located proximate said distal tip adapted for coupling to a remote AC elect5rical energy source.
16. The catheter of claim 14 further including a resistance heating element located proximate said distal tip adapted for coupling to a remote DC electrical energy source.
17. The catheter of claim 1 further including a fluid directing element located proximate said distal tip adapted for coupling to a remote hydraulic energy source, whereby fluid coupled to said device extracts occlusive material from locations near the distal tip.
18. The catheter of claim 3 further including a laser imaging device located in said lumen for observing an occlusion.
19. The catheter of claim 3 further including an ultrasonic imaging device located in said lumen for observing an occlusion.
20. A system for treating total occlusions of a patient's vasculature comprising:
a catheter having an elongate body and a distal tip;
a heated element located proximate the distal tip of the catheter;
a magnetic element located proximate distal tip;
a magnetic surgery system for interacting with said magnetic element; said magnetic surgery system including a localization device to determine the location of the catheter distal tip within the body;
said magnetic surgery system including an occlusion visualization device for presenting an image to a user which depicts the location of the catheter tip.
21. The system of claim 20 wherein said visualization device is an ultrasonic imaging wire.
22. The system of claim 20 wherein said visualization device is a laser imaging wire.
23. A system for treating occlusions of a patient's vasculature comprising:
a catheter having an elongate body and a distal tip;
a heated element located proximate the distal tip of the catheter;
a magnetic element located proximate the distal tip;
a magnetic surgery system for interacting with said magnetic element;
said magnetic surgery system including a localization device to determine the location of the catheter distal tip within the body;
said magnetic surgery system including a catheter location visualization device for presenting an image to a user which depicts the location of the catheter tip.
24. The system of claim 23 wherein said catheter location visualization device is a preoperative CT image.
25. The system of claim 23 wherein said catheter location visualization device is a preoperative MRI image.
26. A method of treating a total vascular occlusion comprising the steps of:
inserting a catheter having a magnetic tip into the body;
directing the catheter to the location of the total occlusion;
imaging the catheter tip to confirm and direct therapy;
energizing said catheter to heat said distal tip;
manipulating said distal tip by the application of external magnetic fields, directing said catheter tip into said occlusion.
US09/777,018 1999-07-12 2001-02-05 Magnetically guided atherectomy Abandoned US20020019644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/777,018 US20020019644A1 (en) 1999-07-12 2001-02-05 Magnetically guided atherectomy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/352,161 US6911026B1 (en) 1999-07-12 1999-07-12 Magnetically guided atherectomy
US09/777,018 US20020019644A1 (en) 1999-07-12 2001-02-05 Magnetically guided atherectomy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/352,161 Continuation-In-Part US6911026B1 (en) 1999-03-30 1999-07-12 Magnetically guided atherectomy

Publications (1)

Publication Number Publication Date
US20020019644A1 true US20020019644A1 (en) 2002-02-14

Family

ID=23384037

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/352,161 Expired - Fee Related US6911026B1 (en) 1999-03-30 1999-07-12 Magnetically guided atherectomy
US09/777,018 Abandoned US20020019644A1 (en) 1999-07-12 2001-02-05 Magnetically guided atherectomy
US10/771,834 Abandoned US20050021063A1 (en) 1999-03-30 2004-02-02 Magnetically Guided Atherectomy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/352,161 Expired - Fee Related US6911026B1 (en) 1999-03-30 1999-07-12 Magnetically guided atherectomy

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/771,834 Abandoned US20050021063A1 (en) 1999-03-30 2004-02-02 Magnetically Guided Atherectomy

Country Status (3)

Country Link
US (3) US6911026B1 (en)
AU (1) AU6344000A (en)
WO (1) WO2001003589A1 (en)

Cited By (287)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153015A1 (en) * 2000-02-16 2002-10-24 Garibaldi Jeffrey M. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US20020177789A1 (en) * 2001-05-06 2002-11-28 Ferry Steven J. System and methods for advancing a catheter
WO2003065874A2 (en) * 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Method and apparatus for subcutaneously advancing a device between locations
WO2004047647A2 (en) * 2002-11-22 2004-06-10 Martina Grosspointner Apparatus for treating defects of vessels
DE10255957A1 (en) * 2002-11-29 2004-08-12 Siemens Ag Medical examination and / or treatment system
US20040169316A1 (en) * 2002-03-28 2004-09-02 Siliconix Taiwan Ltd. Encapsulation method and leadframe for leadless semiconductor packages
US20040267106A1 (en) * 2001-01-29 2004-12-30 Segner Garland L Electrophysiology catheter
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US20050187571A1 (en) * 2004-02-20 2005-08-25 Siemens Aktiengesellschaft Device for applying and monitoring medical atherectomy
US20050192496A1 (en) * 2004-01-09 2005-09-01 Michael Maschke Catheter for inserting into a vessel
US20050203558A1 (en) * 2004-02-20 2005-09-15 Siemens Aktiengesellschaft Device for applying and monitoring medical rotablation
DE102004008370A1 (en) * 2004-02-20 2005-09-15 Siemens Ag Implementing and monitoring apparatus for removal of plaque in blood vessel wall has removing catheter and optical coherence tomographic catheter which are built into one structure unit
US20050209578A1 (en) * 2004-01-29 2005-09-22 Christian Evans Edward A Ultrasonic catheter with segmented fluid delivery
US20050215946A1 (en) * 2004-01-29 2005-09-29 Hansmann Douglas R Method and apparatus for detecting vascular conditions with a catheter
US20050222596A1 (en) * 2004-03-31 2005-10-06 Siemens Aktiengesellschaft Device for implementing a cutting balloon intervention with IVUS monitoring
US20050222594A1 (en) * 2004-03-31 2005-10-06 Siemens Aktiengesellschaft Catheter device for applying a medical cutting balloon intervention
US20050234343A1 (en) * 2004-03-31 2005-10-20 Siemens Aktiengesellschaft Medical device for removing a vascular occlusion
US6979293B2 (en) 2001-12-14 2005-12-27 Ekos Corporation Blood flow reestablishment determination
US20060015126A1 (en) * 2002-10-18 2006-01-19 Arieh Sher Atherectomy system with imaging guidewire
US20060036163A1 (en) * 2004-07-19 2006-02-16 Viswanathan Raju R Method of, and apparatus for, controlling medical navigation systems
US20060079745A1 (en) * 2004-10-07 2006-04-13 Viswanathan Raju R Surgical navigation with overlay on anatomical images
US20060089638A1 (en) * 2004-10-27 2006-04-27 Yuval Carmel Radio-frequency device for passivation of vascular plaque and method of using same
US20060142813A1 (en) * 2004-12-23 2006-06-29 Siemens Aktiengesellschaft Implantable pacemaker
US20060144407A1 (en) * 2004-07-20 2006-07-06 Anthony Aliberto Magnetic navigation manipulation apparatus
US20060144408A1 (en) * 2004-07-23 2006-07-06 Ferry Steven J Micro-catheter device and method of using same
US20060173387A1 (en) * 2004-12-10 2006-08-03 Douglas Hansmann Externally enhanced ultrasonic therapy
US20060184070A1 (en) * 2004-11-12 2006-08-17 Hansmann Douglas R External ultrasonic therapy
US20060190068A1 (en) * 2004-12-23 2006-08-24 Siemens Aktiengesellschaft Intravenous spacemaker electrode
US20060241465A1 (en) * 2005-01-11 2006-10-26 Volcano Corporation Vascular image co-registration
US20060269108A1 (en) * 2005-02-07 2006-11-30 Viswanathan Raju R Registration of three dimensional image data to 2D-image-derived data
US20060270915A1 (en) * 2005-01-11 2006-11-30 Ritter Rogers C Navigation using sensed physiological data as feedback
US20060276867A1 (en) * 2005-06-02 2006-12-07 Viswanathan Raju R Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20060281989A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R Voice controlled user interface for remote navigation systems
US20060281990A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R User interfaces and navigation methods for vascular navigation
US20060278246A1 (en) * 2003-05-21 2006-12-14 Michael Eng Electrophysiology catheter
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US20070021742A1 (en) * 2005-07-18 2007-01-25 Viswanathan Raju R Estimation of contact force by a medical device
US20070019330A1 (en) * 2005-07-12 2007-01-25 Charles Wolfersberger Apparatus for pivotally orienting a projection device
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US20070021731A1 (en) * 1997-11-12 2007-01-25 Garibaldi Jeffrey M Method of and apparatus for navigating medical devices in body lumens
US20070030958A1 (en) * 2005-07-15 2007-02-08 Munger Gareth T Magnetically shielded x-ray tube
US20070038064A1 (en) * 2005-07-08 2007-02-15 Creighton Francis M Iv Magnetic navigation and imaging system
US20070038074A1 (en) * 1998-02-09 2007-02-15 Ritter Rogers C Method and device for locating magnetic implant source field
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US20070038410A1 (en) * 2005-08-10 2007-02-15 Ilker Tunay Method and apparatus for dynamic magnetic field control using multiple magnets
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US20070060966A1 (en) * 2005-07-11 2007-03-15 Carlo Pappone Method of treating cardiac arrhythmias
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070066890A1 (en) * 2005-09-22 2007-03-22 Siemens Aktiengesellschaft Catheter device
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US20070066888A1 (en) * 2004-11-15 2007-03-22 Siemens Aktiengesellschaft Catheter device with a position sensor system for treating a vessel blockage using image monitoring
US20070062546A1 (en) * 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US20070088077A1 (en) * 1991-02-26 2007-04-19 Plasse Terry F Appetite stimulation and reduction of weight loss in patients suffering from symptomatic hiv infection
US20070106203A1 (en) * 2001-12-03 2007-05-10 Wilson Richard R Catheter with multiple ultrasound radiating members
US20070123964A1 (en) * 2003-01-21 2007-05-31 Baylis Medical Company Magnetically guidable energy delivery apparatus and method of using same
WO2007063443A2 (en) * 2005-12-02 2007-06-07 Koninklijke Philips Electronics, N.V. Automating the ablation procedure to minimize the need for manual intervention
US20070135712A1 (en) * 2005-12-12 2007-06-14 Siemens Aktiengesellschaft Catheter device
US20070146106A1 (en) * 1999-10-04 2007-06-28 Creighton Francis M Iv Rotating and pivoting magnet for magnetic navigation
US20070149946A1 (en) * 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US20070161888A1 (en) * 2005-12-30 2007-07-12 Sherman Jason T System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20070161882A1 (en) * 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20070161951A1 (en) * 2004-01-29 2007-07-12 Ekos Corporation Treatment of vascular occlusions using elevated temperatures
US20070163367A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Magnetic sensor array
US20070167720A1 (en) * 2005-12-06 2007-07-19 Viswanathan Raju R Smart card control of medical devices
US20070167741A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20070167703A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Method for determining a position of a magnetic source
US20070197899A1 (en) * 2006-01-17 2007-08-23 Ritter Rogers C Apparatus and method for magnetic navigation using boost magnets
US20070197906A1 (en) * 2006-01-24 2007-08-23 Ritter Rogers C Magnetic field shape-adjustable medical device and method of using the same
US20070198044A1 (en) * 2004-03-26 2007-08-23 Lupton Henry W Guide Wire For Use In Re-Canalising A Vascular Occlusion In A Human Or Animal Subject
US20070208400A1 (en) * 2006-03-01 2007-09-06 The General Hospital Corporation System and method for providing cell specific laser therapy of atherosclerotic plaques by targeting light absorbers in macrophages
US20070220479A1 (en) * 2006-03-14 2007-09-20 Hughes John M Systems and methods for software development
US20070233200A1 (en) * 2006-03-31 2007-10-04 Siemens Aktiengesellschaft Implantable pacemaker
US20070250041A1 (en) * 2006-04-19 2007-10-25 Werp Peter R Extendable Interventional Medical Devices
US20070265521A1 (en) * 2006-05-15 2007-11-15 Thomas Redel Integrated MRI and OCT system and dedicated workflow for planning, online guiding and monitoring of interventions using MRI in combination with OCT
US20070287909A1 (en) * 1998-08-07 2007-12-13 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
WO2007145638A1 (en) * 2006-06-14 2007-12-21 Michael Gertner Medical devices with integral magnets and uses thereof
US20080006280A1 (en) * 2004-07-20 2008-01-10 Anthony Aliberto Magnetic navigation maneuvering sheath
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20080015427A1 (en) * 2006-06-30 2008-01-17 Nathan Kastelein System and network for remote medical procedures
US20080039830A1 (en) * 2006-08-14 2008-02-14 Munger Gareth T Method and Apparatus for Ablative Recanalization of Blocked Vasculature
US20080045892A1 (en) * 2001-05-06 2008-02-21 Ferry Steven J System and Methods for Advancing a Catheter
US20080047568A1 (en) * 1999-10-04 2008-02-28 Ritter Rogers C Method for Safely and Efficiently Navigating Magnetic Devices in the Body
US20080059598A1 (en) * 2006-09-06 2008-03-06 Garibaldi Jeffrey M Coordinated Control for Multiple Computer-Controlled Medical Systems
US20080058609A1 (en) * 2006-09-06 2008-03-06 Stereotaxis, Inc. Workflow driven method of performing multi-step medical procedures
US20080065124A1 (en) * 1999-08-19 2008-03-13 Foxhollow Technologies, Inc. High capacity debulking catheter with razor edge cutting window
US20080064969A1 (en) * 2006-09-11 2008-03-13 Nathan Kastelein Automated Mapping of Anatomical Features of Heart Chambers
US20080065061A1 (en) * 2006-09-08 2008-03-13 Viswanathan Raju R Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System
US20080077158A1 (en) * 2006-06-16 2008-03-27 Hani Haider Method and Apparatus for Computer Aided Surgery
US20080077007A1 (en) * 2002-06-28 2008-03-27 Hastings Roger N Method of Navigating Medical Devices in the Presence of Radiopaque Material
US20080097200A1 (en) * 2006-10-20 2008-04-24 Blume Walter M Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images
US20080103417A1 (en) * 2006-10-27 2008-05-01 Azita Soltani Catheter with multiple ultrasound radiating members
US20080132910A1 (en) * 2006-11-07 2008-06-05 Carlo Pappone Control for a Remote Navigation System
US20080154127A1 (en) * 2006-12-21 2008-06-26 Disilvestro Mark R Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20080200913A1 (en) * 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US20080208912A1 (en) * 2007-02-26 2008-08-28 Garibaldi Jeffrey M System and method for providing contextually relevant medical information
US20080228065A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices
US20080228068A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data
US20080287909A1 (en) * 2007-05-17 2008-11-20 Viswanathan Raju R Method and apparatus for intra-chamber needle injection treatment
US20080294232A1 (en) * 2007-05-22 2008-11-27 Viswanathan Raju R Magnetic cell delivery
US20080292901A1 (en) * 2007-05-24 2008-11-27 Hon Hai Precision Industry Co., Ltd. Magnesium alloy and thin workpiece made of the same
US20080312673A1 (en) * 2007-06-05 2008-12-18 Viswanathan Raju R Method and apparatus for CTO crossing
US20080319303A1 (en) * 2003-05-02 2008-12-25 Sabo Michael E Variable magnetic moment mr navigation
US20090012821A1 (en) * 2007-07-06 2009-01-08 Guy Besson Management of live remote medical display
US20090062789A1 (en) * 2007-08-24 2009-03-05 Boston Scientific Scimed, Inc. Magnetically steerable catheter assembly
US20090062646A1 (en) * 2005-07-07 2009-03-05 Creighton Iv Francis M Operation of a remote medical navigation system using ultrasound image
US20090082722A1 (en) * 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US20090131927A1 (en) * 2007-11-20 2009-05-21 Nathan Kastelein Method and apparatus for remote detection of rf ablation
US7543239B2 (en) 2004-06-04 2009-06-02 Stereotaxis, Inc. User interface for remote control of medical devices
US20090156894A1 (en) * 2007-12-18 2009-06-18 Storz Medical Ag Navigation for focused wave treatment
US20090177032A1 (en) * 1999-04-14 2009-07-09 Garibaldi Jeffrey M Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US20090177037A1 (en) * 2007-06-27 2009-07-09 Viswanathan Raju R Remote control of medical devices using real time location data
US7567233B2 (en) 2006-09-06 2009-07-28 Stereotaxis, Inc. Global input device for multiple computer-controlled medical systems
US20090216180A1 (en) * 2008-02-25 2009-08-27 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20090234445A1 (en) * 2008-03-12 2009-09-17 Siemens Aktiengesellschaft Catheter device and associated Medical examination and treatment apparatus as well as associated method
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20090306643A1 (en) * 2008-02-25 2009-12-10 Carlo Pappone Method and apparatus for delivery and detection of transmural cardiac ablation lesions
US20100069733A1 (en) * 2008-09-05 2010-03-18 Nathan Kastelein Electrophysiology catheter with electrode loop
US20100125282A1 (en) * 2008-11-14 2010-05-20 Medtronic Vascular, Inc. Robotically Steered RF Catheter
US20100163061A1 (en) * 2000-04-11 2010-07-01 Creighton Francis M Magnets with varying magnetization direction and method of making such magnets
US7751867B2 (en) 2004-12-20 2010-07-06 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US20100222669A1 (en) * 2006-08-23 2010-09-02 William Flickinger Medical device guide
US7818076B2 (en) 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US20100268210A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated surgical implement driver
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US20100305502A1 (en) * 2001-05-06 2010-12-02 Ferry Steven J Systems and methods for medical device advancement and rotation
US20100305452A1 (en) * 2009-05-28 2010-12-02 Black John F Optical coherence tomography for biological imaging
US20100312263A1 (en) * 2009-04-29 2010-12-09 Fox Hollow Technologies, Inc. Methods and devices for cutting and abrading tissue
US20100312094A1 (en) * 2009-06-08 2010-12-09 Michael Guttman Mri-guided surgical systems with preset scan planes
US20100317962A1 (en) * 2009-06-16 2010-12-16 Jenkins Kimble L MRI-Guided Devices and MRI-Guided Interventional Systems that can Track and Generate Dynamic Visualizations of the Devices in near Real Time
US20110004107A1 (en) * 2009-07-01 2011-01-06 Rosenthal Michael H Atherectomy catheter with laterally-displaceable tip
US20110021926A1 (en) * 2009-07-01 2011-01-27 Spencer Maegan K Catheter-based off-axis optical coherence tomography imaging system
US20110046618A1 (en) * 2009-08-04 2011-02-24 Minar Christopher D Methods and systems for treating occluded blood vessels and other body cannula
US20110130718A1 (en) * 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
US7961924B2 (en) 2006-08-21 2011-06-14 Stereotaxis, Inc. Method of three-dimensional device localization using single-plane imaging
US20110201922A1 (en) * 2008-10-28 2011-08-18 Koninklijke Philips Electronics N.V. Optical probe having a position measuring system
US20120035460A1 (en) * 2010-08-05 2012-02-09 Stangenes Todd R Movable magnet for magnetically guided catheter
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US8242972B2 (en) 2006-09-06 2012-08-14 Stereotaxis, Inc. System state driven display for medical procedures
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US20120253186A1 (en) * 2011-03-28 2012-10-04 Simpson John B Occlusion-crossing devices, imaging, and atherectomy devices
US8298147B2 (en) 2005-06-24 2012-10-30 Volcano Corporation Three dimensional co-registration for intravascular diagnosis and therapy
US8308628B2 (en) 2009-11-02 2012-11-13 Pulse Therapeutics, Inc. Magnetic-based systems for treating occluded vessels
US8361097B2 (en) 2008-04-23 2013-01-29 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
US8419681B2 (en) 2002-11-18 2013-04-16 Stereotaxis, Inc. Magnetically navigable balloon catheters
US20130096589A1 (en) * 2011-10-17 2013-04-18 Maegan K. Spencer Atherectomy catheters and non-contact actuation mechanism for catheters
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US20130197297A1 (en) * 2012-01-27 2013-08-01 Kurt J. Tekulve Magnetic clot disrupter
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8696695B2 (en) 2009-04-28 2014-04-15 Avinger, Inc. Guidewire positioning catheter
US8753281B2 (en) 2006-11-08 2014-06-17 Lightlab Imaging Inc. Opto-acoustic imaging devices and methods
US20140180268A1 (en) * 2012-12-21 2014-06-26 Volcano Corporation System and method for catheter steering and operation
US8764700B2 (en) 1998-06-29 2014-07-01 Ekos Corporation Sheath for use with an ultrasound element
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US20140378961A1 (en) * 2013-06-20 2014-12-25 Erbe Elektromedizin Gmbh Surgical instrument with tissue recognition
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
WO2015120146A1 (en) * 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US20150230821A1 (en) * 2014-02-20 2015-08-20 Gyrus Acmi, Inc. (D.B.A. Olympus Surgical Technolo Heat pipe cooled burr including surgical instruments embodying same
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US20150297869A1 (en) * 2014-02-24 2015-10-22 Microaccess Inc. Systems and methods for transesophageal procedures using wire guides
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US20160135832A1 (en) * 2013-07-08 2016-05-19 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US20160157879A1 (en) * 2014-12-04 2016-06-09 Cook Medical Technologies Llc Cutting guide wire and method of use thereof
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9801647B2 (en) 2006-05-26 2017-10-31 Covidien Lp Catheter including cutting element and energy emitting element
US9833221B2 (en) 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US9974930B2 (en) 2005-03-24 2018-05-22 Brivant Research & Development Limited Guide wire for use in re-canalising a vascular occlusion in a human or animal subject
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10350390B2 (en) 2011-01-20 2019-07-16 Auris Health, Inc. System and method for endoluminal and translumenal therapy
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US20190321061A1 (en) * 2018-04-23 2019-10-24 Justin Panian Ultrasound Vessel Preparation
WO2019213368A1 (en) * 2018-05-03 2019-11-07 Bionaut Labs Ltd. Methods and apparatus for deployment and retraction of functional small particles in living tissues
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10639109B2 (en) 2015-04-01 2020-05-05 Auris Health, Inc. Microsurgical tool for robotic applications
US10639114B2 (en) 2018-08-17 2020-05-05 Auris Health, Inc. Bipolar medical instrument
US10646201B2 (en) 2014-11-18 2020-05-12 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US10744035B2 (en) 2013-06-11 2020-08-18 Auris Health, Inc. Methods for robotic assisted cataract surgery
US10751140B2 (en) 2018-06-07 2020-08-25 Auris Health, Inc. Robotic medical systems with high force instruments
US10792012B2 (en) 2012-11-19 2020-10-06 Lightlab Imaging, Inc. Interface devices, systems and methods for multimodal probes
US10792466B2 (en) 2017-03-28 2020-10-06 Auris Health, Inc. Shaft actuating handle
US10828118B2 (en) 2018-08-15 2020-11-10 Auris Health, Inc. Medical instruments for tissue cauterization
US10849678B2 (en) 2013-12-05 2020-12-01 Immunsys, Inc. Cancer immunotherapy by radiofrequency electrical membrane breakdown (RF-EMB)
US10905396B2 (en) 2014-11-18 2021-02-02 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10959792B1 (en) 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
US10987174B2 (en) 2017-04-07 2021-04-27 Auris Health, Inc. Patient introducer alignment
US11033330B2 (en) 2008-03-06 2021-06-15 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
CN113116470A (en) * 2019-12-30 2021-07-16 先健科技(深圳)有限公司 Cutting balloon catheter and cutting balloon catheter system
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11109928B2 (en) 2019-06-28 2021-09-07 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11141216B2 (en) 2015-01-30 2021-10-12 Immunsys, Inc. Radio-frequency electrical membrane breakdown for the treatment of high risk and recurrent prostate cancer, unresectable pancreatic cancer, tumors of the breast, melanoma or other skin malignancies, sarcoma, soft tissue tumors, ductal carcinoma, neoplasia, and intra and extra luminal abnormal tissue
CN113876424A (en) * 2020-07-02 2022-01-04 西门子医疗有限公司 Method and system for creating a navigation plan for a catheter by means of a robot
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US20220071654A1 (en) * 2018-12-31 2022-03-10 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Tube body cleaning apparatus
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
US11382650B2 (en) 2015-10-30 2022-07-12 Auris Health, Inc. Object capture with a basket
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11399905B2 (en) 2018-06-28 2022-08-02 Auris Health, Inc. Medical systems incorporating pulley sharing
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
US11439419B2 (en) 2019-12-31 2022-09-13 Auris Health, Inc. Advanced basket drive mode
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US11497544B2 (en) 2016-01-15 2022-11-15 Immunsys, Inc. Immunologic treatment of cancer
US11534248B2 (en) 2019-03-25 2022-12-27 Auris Health, Inc. Systems and methods for medical stapling
US11571229B2 (en) 2015-10-30 2023-02-07 Auris Health, Inc. Basket apparatus
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11589913B2 (en) 2019-01-25 2023-02-28 Auris Health, Inc. Vessel sealer with heating and cooling capabilities
US11660137B2 (en) 2006-09-29 2023-05-30 Boston Scientific Medical Device Limited Connector system for electrosurgical device
US11672553B2 (en) 2007-06-22 2023-06-13 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US11684447B2 (en) 2012-05-31 2023-06-27 Boston Scientific Medical Device Limited Radiofrequency perforation apparatus
US11724070B2 (en) 2019-12-19 2023-08-15 Boston Scientific Medical Device Limited Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
US11737845B2 (en) 2019-09-30 2023-08-29 Auris Inc. Medical instrument with a capstan
US11744638B2 (en) 2006-09-29 2023-09-05 Boston Scientific Medical Device Limited Electrosurgical device
US11759190B2 (en) 2019-10-18 2023-09-19 Boston Scientific Medical Device Limited Lock for medical devices, and related systems and methods
US11766290B2 (en) 2015-09-09 2023-09-26 Boston Scientific Medical Device Limited Epicardial access system and methods
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11793446B2 (en) 2020-06-17 2023-10-24 Boston Scientific Medical Device Limited Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies
US11801087B2 (en) 2019-11-13 2023-10-31 Boston Scientific Medical Device Limited Apparatus and methods for puncturing tissue
US11819243B2 (en) 2020-03-19 2023-11-21 Boston Scientific Medical Device Limited Medical sheath and related systems and methods
US11826075B2 (en) 2020-04-07 2023-11-28 Boston Scientific Medical Device Limited Elongated medical assembly
US11839969B2 (en) 2020-06-29 2023-12-12 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
US11864849B2 (en) 2018-09-26 2024-01-09 Auris Health, Inc. Systems and instruments for suction and irrigation
US11878131B2 (en) 2017-12-05 2024-01-23 Boston Scientific Medical Device Limited Transseptal guide wire puncture system
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles
US11925367B2 (en) 2007-01-08 2024-03-12 Ekos Corporation Power parameters for ultrasonic catheter
US11931901B2 (en) 2020-06-30 2024-03-19 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11931098B2 (en) 2020-02-19 2024-03-19 Boston Scientific Medical Device Limited System and method for carrying out a medical procedure
US11938285B2 (en) 2020-06-17 2024-03-26 Boston Scientific Medical Device Limited Stop-movement device for elongated medical assembly
US11937873B2 (en) 2013-03-12 2024-03-26 Boston Scientific Medical Device Limited Electrosurgical device having a lumen
US11937796B2 (en) 2020-06-18 2024-03-26 Boston Scientific Medical Device Limited Tissue-spreader assembly
WO2024064098A1 (en) * 2022-09-19 2024-03-28 Bard Access Systems, Inc. Protective cap for landmarking medical device
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
US11957376B2 (en) 2022-08-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582392B1 (en) 1998-05-01 2003-06-24 Ekos Corporation Ultrasound assembly for use with a catheter
US6911026B1 (en) * 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
AU2004285412A1 (en) 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US20050288655A1 (en) * 2004-06-29 2005-12-29 Howard Root Laser fiber for endovenous therapy having a shielded distal tip
US20070179486A1 (en) * 2004-06-29 2007-08-02 Jeff Welch Laser fiber for endovenous therapy having a shielded distal tip
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US7857810B2 (en) 2006-05-16 2010-12-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation electrode assembly and methods for improved control of temperature and minimization of coagulation and tissue damage
US20080091193A1 (en) 2005-05-16 2008-04-17 James Kauphusman Irrigated ablation catheter having magnetic tip for magnetic field control and guidance
US8128621B2 (en) 2005-05-16 2012-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation electrode assembly and method for control of temperature
US20070040670A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R System and network for remote medical procedures
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
WO2007095191A2 (en) * 2006-02-13 2007-08-23 Retrovascular, Inc. Recanalizing occluded vessels using controlled antegrade and retrograde tracking
US9119651B2 (en) 2006-02-13 2015-09-01 Retro Vascular, Inc. Recanalizing occluded vessels using controlled antegrade and retrograde tracking
WO2007127176A2 (en) 2006-04-24 2007-11-08 Ekos Corporation Ultrasound therapy system
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
JP5479901B2 (en) 2006-10-18 2014-04-23 べシックス・バスキュラー・インコーポレイテッド Induction of desired temperature effects on body tissue
CA2666661C (en) 2006-10-18 2015-01-20 Minnow Medical, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
EP2455034B1 (en) 2006-10-18 2017-07-19 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
EP2111261B1 (en) 2007-01-08 2015-04-15 Ekos Corporation Power parameters for ultrasonic catheter
WO2009029869A2 (en) * 2007-08-30 2009-03-05 Syncro Medical Innovations, Inc. Guided catheter with removable magnetic guide
US9283034B2 (en) 2007-09-26 2016-03-15 Retrovascular, Inc. Recanalization system using radiofrequency energy
WO2009042614A1 (en) * 2007-09-26 2009-04-02 Retro Vascular, Inc. Recanalizing occluded vessels using radiofrequency energy
US9561073B2 (en) 2007-09-26 2017-02-07 Retrovascular, Inc. Energy facilitated composition delivery
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8052684B2 (en) 2007-11-30 2011-11-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter having parallel external flow and proximally tapered electrode
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
EP2331182A1 (en) * 2008-09-02 2011-06-15 Syncro Medical Innovations, Inc. Magnetic device for guiding catheter and method of use therefor
US8348954B2 (en) * 2008-09-16 2013-01-08 Warsaw Orthopedic, Inc. Electronic guidance of spinal instrumentation
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
CN102271603A (en) 2008-11-17 2011-12-07 明诺医学股份有限公司 Selective accumulation of energy with or without knowledge of tissue topography
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
PL2448636T3 (en) 2009-07-03 2014-11-28 Ekos Corp Power parameters for ultrasonic catheter
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
CN102821679B (en) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 For the apparatus and method that catheter navigation and end are located
US8740835B2 (en) * 2010-02-17 2014-06-03 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5980201B2 (en) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Insertion guidance system for needles and medical components
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
JP2013535301A (en) 2010-08-09 2013-09-12 シー・アール・バード・インコーポレーテッド Ultrasonic probe head support / cover structure
BR112013002431B1 (en) 2010-08-20 2021-06-29 C.R. Bard, Inc SYSTEM FOR RECONFIRMING THE POSITION OF A CATHETER INSIDE A PATIENT
US10888657B2 (en) 2010-08-27 2021-01-12 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
EP2632360A4 (en) 2010-10-29 2014-05-21 Bard Inc C R Bioimpedance-assisted placement of a medical device
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
EP2640280B1 (en) 2010-11-16 2022-03-16 TVA Medical, Inc. Devices for forming a fistula
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
KR20140051284A (en) 2011-07-06 2014-04-30 씨. 알. 바드, 인크. Needle length determination and calibration for insertion guidance system
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
WO2013016203A1 (en) 2011-07-22 2013-01-31 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
US8852220B2 (en) * 2011-09-07 2014-10-07 Abbott Cardiovascular Systems, Inc. Thrombus penetrating devices, systems, and methods
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
EP2779929A1 (en) 2011-11-15 2014-09-24 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
JP5885487B2 (en) * 2011-12-09 2016-03-15 オリンパス株式会社 Guided medical system
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096913A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
WO2013101452A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US20130303886A1 (en) * 2012-05-09 2013-11-14 Doron Moshe Ludwin Locating a catheter sheath end point
WO2013188833A2 (en) 2012-06-15 2013-12-19 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
WO2014018685A1 (en) * 2012-07-25 2014-01-30 Fibralign Corporation Medical device and delivery method onto offset surface of mammal tissue
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
JP6074051B2 (en) 2012-10-10 2017-02-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Intravascular neuromodulation system and medical device
US9486276B2 (en) 2012-10-11 2016-11-08 Tva Medical, Inc. Devices and methods for fistula formation
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
KR20150126611A (en) 2013-03-14 2015-11-12 에코스 코퍼레이션 Method and apparatus for drug delivery to a target site
AU2014236149A1 (en) 2013-03-14 2015-09-17 Tva Medical, Inc. Fistula formation devices and methods therefor
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
JP6220044B2 (en) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation
CN105228546B (en) 2013-03-15 2017-11-14 波士顿科学国际有限公司 Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension
AU2014233354B2 (en) 2013-03-15 2017-01-12 Medtronic Af Luxembourg S.A.R.L. Controlled neuromodulation systems and methods of use
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
JP2016524949A (en) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation having a rotatable shaft
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
JP6159888B2 (en) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Flexible circuit with improved adhesion to renal neuromodulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
JP6259099B2 (en) 2013-10-18 2018-01-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Balloon catheter comprising a conductive wire with flexibility, and related uses and manufacturing methods
CN105658163B (en) 2013-10-25 2020-08-18 波士顿科学国际有限公司 Embedded thermocouple in denervation flexible circuit
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3102136B1 (en) 2014-02-04 2018-06-27 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
CN105979868B (en) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 Systems and methods for guidance and placement of intravascular devices
WO2015138998A1 (en) 2014-03-14 2015-09-17 Tva Medical, Inc. Fistula formation devices and methods therefor
CN107072636A (en) 2014-08-21 2017-08-18 皇家飞利浦有限公司 Apparatus and method for break-through occlusion
US10737061B2 (en) * 2014-08-22 2020-08-11 Jaywant P. Parmar Advanced electromagnetic motion and tracking peripherally inserted central venous catheter system with extended endovascular applications
US10646666B2 (en) 2014-08-27 2020-05-12 Tva Medical, Inc. Cryolipolysis devices and methods therefor
US10383683B2 (en) 2014-10-20 2019-08-20 Asahi Medical Technologies, Inc. Redirecting delivery catheter and methods of use thereof
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10603040B1 (en) 2015-02-09 2020-03-31 Tva Medical, Inc. Methods for treating hypertension and reducing blood pressure with formation of fistula
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
EP3181176A1 (en) 2015-12-14 2017-06-21 Aeon Scientific AG Magnetically guided medical device
WO2017124062A1 (en) 2016-01-15 2017-07-20 Tva Medical, Inc. Devices and methods for forming a fistula
EP3402561B1 (en) 2016-01-15 2024-02-28 TVA Medical, Inc. Devices for advancing a wire
US10874422B2 (en) 2016-01-15 2020-12-29 Tva Medical, Inc. Systems and methods for increasing blood flow
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
JP7194676B2 (en) 2016-09-25 2022-12-22 ティーブイエー メディカル, インコーポレイテッド Vascular stent device and method
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
CN114948106A (en) 2017-05-03 2022-08-30 美敦力瓦斯科尔勒公司 Tissue removal catheter with guidewire isolation bushing
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
EP3880096A1 (en) 2018-11-16 2021-09-22 Medtronic Vascular Inc. Tissue-removing catheter
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244362A (en) * 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
US4830460A (en) * 1987-05-19 1989-05-16 Advanced Interventional Systems, Inc. Guidance system and method for delivery system for high-energy pulsed ultraviolet laser light
US5125888A (en) * 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5353807A (en) * 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5358509A (en) * 1991-07-22 1994-10-25 Therateck International, Inc. Atherectomy catheter with improved fluid infusion
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5681260A (en) * 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5706827A (en) * 1994-09-21 1998-01-13 Scimed Life Systems, Inc. Magnetic lumen catheter
US5769843A (en) * 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5865738A (en) * 1993-12-10 1999-02-02 Regents Of The University Of California Tissue viability monitor
US5904147A (en) * 1996-08-16 1999-05-18 University Of Massachusetts Intravascular catheter and method of controlling hemorrhage during minimally invasive surgery
US5916210A (en) * 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5941869A (en) * 1997-02-12 1999-08-24 Prolifix Medical, Inc. Apparatus and method for controlled removal of stenotic material from stents
US5964757A (en) * 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US6030377A (en) * 1996-10-21 2000-02-29 Plc Medical Systems, Inc. Percutaneous transmyocardial revascularization marking system
US6171303B1 (en) * 1996-01-08 2001-01-09 Biosense, Inc. Methods and apparatus for myocardial revascularization
US6173199B1 (en) * 1998-05-05 2001-01-09 Syncro Medical Innovations, Inc. Method and apparatus for intubation of a patient
US6214019B1 (en) * 1999-07-08 2001-04-10 Brain Child Foundation Convergent magnetic stereotaxis system for guidance to a target
US6428551B1 (en) * 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6594517B1 (en) * 1998-05-15 2003-07-15 Robin Medical, Inc. Method and apparatus for generating controlled torques on objects particularly objects inside a living body
US6911026B1 (en) * 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE336642B (en) * 1969-10-28 1971-07-12 Astra Meditec Ab
US4154246A (en) * 1977-07-25 1979-05-15 Leveen Harry H Field intensification in radio frequency thermotherapy
US4671287A (en) 1983-12-29 1987-06-09 Fiddian Green Richard G Apparatus and method for sustaining vitality of organs of the gastrointestinal tract
US4998933A (en) * 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
CA2048120A1 (en) * 1990-08-06 1992-02-07 William J. Drasler Thrombectomy method and device
US5224945A (en) * 1992-01-13 1993-07-06 Interventional Technologies, Inc. Compressible/expandable atherectomy cutter
US5630427A (en) 1992-08-12 1997-05-20 Scimed Life Systems, Inc. Medical shaft movement control device and method
US5623943A (en) 1992-08-12 1997-04-29 Scimed Life Systems, Inc. Magnetic medical shaft movement control device and method
US5318014A (en) * 1992-09-14 1994-06-07 Coraje, Inc. Ultrasonic ablation/dissolution transducer
US5464023A (en) 1994-01-31 1995-11-07 Cordis Corporation Magnetic exchange device for catheters
US6129685A (en) * 1994-02-09 2000-10-10 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
US5647843A (en) 1996-05-24 1997-07-15 Vance Products Incorporated Anti-reflux ureteral stent
US5845646A (en) * 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
US6304769B1 (en) * 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244362A (en) * 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
US4830460A (en) * 1987-05-19 1989-05-16 Advanced Interventional Systems, Inc. Guidance system and method for delivery system for high-energy pulsed ultraviolet laser light
US5681260A (en) * 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5125888A (en) * 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5916210A (en) * 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5358509A (en) * 1991-07-22 1994-10-25 Therateck International, Inc. Atherectomy catheter with improved fluid infusion
US5353807A (en) * 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5865738A (en) * 1993-12-10 1999-02-02 Regents Of The University Of California Tissue viability monitor
US5706827A (en) * 1994-09-21 1998-01-13 Scimed Life Systems, Inc. Magnetic lumen catheter
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6171303B1 (en) * 1996-01-08 2001-01-09 Biosense, Inc. Methods and apparatus for myocardial revascularization
US5769843A (en) * 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5904147A (en) * 1996-08-16 1999-05-18 University Of Massachusetts Intravascular catheter and method of controlling hemorrhage during minimally invasive surgery
US6030377A (en) * 1996-10-21 2000-02-29 Plc Medical Systems, Inc. Percutaneous transmyocardial revascularization marking system
US5941869A (en) * 1997-02-12 1999-08-24 Prolifix Medical, Inc. Apparatus and method for controlled removal of stenotic material from stents
US5964757A (en) * 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US6173199B1 (en) * 1998-05-05 2001-01-09 Syncro Medical Innovations, Inc. Method and apparatus for intubation of a patient
US6594517B1 (en) * 1998-05-15 2003-07-15 Robin Medical, Inc. Method and apparatus for generating controlled torques on objects particularly objects inside a living body
US6428551B1 (en) * 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6214019B1 (en) * 1999-07-08 2001-04-10 Brain Child Foundation Convergent magnetic stereotaxis system for guidance to a target
US6911026B1 (en) * 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy

Cited By (563)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070088077A1 (en) * 1991-02-26 2007-04-19 Plasse Terry F Appetite stimulation and reduction of weight loss in patients suffering from symptomatic hiv infection
US20070021731A1 (en) * 1997-11-12 2007-01-25 Garibaldi Jeffrey M Method of and apparatus for navigating medical devices in body lumens
US20070038074A1 (en) * 1998-02-09 2007-02-15 Ritter Rogers C Method and device for locating magnetic implant source field
US8764700B2 (en) 1998-06-29 2014-07-01 Ekos Corporation Sheath for use with an ultrasound element
US20100063385A1 (en) * 1998-08-07 2010-03-11 Garibaldi Jeffrey M Method and apparatus for magnetically controlling catheters in body lumens and cavities
US20070287909A1 (en) * 1998-08-07 2007-12-13 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US20090177032A1 (en) * 1999-04-14 2009-07-09 Garibaldi Jeffrey M Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US10022145B2 (en) 1999-08-19 2018-07-17 Covidien Lp Methods and devices for cutting tissue
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US20080065124A1 (en) * 1999-08-19 2008-03-13 Foxhollow Technologies, Inc. High capacity debulking catheter with razor edge cutting window
US8911459B2 (en) 1999-08-19 2014-12-16 Covidien Lp Debulking catheters and methods
US9486237B2 (en) 1999-08-19 2016-11-08 Covidien Lp Methods and devices for cutting tissue
US9532799B2 (en) 1999-08-19 2017-01-03 Covidien Lp Method and devices for cutting tissue
US9615850B2 (en) 1999-08-19 2017-04-11 Covidien Lp Atherectomy catheter with aligned imager
US9788854B2 (en) 1999-08-19 2017-10-17 Covidien Lp Debulking catheters and methods
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US20080047568A1 (en) * 1999-10-04 2008-02-28 Ritter Rogers C Method for Safely and Efficiently Navigating Magnetic Devices in the Body
US7757694B2 (en) 1999-10-04 2010-07-20 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US7966059B2 (en) 1999-10-04 2011-06-21 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US20070146106A1 (en) * 1999-10-04 2007-06-28 Creighton Francis M Iv Rotating and pivoting magnet for magnetic navigation
US7771415B2 (en) 1999-10-04 2010-08-10 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US20020153015A1 (en) * 2000-02-16 2002-10-24 Garibaldi Jeffrey M. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US7341063B2 (en) 2000-02-16 2008-03-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US6786219B2 (en) * 2000-02-16 2004-09-07 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US20070088197A1 (en) * 2000-02-16 2007-04-19 Sterotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US20100163061A1 (en) * 2000-04-11 2010-07-01 Creighton Francis M Magnets with varying magnetization direction and method of making such magnets
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US9241733B2 (en) 2000-12-20 2016-01-26 Covidien Lp Debulking catheter
US20040267106A1 (en) * 2001-01-29 2004-12-30 Segner Garland L Electrophysiology catheter
US7766856B2 (en) 2001-05-06 2010-08-03 Stereotaxis, Inc. System and methods for advancing a catheter
US20020177789A1 (en) * 2001-05-06 2002-11-28 Ferry Steven J. System and methods for advancing a catheter
US8114032B2 (en) * 2001-05-06 2012-02-14 Stereotaxis, Inc. Systems and methods for medical device advancement and rotation
US7276044B2 (en) 2001-05-06 2007-10-02 Stereotaxis, Inc. System and methods for advancing a catheter
US20080045892A1 (en) * 2001-05-06 2008-02-21 Ferry Steven J System and Methods for Advancing a Catheter
US20100305502A1 (en) * 2001-05-06 2010-12-02 Ferry Steven J Systems and methods for medical device advancement and rotation
US10080878B2 (en) 2001-12-03 2018-09-25 Ekos Corporation Catheter with multiple ultrasound radiating members
US20070112296A1 (en) * 2001-12-03 2007-05-17 Wilson Richard R Catheter with multiple ultrasound radiating members
US8167831B2 (en) 2001-12-03 2012-05-01 Ekos Corporation Catheter with multiple ultrasound radiating members
US7727178B2 (en) 2001-12-03 2010-06-01 Ekos Corporation Catheter with multiple ultrasound radiating members
US10926074B2 (en) 2001-12-03 2021-02-23 Ekos Corporation Catheter with multiple ultrasound radiating members
US20070106203A1 (en) * 2001-12-03 2007-05-10 Wilson Richard R Catheter with multiple ultrasound radiating members
US7828762B2 (en) 2001-12-03 2010-11-09 Ekos Corporation Catheter with multiple ultrasound radiating members
US9415242B2 (en) 2001-12-03 2016-08-16 Ekos Corporation Catheter with multiple ultrasound radiating members
US8696612B2 (en) 2001-12-03 2014-04-15 Ekos Corporation Catheter with multiple ultrasound radiating members
US6979293B2 (en) 2001-12-14 2005-12-27 Ekos Corporation Blood flow reestablishment determination
US20060106308A1 (en) * 2001-12-14 2006-05-18 Hansmann Douglas R Blood flow reestablishment determination
US20050161052A1 (en) * 2002-02-01 2005-07-28 Rezai Ali R. Method and apparatus for subcutaneously advancing a device between locations
US7833174B2 (en) 2002-02-01 2010-11-16 The Cleveland Clinic Foundation Method and apparatus for subcutaneously advancing a device between locations
WO2003065874A3 (en) * 2002-02-01 2009-06-18 Cleveland Clinic Foundation Method and apparatus for subcutaneously advancing a device between locations
WO2003065874A2 (en) * 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Method and apparatus for subcutaneously advancing a device between locations
US20040169316A1 (en) * 2002-03-28 2004-09-02 Siliconix Taiwan Ltd. Encapsulation method and leadframe for leadless semiconductor packages
US9943675B1 (en) 2002-04-01 2018-04-17 Ekos Corporation Ultrasonic catheter power control
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
US8852166B1 (en) 2002-04-01 2014-10-07 Ekos Corporation Ultrasonic catheter power control
US8060184B2 (en) 2002-06-28 2011-11-15 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
US20080077007A1 (en) * 2002-06-28 2008-03-27 Hastings Roger N Method of Navigating Medical Devices in the Presence of Radiopaque Material
US7734332B2 (en) * 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US20060015126A1 (en) * 2002-10-18 2006-01-19 Arieh Sher Atherectomy system with imaging guidewire
US8419681B2 (en) 2002-11-18 2013-04-16 Stereotaxis, Inc. Magnetically navigable balloon catheters
WO2004047647A3 (en) * 2002-11-22 2004-12-09 Martina Grosspointner Apparatus for treating defects of vessels
WO2004047647A2 (en) * 2002-11-22 2004-06-10 Martina Grosspointner Apparatus for treating defects of vessels
DE10255957A1 (en) * 2002-11-29 2004-08-12 Siemens Ag Medical examination and / or treatment system
DE10255957B4 (en) * 2002-11-29 2010-09-09 Siemens Ag Medical examination and / or treatment system
US8092450B2 (en) * 2003-01-21 2012-01-10 Baylis Medical Company Inc. Magnetically guidable energy delivery apparatus and method of using same
US20070123964A1 (en) * 2003-01-21 2007-05-31 Baylis Medical Company Magnetically guidable energy delivery apparatus and method of using same
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US9999438B2 (en) 2003-04-22 2018-06-19 Covidien Lp Methods and devices for cutting tissue at a vascular location
US8961546B2 (en) 2003-04-22 2015-02-24 Covidien Lp Methods and devices for cutting tissue at a vascular location
US20080319303A1 (en) * 2003-05-02 2008-12-25 Sabo Michael E Variable magnetic moment mr navigation
US8196590B2 (en) 2003-05-02 2012-06-12 Stereotaxis, Inc. Variable magnetic moment MR navigation
US7346379B2 (en) 2003-05-21 2008-03-18 Stereotaxis, Inc. Electrophysiology catheter
US20060278246A1 (en) * 2003-05-21 2006-12-14 Michael Eng Electrophysiology catheter
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US7720528B2 (en) * 2004-01-09 2010-05-18 Siemens Aktiengesellschaft Catheter for inserting into a vessel
US20050192496A1 (en) * 2004-01-09 2005-09-01 Michael Maschke Catheter for inserting into a vessel
US20070161951A1 (en) * 2004-01-29 2007-07-12 Ekos Corporation Treatment of vascular occlusions using elevated temperatures
US20050209578A1 (en) * 2004-01-29 2005-09-22 Christian Evans Edward A Ultrasonic catheter with segmented fluid delivery
US20050215946A1 (en) * 2004-01-29 2005-09-29 Hansmann Douglas R Method and apparatus for detecting vascular conditions with a catheter
US9107590B2 (en) 2004-01-29 2015-08-18 Ekos Corporation Method and apparatus for detecting vascular conditions with a catheter
US20050203553A1 (en) * 2004-02-20 2005-09-15 Siemens Aktiengesellschaft Device for the performance and monitoring of rotablation
DE102004008370A1 (en) * 2004-02-20 2005-09-15 Siemens Ag Implementing and monitoring apparatus for removal of plaque in blood vessel wall has removing catheter and optical coherence tomographic catheter which are built into one structure unit
DE102004008368B4 (en) * 2004-02-20 2006-05-24 Siemens Ag Catheter for performing and monitoring rotablation
US20050203558A1 (en) * 2004-02-20 2005-09-15 Siemens Aktiengesellschaft Device for applying and monitoring medical rotablation
US20050187571A1 (en) * 2004-02-20 2005-08-25 Siemens Aktiengesellschaft Device for applying and monitoring medical atherectomy
US8359086B2 (en) * 2004-02-20 2013-01-22 Siemens Aktiengesellschaft Device for applying and monitoring medical atherectomy
DE102004008370B4 (en) * 2004-02-20 2006-06-01 Siemens Ag Catheter for performing and monitoring rotablation
US8092395B2 (en) * 2004-03-26 2012-01-10 Brivant Research & Development Limited Guide wire for use in re-canalising a vascular occlusion in a human or animal subject
US9802026B2 (en) 2004-03-26 2017-10-31 Brivant Research & Development Limited Guide wire for use in re-canalising a vascular occlusion in a human or animal subject
US20070198044A1 (en) * 2004-03-26 2007-08-23 Lupton Henry W Guide Wire For Use In Re-Canalising A Vascular Occlusion In A Human Or Animal Subject
JP2007530130A (en) * 2004-03-26 2007-11-01 ブリヴァント リサーチ アンド ディベロップメント リミテッド Guide wire for use in reopening a vascular occlusion site in a human or animal subject
US20050222596A1 (en) * 2004-03-31 2005-10-06 Siemens Aktiengesellschaft Device for implementing a cutting balloon intervention with IVUS monitoring
US20050222594A1 (en) * 2004-03-31 2005-10-06 Siemens Aktiengesellschaft Catheter device for applying a medical cutting balloon intervention
US20050234343A1 (en) * 2004-03-31 2005-10-20 Siemens Aktiengesellschaft Medical device for removing a vascular occlusion
DE102004015640B4 (en) * 2004-03-31 2007-05-03 Siemens Ag Apparatus for performing a cutting-balloon intervention with OCT monitoring
JP2005288166A (en) * 2004-03-31 2005-10-20 Siemens Ag Device for implementing cutting balloon intervention treatment with monitoring by optical coherence tomography
US7704210B2 (en) * 2004-03-31 2010-04-27 Siemens Aktiengesellschaft Medical device for removing a vascular occlusion
US7637885B2 (en) 2004-03-31 2009-12-29 Siemens Aktiengesellschaft Catheter device for applying a medical cutting balloon intervention
JP2005288167A (en) * 2004-03-31 2005-10-20 Siemens Ag Device for removing total vascular occlusion with monitoring by intravascular ultrasound method
DE102004015639B4 (en) * 2004-03-31 2007-05-03 Siemens Ag Apparatus for performing cutting-balloon intervention with IVUS monitoring
US8109951B2 (en) 2004-03-31 2012-02-07 Siemens Aktiengesellschaft Device for implementing a cutting balloon intervention with IVUS monitoring
DE102004015640A1 (en) * 2004-03-31 2005-10-27 Siemens Ag Apparatus for performing a cutting-balloon intervention with OCT monitoring
DE102004015639A1 (en) * 2004-03-31 2005-10-27 Siemens Ag Apparatus for performing cutting-balloon intervention with IVUS monitoring
US7543239B2 (en) 2004-06-04 2009-06-02 Stereotaxis, Inc. User interface for remote control of medical devices
US20060036163A1 (en) * 2004-07-19 2006-02-16 Viswanathan Raju R Method of, and apparatus for, controlling medical navigation systems
US20060144407A1 (en) * 2004-07-20 2006-07-06 Anthony Aliberto Magnetic navigation manipulation apparatus
US20080006280A1 (en) * 2004-07-20 2008-01-10 Anthony Aliberto Magnetic navigation maneuvering sheath
US20060144408A1 (en) * 2004-07-23 2006-07-06 Ferry Steven J Micro-catheter device and method of using same
US20060079745A1 (en) * 2004-10-07 2006-04-13 Viswanathan Raju R Surgical navigation with overlay on anatomical images
US7831294B2 (en) 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US20060089638A1 (en) * 2004-10-27 2006-04-27 Yuval Carmel Radio-frequency device for passivation of vascular plaque and method of using same
US20060184070A1 (en) * 2004-11-12 2006-08-17 Hansmann Douglas R External ultrasonic therapy
US7785261B2 (en) * 2004-11-15 2010-08-31 Siemens Aktiengesellschaft Catheter device with a position sensor system for treating a vessel blockage using image monitoring
US20070066888A1 (en) * 2004-11-15 2007-03-22 Siemens Aktiengesellschaft Catheter device with a position sensor system for treating a vessel blockage using image monitoring
US20090149739A9 (en) * 2004-11-15 2009-06-11 Siemens Aktiengesellschaft Catheter device with a position sensor system for treating a vessel blockage using image monitoring
US20060173387A1 (en) * 2004-12-10 2006-08-03 Douglas Hansmann Externally enhanced ultrasonic therapy
US8369934B2 (en) 2004-12-20 2013-02-05 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US7751867B2 (en) 2004-12-20 2010-07-06 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US20110022029A1 (en) * 2004-12-20 2011-01-27 Viswanathan Raju R Contact over-torque with three-dimensional anatomical data
US7653441B2 (en) 2004-12-23 2010-01-26 Siemens Aktiengesellschaft Intravenous pacemaker electrode
US20060190068A1 (en) * 2004-12-23 2006-08-24 Siemens Aktiengesellschaft Intravenous spacemaker electrode
US20060142813A1 (en) * 2004-12-23 2006-06-29 Siemens Aktiengesellschaft Implantable pacemaker
US8473052B2 (en) * 2004-12-23 2013-06-25 Siemens Aktiengesellschaft Implantable pacemaker
USRE46562E1 (en) 2005-01-11 2017-10-03 Volcano Corporation Vascular image co-registration
US7708696B2 (en) 2005-01-11 2010-05-04 Stereotaxis, Inc. Navigation using sensed physiological data as feedback
USRE45534E1 (en) 2005-01-11 2015-06-02 Volcano Corporation Vascular image co-registration
US20060241465A1 (en) * 2005-01-11 2006-10-26 Volcano Corporation Vascular image co-registration
US7930014B2 (en) 2005-01-11 2011-04-19 Volcano Corporation Vascular image co-registration
US20060270915A1 (en) * 2005-01-11 2006-11-30 Ritter Rogers C Navigation using sensed physiological data as feedback
US7756308B2 (en) 2005-02-07 2010-07-13 Stereotaxis, Inc. Registration of three dimensional image data to 2D-image-derived data
US7961926B2 (en) 2005-02-07 2011-06-14 Stereotaxis, Inc. Registration of three-dimensional image data to 2D-image-derived data
US20110033100A1 (en) * 2005-02-07 2011-02-10 Viswanathan Raju R Registration of three-dimensional image data to 2d-image-derived data
US20060269108A1 (en) * 2005-02-07 2006-11-30 Viswanathan Raju R Registration of three dimensional image data to 2D-image-derived data
US9974930B2 (en) 2005-03-24 2018-05-22 Brivant Research & Development Limited Guide wire for use in re-canalising a vascular occlusion in a human or animal subject
US7742803B2 (en) 2005-05-06 2010-06-22 Stereotaxis, Inc. Voice controlled user interface for remote navigation systems
US20060281989A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R Voice controlled user interface for remote navigation systems
US20060281990A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R User interfaces and navigation methods for vascular navigation
US20060276867A1 (en) * 2005-06-02 2006-12-07 Viswanathan Raju R Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20070062546A1 (en) * 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US8298147B2 (en) 2005-06-24 2012-10-30 Volcano Corporation Three dimensional co-registration for intravascular diagnosis and therapy
US9314222B2 (en) 2005-07-07 2016-04-19 Stereotaxis, Inc. Operation of a remote medical navigation system using ultrasound image
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US20090062646A1 (en) * 2005-07-07 2009-03-05 Creighton Iv Francis M Operation of a remote medical navigation system using ultrasound image
US20070038064A1 (en) * 2005-07-08 2007-02-15 Creighton Francis M Iv Magnetic navigation and imaging system
US7603905B2 (en) 2005-07-08 2009-10-20 Stereotaxis, Inc. Magnetic navigation and imaging system
US20070060966A1 (en) * 2005-07-11 2007-03-15 Carlo Pappone Method of treating cardiac arrhythmias
US7769444B2 (en) 2005-07-11 2010-08-03 Stereotaxis, Inc. Method of treating cardiac arrhythmias
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US20070019330A1 (en) * 2005-07-12 2007-01-25 Charles Wolfersberger Apparatus for pivotally orienting a projection device
US20070030958A1 (en) * 2005-07-15 2007-02-08 Munger Gareth T Magnetically shielded x-ray tube
US7416335B2 (en) 2005-07-15 2008-08-26 Sterotaxis, Inc. Magnetically shielded x-ray tube
US8192374B2 (en) 2005-07-18 2012-06-05 Stereotaxis, Inc. Estimation of contact force by a medical device
US20070021742A1 (en) * 2005-07-18 2007-01-25 Viswanathan Raju R Estimation of contact force by a medical device
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US7818076B2 (en) 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US20110087237A1 (en) * 2005-07-26 2011-04-14 Viswanathan Raju R Method and apparatus for multi-system remote surgical navigation from a single control center
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US7772950B2 (en) * 2005-08-10 2010-08-10 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20090206972A1 (en) * 2005-08-10 2009-08-20 Ilker Tunay Method and apparatus for dynamic magnetic field control using multiple magnets
US7495537B2 (en) 2005-08-10 2009-02-24 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20070038410A1 (en) * 2005-08-10 2007-02-15 Ilker Tunay Method and apparatus for dynamic magnetic field control using multiple magnets
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US7753852B2 (en) * 2005-09-22 2010-07-13 Siemens Aktiengesellschaft Atherectomy catheter with combined OCT/IVUS imaging
US20070066890A1 (en) * 2005-09-22 2007-03-22 Siemens Aktiengesellschaft Catheter device
US20070066983A1 (en) * 2005-09-22 2007-03-22 Siemens Aktiengesellschaft Device for carrying out rotablation
US7729745B2 (en) * 2005-09-22 2010-06-01 Siemens Aktiengesellschaft Device for carrying out rotablation
US20080300588A1 (en) * 2005-12-02 2008-12-04 Koninklijke Philips Electronics, N.V. Automating the Ablation Procedure to Minimize the Need for Manual Intervention
WO2007063443A2 (en) * 2005-12-02 2007-06-07 Koninklijke Philips Electronics, N.V. Automating the ablation procedure to minimize the need for manual intervention
WO2007063443A3 (en) * 2005-12-02 2007-11-01 Koninkl Philips Electronics Nv Automating the ablation procedure to minimize the need for manual intervention
US20070167720A1 (en) * 2005-12-06 2007-07-19 Viswanathan Raju R Smart card control of medical devices
US20070149946A1 (en) * 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US8208990B2 (en) * 2005-12-12 2012-06-26 Siemens Aktiengesellschaft Catheter device
US20070135712A1 (en) * 2005-12-12 2007-06-14 Siemens Aktiengesellschaft Catheter device
US8148978B2 (en) 2005-12-30 2012-04-03 Depuy Products, Inc. Magnetic sensor array
US20070163367A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Magnetic sensor array
US20070167741A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20070167703A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Method for determining a position of a magnetic source
US20070161888A1 (en) * 2005-12-30 2007-07-12 Sherman Jason T System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US8862200B2 (en) 2005-12-30 2014-10-14 DePuy Synthes Products, LLC Method for determining a position of a magnetic source
US20070161882A1 (en) * 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20070179492A1 (en) * 2006-01-06 2007-08-02 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20100168549A1 (en) * 2006-01-06 2010-07-01 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20070197899A1 (en) * 2006-01-17 2007-08-23 Ritter Rogers C Apparatus and method for magnetic navigation using boost magnets
US20070197906A1 (en) * 2006-01-24 2007-08-23 Ritter Rogers C Magnetic field shape-adjustable medical device and method of using the same
WO2007090075A3 (en) * 2006-01-27 2007-12-21 Baylis Medical Co Inc Magnetically guidable energy delivery apparatus and method of using same
WO2007090075A2 (en) * 2006-01-27 2007-08-09 Baylis Medical Company Inc. Magnetically guidable energy delivery apparatus and method of using same
US20070208400A1 (en) * 2006-03-01 2007-09-06 The General Hospital Corporation System and method for providing cell specific laser therapy of atherosclerotic plaques by targeting light absorbers in macrophages
US20070220479A1 (en) * 2006-03-14 2007-09-20 Hughes John M Systems and methods for software development
US20070233200A1 (en) * 2006-03-31 2007-10-04 Siemens Aktiengesellschaft Implantable pacemaker
US8452397B2 (en) 2006-03-31 2013-05-28 Siemens Aktiengesellschaft Implantable pacemaker
US20070250041A1 (en) * 2006-04-19 2007-10-25 Werp Peter R Extendable Interventional Medical Devices
US20070265521A1 (en) * 2006-05-15 2007-11-15 Thomas Redel Integrated MRI and OCT system and dedicated workflow for planning, online guiding and monitoring of interventions using MRI in combination with OCT
US10588653B2 (en) 2006-05-26 2020-03-17 Covidien Lp Catheter including cutting element and energy emitting element
US9801647B2 (en) 2006-05-26 2017-10-31 Covidien Lp Catheter including cutting element and energy emitting element
US11666355B2 (en) 2006-05-26 2023-06-06 Covidien Lp Catheter including cutting element and energy emitting element
WO2007145638A1 (en) * 2006-06-14 2007-12-21 Michael Gertner Medical devices with integral magnets and uses thereof
US11116574B2 (en) 2006-06-16 2021-09-14 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20080077158A1 (en) * 2006-06-16 2008-03-27 Hani Haider Method and Apparatus for Computer Aided Surgery
US11857265B2 (en) 2006-06-16 2024-01-02 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20080015427A1 (en) * 2006-06-30 2008-01-17 Nathan Kastelein System and network for remote medical procedures
US20080039830A1 (en) * 2006-08-14 2008-02-14 Munger Gareth T Method and Apparatus for Ablative Recanalization of Blocked Vasculature
US7961924B2 (en) 2006-08-21 2011-06-14 Stereotaxis, Inc. Method of three-dimensional device localization using single-plane imaging
US20100222669A1 (en) * 2006-08-23 2010-09-02 William Flickinger Medical device guide
US20080058609A1 (en) * 2006-09-06 2008-03-06 Stereotaxis, Inc. Workflow driven method of performing multi-step medical procedures
US20080064933A1 (en) * 2006-09-06 2008-03-13 Stereotaxis, Inc. Workflow driven display for medical procedures
US8244824B2 (en) 2006-09-06 2012-08-14 Stereotaxis, Inc. Coordinated control for multiple computer-controlled medical systems
US20100097315A1 (en) * 2006-09-06 2010-04-22 Garibaldi Jeffrey M Global input device for multiple computer-controlled medical systems
US8806359B2 (en) 2006-09-06 2014-08-12 Stereotaxis, Inc. Workflow driven display for medical procedures
US7567233B2 (en) 2006-09-06 2009-07-28 Stereotaxis, Inc. Global input device for multiple computer-controlled medical systems
US8242972B2 (en) 2006-09-06 2012-08-14 Stereotaxis, Inc. System state driven display for medical procedures
US7747960B2 (en) 2006-09-06 2010-06-29 Stereotaxis, Inc. Control for, and method of, operating at least two medical systems
US20080059598A1 (en) * 2006-09-06 2008-03-06 Garibaldi Jeffrey M Coordinated Control for Multiple Computer-Controlled Medical Systems
US8799792B2 (en) 2006-09-06 2014-08-05 Stereotaxis, Inc. Workflow driven method of performing multi-step medical procedures
US8273081B2 (en) 2006-09-08 2012-09-25 Stereotaxis, Inc. Impedance-based cardiac therapy planning method with a remote surgical navigation system
US20080065061A1 (en) * 2006-09-08 2008-03-13 Viswanathan Raju R Impedance-Based Cardiac Therapy Planning Method with a Remote Surgical Navigation System
US20080064969A1 (en) * 2006-09-11 2008-03-13 Nathan Kastelein Automated Mapping of Anatomical Features of Heart Chambers
US7537570B2 (en) 2006-09-11 2009-05-26 Stereotaxis, Inc. Automated mapping of anatomical features of heart chambers
US11666377B2 (en) 2006-09-29 2023-06-06 Boston Scientific Medical Device Limited Electrosurgical device
US11660137B2 (en) 2006-09-29 2023-05-30 Boston Scientific Medical Device Limited Connector system for electrosurgical device
US11744638B2 (en) 2006-09-29 2023-09-05 Boston Scientific Medical Device Limited Electrosurgical device
US8135185B2 (en) 2006-10-20 2012-03-13 Stereotaxis, Inc. Location and display of occluded portions of vessels on 3-D angiographic images
US20080097200A1 (en) * 2006-10-20 2008-04-24 Blume Walter M Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images
US8192363B2 (en) 2006-10-27 2012-06-05 Ekos Corporation Catheter with multiple ultrasound radiating members
US20080103417A1 (en) * 2006-10-27 2008-05-01 Azita Soltani Catheter with multiple ultrasound radiating members
US20080132910A1 (en) * 2006-11-07 2008-06-05 Carlo Pappone Control for a Remote Navigation System
US8753281B2 (en) 2006-11-08 2014-06-17 Lightlab Imaging Inc. Opto-acoustic imaging devices and methods
US8068648B2 (en) 2006-12-21 2011-11-29 Depuy Products, Inc. Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20080154127A1 (en) * 2006-12-21 2008-06-26 Disilvestro Mark R Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
US11478269B2 (en) 2007-01-02 2022-10-25 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
US11925367B2 (en) 2007-01-08 2024-03-12 Ekos Corporation Power parameters for ultrasonic catheter
US20080200913A1 (en) * 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US20080208912A1 (en) * 2007-02-26 2008-08-28 Garibaldi Jeffrey M System and method for providing contextually relevant medical information
US20080228065A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices
US20080228068A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data
US20080287909A1 (en) * 2007-05-17 2008-11-20 Viswanathan Raju R Method and apparatus for intra-chamber needle injection treatment
US20080294232A1 (en) * 2007-05-22 2008-11-27 Viswanathan Raju R Magnetic cell delivery
US20080292901A1 (en) * 2007-05-24 2008-11-27 Hon Hai Precision Industry Co., Ltd. Magnesium alloy and thin workpiece made of the same
US20080312673A1 (en) * 2007-06-05 2008-12-18 Viswanathan Raju R Method and apparatus for CTO crossing
US11672553B2 (en) 2007-06-22 2023-06-13 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US20090177037A1 (en) * 2007-06-27 2009-07-09 Viswanathan Raju R Remote control of medical devices using real time location data
US8024024B2 (en) 2007-06-27 2011-09-20 Stereotaxis, Inc. Remote control of medical devices using real time location data
US9111016B2 (en) 2007-07-06 2015-08-18 Stereotaxis, Inc. Management of live remote medical display
US20090012821A1 (en) * 2007-07-06 2009-01-08 Guy Besson Management of live remote medical display
US20090082722A1 (en) * 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
US8394091B2 (en) * 2007-08-24 2013-03-12 Boston Scientific Scimed, Inc. Magnetically steerable catheter assembly
US20090062789A1 (en) * 2007-08-24 2009-03-05 Boston Scientific Scimed, Inc. Magnetically steerable catheter assembly
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US20090131927A1 (en) * 2007-11-20 2009-05-21 Nathan Kastelein Method and apparatus for remote detection of rf ablation
US20090156894A1 (en) * 2007-12-18 2009-06-18 Storz Medical Ag Navigation for focused wave treatment
US8414472B2 (en) 2007-12-18 2013-04-09 Storz Medical Ag Navigation for focused wave treatment
US10219824B2 (en) 2008-02-25 2019-03-05 Covidien Lp Methods and devices for cutting tissue
US20090216180A1 (en) * 2008-02-25 2009-08-27 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20090306643A1 (en) * 2008-02-25 2009-12-10 Carlo Pappone Method and apparatus for delivery and detection of transmural cardiac ablation lesions
US9445834B2 (en) 2008-02-25 2016-09-20 Covidien Lp Methods and devices for cutting tissue
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US11172986B2 (en) 2008-03-06 2021-11-16 Aquabeam Llc Ablation with energy carried in fluid stream
US11033330B2 (en) 2008-03-06 2021-06-15 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
US11759258B2 (en) 2008-03-06 2023-09-19 Aquabeam, Llc Controlled ablation with laser energy
US20160235495A1 (en) * 2008-03-10 2016-08-18 Hansen Medical, Inc. Robotic ablation catheter
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20090234445A1 (en) * 2008-03-12 2009-09-17 Siemens Aktiengesellschaft Catheter device and associated Medical examination and treatment apparatus as well as associated method
US10869685B2 (en) 2008-04-23 2020-12-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US8361097B2 (en) 2008-04-23 2013-01-29 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US20100069733A1 (en) * 2008-09-05 2010-03-18 Nathan Kastelein Electrophysiology catheter with electrode loop
US10507037B2 (en) 2008-10-13 2019-12-17 Covidien Lp Method for manipulating catheter shaft
US9192406B2 (en) 2008-10-13 2015-11-24 Covidien Lp Method for manipulating catheter shaft
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
US20110201922A1 (en) * 2008-10-28 2011-08-18 Koninklijke Philips Electronics N.V. Optical probe having a position measuring system
US8977343B2 (en) * 2008-10-28 2015-03-10 Koninklijke Philips N.V. Optical probe having a position measuring system
JP2012506721A (en) * 2008-10-28 2012-03-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical probe with position measurement system
US20100125282A1 (en) * 2008-11-14 2010-05-20 Medtronic Vascular, Inc. Robotically Steered RF Catheter
US20100268209A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated snare
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US20100268207A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Adjustable ferromagnetic coated conductor thermal surgical tool
US20100268205A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US20100268206A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with multi-mode surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US8491578B2 (en) * 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US20100268213A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode surgical tool
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US20100268215A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Catheter with inductively heated regions
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US20100268212A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method for inductively heating a surgical implement
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US8372066B2 (en) 2009-04-17 2013-02-12 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US20100268214A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Surgical tool with inductively heated regions
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US20100268208A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Surgical scalpel with inductively heated regions
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US20100268216A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode ultrasonic surgical tool
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US20100268211A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively Heated Multi-Mode Bipolar Surgical Tool
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US20100268210A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated surgical implement driver
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US8696695B2 (en) 2009-04-28 2014-04-15 Avinger, Inc. Guidewire positioning catheter
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US20100312263A1 (en) * 2009-04-29 2010-12-09 Fox Hollow Technologies, Inc. Methods and devices for cutting and abrading tissue
US10555753B2 (en) 2009-04-29 2020-02-11 Covidien Lp Methods and devices for cutting and abrading tissue
US9220530B2 (en) 2009-05-14 2015-12-29 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8574249B2 (en) 2009-05-14 2013-11-05 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US20110130718A1 (en) * 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
US10537713B2 (en) 2009-05-25 2020-01-21 Stereotaxis, Inc. Remote manipulator device
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US20100305452A1 (en) * 2009-05-28 2010-12-02 Black John F Optical coherence tomography for biological imaging
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
US9439735B2 (en) 2009-06-08 2016-09-13 MRI Interventions, Inc. MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US9259290B2 (en) 2009-06-08 2016-02-16 MRI Interventions, Inc. MRI-guided surgical systems with proximity alerts
US20100312094A1 (en) * 2009-06-08 2010-12-09 Michael Guttman Mri-guided surgical systems with preset scan planes
US20100312096A1 (en) * 2009-06-08 2010-12-09 Michael Guttman Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US8825133B2 (en) 2009-06-16 2014-09-02 MRI Interventions, Inc. MRI-guided catheters
US8369930B2 (en) 2009-06-16 2013-02-05 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US20100317962A1 (en) * 2009-06-16 2010-12-16 Jenkins Kimble L MRI-Guided Devices and MRI-Guided Interventional Systems that can Track and Generate Dynamic Visualizations of the Devices in near Real Time
US8886288B2 (en) 2009-06-16 2014-11-11 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US8768433B2 (en) 2009-06-16 2014-07-01 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US10052125B2 (en) * 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US20110021926A1 (en) * 2009-07-01 2011-01-27 Spencer Maegan K Catheter-based off-axis optical coherence tomography imaging system
US20170065293A1 (en) * 2009-07-01 2017-03-09 Michael H. Rosenthal Atherectomy catheter with laterally-displaceable tip
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US11717314B2 (en) * 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
EP2448502A4 (en) * 2009-07-01 2015-07-15 Avinger Inc Atherectomy catheter with laterally-displaceable tip
US9498600B2 (en) * 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US20110004107A1 (en) * 2009-07-01 2011-01-06 Rosenthal Michael H Atherectomy catheter with laterally-displaceable tip
US20110046618A1 (en) * 2009-08-04 2011-02-24 Minar Christopher D Methods and systems for treating occluded blood vessels and other body cannula
US8308628B2 (en) 2009-11-02 2012-11-13 Pulse Therapeutics, Inc. Magnetic-based systems for treating occluded vessels
US10029008B2 (en) 2009-11-02 2018-07-24 Pulse Therapeutics, Inc. Therapeutic magnetic control systems and contrast agents
US11000589B2 (en) 2009-11-02 2021-05-11 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US8529428B2 (en) 2009-11-02 2013-09-10 Pulse Therapeutics, Inc. Methods of controlling magnetic nanoparticles to improve vascular flow
US9345498B2 (en) 2009-11-02 2016-05-24 Pulse Therapeutics, Inc. Methods of controlling magnetic nanoparticles to improve vascular flow
US9339664B2 (en) 2009-11-02 2016-05-17 Pulse Therapetics, Inc. Control of magnetic rotors to treat therapeutic targets
US10159734B2 (en) 2009-11-02 2018-12-25 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US8715150B2 (en) 2009-11-02 2014-05-06 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US8313422B2 (en) 2009-11-02 2012-11-20 Pulse Therapeutics, Inc. Magnetic-based methods for treating vessel obstructions
US8926491B2 (en) 2009-11-02 2015-01-06 Pulse Therapeutics, Inc. Controlling magnetic nanoparticles to increase vascular flow
US11612655B2 (en) 2009-11-02 2023-03-28 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US10813997B2 (en) 2009-11-02 2020-10-27 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US10499947B2 (en) 2009-12-02 2019-12-10 Covidien Lp Device for cutting tissue
US9687267B2 (en) 2009-12-02 2017-06-27 Covidien Lp Device for cutting tissue
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US10751082B2 (en) 2009-12-11 2020-08-25 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9913659B2 (en) 2009-12-11 2018-03-13 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9855072B2 (en) 2010-06-14 2018-01-02 Covidien Lp Material removal device and method of use
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9463302B2 (en) 2010-08-05 2016-10-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Movable magnet for magnetically guided catheter
US8532743B2 (en) * 2010-08-05 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Movable magnet for magnetically guided catheter
US20120035460A1 (en) * 2010-08-05 2012-02-09 Stangenes Todd R Movable magnet for magnetically guided catheter
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US9717520B2 (en) 2010-10-28 2017-08-01 Covidien Lp Material removal device and method of use
US10952762B2 (en) 2010-10-28 2021-03-23 Covidien Lp Material removal device and method of use
US9326789B2 (en) 2010-11-11 2016-05-03 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US10350390B2 (en) 2011-01-20 2019-07-16 Auris Health, Inc. System and method for endoluminal and translumenal therapy
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US8644913B2 (en) * 2011-03-28 2014-02-04 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US20120253186A1 (en) * 2011-03-28 2012-10-04 Simpson John B Occlusion-crossing devices, imaging, and atherectomy devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US9149321B2 (en) 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10080617B2 (en) 2011-06-27 2018-09-25 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US10335188B2 (en) 2011-09-01 2019-07-02 Covidien Lp Methods of manufacture of catheter with helical drive shaft
US9770259B2 (en) 2011-09-01 2017-09-26 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US20130096589A1 (en) * 2011-10-17 2013-04-18 Maegan K. Spencer Atherectomy catheters and non-contact actuation mechanism for catheters
US10363062B2 (en) * 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US20130197297A1 (en) * 2012-01-27 2013-08-01 Kurt J. Tekulve Magnetic clot disrupter
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US11737776B2 (en) 2012-02-29 2023-08-29 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US10646241B2 (en) 2012-05-15 2020-05-12 Pulse Therapeutics, Inc. Detection of fluidic current generated by rotating magnetic particles
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
US11684447B2 (en) 2012-05-31 2023-06-27 Boston Scientific Medical Device Limited Radiofrequency perforation apparatus
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US10406316B2 (en) 2012-09-13 2019-09-10 Covidien Lp Cleaning device for medical instrument and method of use
US10434281B2 (en) 2012-09-13 2019-10-08 Covidien Lp Cleaning device for medical instrument and method of use
US10932811B2 (en) 2012-11-08 2021-03-02 Covidien Lp Tissue-removing catheter with rotatable cutter
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US11701089B2 (en) 2012-11-19 2023-07-18 Lightlab Imaging, Inc. Multimodal imaging systems, probes and methods
US10792012B2 (en) 2012-11-19 2020-10-06 Lightlab Imaging, Inc. Interface devices, systems and methods for multimodal probes
US10413317B2 (en) * 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US20140180268A1 (en) * 2012-12-21 2014-06-26 Volcano Corporation System and method for catheter steering and operation
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US10980669B2 (en) 2013-01-18 2021-04-20 Auris Health, Inc. Method, apparatus and system for a water jet
US11937873B2 (en) 2013-03-12 2024-03-26 Boston Scientific Medical Device Limited Electrosurgical device having a lumen
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9833221B2 (en) 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10744035B2 (en) 2013-06-11 2020-08-18 Auris Health, Inc. Methods for robotic assisted cataract surgery
US10251695B2 (en) * 2013-06-20 2019-04-09 Erbe Elektromedizin Gmbh Surgical instrument with tissue recognition
US20140378961A1 (en) * 2013-06-20 2014-12-25 Erbe Elektromedizin Gmbh Surgical instrument with tissue recognition
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US20160135832A1 (en) * 2013-07-08 2016-05-19 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10130386B2 (en) * 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US11642242B2 (en) 2013-08-13 2023-05-09 Auris Health, Inc. Method and apparatus for light energy assisted surgery
US11696797B2 (en) 2013-12-05 2023-07-11 Immunsys, Inc. Cancer immunotherapy by radiofrequency electrical membrane breakdown (RF-EMB)
US10849678B2 (en) 2013-12-05 2020-12-01 Immunsys, Inc. Cancer immunotherapy by radiofrequency electrical membrane breakdown (RF-EMB)
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
WO2015120146A1 (en) * 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US11547435B2 (en) 2014-02-20 2023-01-10 Gyrus Acmi, Inc. Cooled burr surgical instruments
US20180132889A1 (en) * 2014-02-20 2018-05-17 Gyrus Acmi, Inc. (D.B.A. Olympus Surgical Technolo Heat pipe cooled burr including surgical instruments embodying same
US10675054B2 (en) * 2014-02-20 2020-06-09 Gyrus Acmi, Inc. Heat pipe cooled burr including surgical instruments embodying same
US20150230821A1 (en) * 2014-02-20 2015-08-20 Gyrus Acmi, Inc. (D.B.A. Olympus Surgical Technolo Heat pipe cooled burr including surgical instruments embodying same
US9901364B2 (en) * 2014-02-20 2018-02-27 Gyrus Acmi, Inc. Heat pipe cooled burr including surgical instruments embodying same
US20150297869A1 (en) * 2014-02-24 2015-10-22 Microaccess Inc. Systems and methods for transesophageal procedures using wire guides
US11701160B2 (en) 2014-05-14 2023-07-18 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10507320B2 (en) 2014-09-22 2019-12-17 Ekos Corporation Catheter system
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
US10905396B2 (en) 2014-11-18 2021-02-02 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10646201B2 (en) 2014-11-18 2020-05-12 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US11696746B2 (en) 2014-11-18 2023-07-11 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US20160157879A1 (en) * 2014-12-04 2016-06-09 Cook Medical Technologies Llc Cutting guide wire and method of use thereof
US9974559B2 (en) * 2014-12-04 2018-05-22 Cook Medical Technologies Llc Cutting guide wire and method of use thereof
US11141216B2 (en) 2015-01-30 2021-10-12 Immunsys, Inc. Radio-frequency electrical membrane breakdown for the treatment of high risk and recurrent prostate cancer, unresectable pancreatic cancer, tumors of the breast, melanoma or other skin malignancies, sarcoma, soft tissue tumors, ductal carcinoma, neoplasia, and intra and extra luminal abnormal tissue
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10639109B2 (en) 2015-04-01 2020-05-05 Auris Health, Inc. Microsurgical tool for robotic applications
US11723730B2 (en) 2015-04-01 2023-08-15 Auris Health, Inc. Microsurgical tool for robotic applications
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US11740138B2 (en) 2015-06-10 2023-08-29 Ekos Corporation Ultrasound catheter
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US11766290B2 (en) 2015-09-09 2023-09-26 Boston Scientific Medical Device Limited Epicardial access system and methods
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US11382650B2 (en) 2015-10-30 2022-07-12 Auris Health, Inc. Object capture with a basket
US11571229B2 (en) 2015-10-30 2023-02-07 Auris Health, Inc. Basket apparatus
US11559360B2 (en) 2015-10-30 2023-01-24 Auris Health, Inc. Object removal through a percutaneous suction tube
US11534249B2 (en) 2015-10-30 2022-12-27 Auris Health, Inc. Process for percutaneous operations
US10639108B2 (en) 2015-10-30 2020-05-05 Auris Health, Inc. Process for percutaneous operations
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US11497544B2 (en) 2016-01-15 2022-11-15 Immunsys, Inc. Immunologic treatment of cancer
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
US10792466B2 (en) 2017-03-28 2020-10-06 Auris Health, Inc. Shaft actuating handle
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
US10743751B2 (en) 2017-04-07 2020-08-18 Auris Health, Inc. Superelastic medical instrument
US10987174B2 (en) 2017-04-07 2021-04-27 Auris Health, Inc. Patient introducer alignment
US11878131B2 (en) 2017-12-05 2024-01-23 Boston Scientific Medical Device Limited Transseptal guide wire puncture system
US20190321061A1 (en) * 2018-04-23 2019-10-24 Justin Panian Ultrasound Vessel Preparation
WO2019213368A1 (en) * 2018-05-03 2019-11-07 Bionaut Labs Ltd. Methods and apparatus for deployment and retraction of functional small particles in living tissues
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles
US10751140B2 (en) 2018-06-07 2020-08-25 Auris Health, Inc. Robotic medical systems with high force instruments
US11826117B2 (en) 2018-06-07 2023-11-28 Auris Health, Inc. Robotic medical systems with high force instruments
US11399905B2 (en) 2018-06-28 2022-08-02 Auris Health, Inc. Medical systems incorporating pulley sharing
US11896335B2 (en) 2018-08-15 2024-02-13 Auris Health, Inc. Medical instruments for tissue cauterization
US10828118B2 (en) 2018-08-15 2020-11-10 Auris Health, Inc. Medical instruments for tissue cauterization
US10639114B2 (en) 2018-08-17 2020-05-05 Auris Health, Inc. Bipolar medical instrument
US11857279B2 (en) 2018-08-17 2024-01-02 Auris Health, Inc. Medical instrument with mechanical interlock
US11864849B2 (en) 2018-09-26 2024-01-09 Auris Health, Inc. Systems and instruments for suction and irrigation
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
US20220071654A1 (en) * 2018-12-31 2022-03-10 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Tube body cleaning apparatus
US11589913B2 (en) 2019-01-25 2023-02-28 Auris Health, Inc. Vessel sealer with heating and cooling capabilities
US11534248B2 (en) 2019-03-25 2022-12-27 Auris Health, Inc. Systems and methods for medical stapling
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
US11877754B2 (en) 2019-06-27 2024-01-23 Auris Health, Inc. Systems and methods for a medical clip applier
US11109928B2 (en) 2019-06-28 2021-09-07 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
US11701187B2 (en) 2019-09-26 2023-07-18 Auris Health, Inc. Systems and methods for collision detection and avoidance
US10959792B1 (en) 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
US11737845B2 (en) 2019-09-30 2023-08-29 Auris Inc. Medical instrument with a capstan
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11759190B2 (en) 2019-10-18 2023-09-19 Boston Scientific Medical Device Limited Lock for medical devices, and related systems and methods
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
US11801087B2 (en) 2019-11-13 2023-10-31 Boston Scientific Medical Device Limited Apparatus and methods for puncturing tissue
US11724070B2 (en) 2019-12-19 2023-08-15 Boston Scientific Medical Device Limited Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices
CN113116470A (en) * 2019-12-30 2021-07-16 先健科技(深圳)有限公司 Cutting balloon catheter and cutting balloon catheter system
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
US11439419B2 (en) 2019-12-31 2022-09-13 Auris Health, Inc. Advanced basket drive mode
US11931098B2 (en) 2020-02-19 2024-03-19 Boston Scientific Medical Device Limited System and method for carrying out a medical procedure
US11819243B2 (en) 2020-03-19 2023-11-21 Boston Scientific Medical Device Limited Medical sheath and related systems and methods
US11826075B2 (en) 2020-04-07 2023-11-28 Boston Scientific Medical Device Limited Elongated medical assembly
US11938285B2 (en) 2020-06-17 2024-03-26 Boston Scientific Medical Device Limited Stop-movement device for elongated medical assembly
US11793446B2 (en) 2020-06-17 2023-10-24 Boston Scientific Medical Device Limited Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies
US11937796B2 (en) 2020-06-18 2024-03-26 Boston Scientific Medical Device Limited Tissue-spreader assembly
US11839969B2 (en) 2020-06-29 2023-12-12 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
US11931901B2 (en) 2020-06-30 2024-03-19 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
CN113876424A (en) * 2020-07-02 2022-01-04 西门子医疗有限公司 Method and system for creating a navigation plan for a catheter by means of a robot
US11957428B2 (en) 2021-08-17 2024-04-16 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11957376B2 (en) 2022-08-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
WO2024064098A1 (en) * 2022-09-19 2024-03-28 Bard Access Systems, Inc. Protective cap for landmarking medical device

Also Published As

Publication number Publication date
AU6344000A (en) 2001-01-30
US6911026B1 (en) 2005-06-28
WO2001003589A1 (en) 2001-01-18
US20050021063A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20020019644A1 (en) Magnetically guided atherectomy
US20230380899A1 (en) Magnetic navigation systems and methods
US6063080A (en) Linear catheter ablation system
US8840625B2 (en) Systems for performing gynecological procedures with closed visualization lumen
US6394956B1 (en) RF ablation and ultrasound catheter for crossing chronic total occlusions
AU721034B2 (en) Catheter based surgery
US5876399A (en) Catheter system and methods thereof
US20040006301A1 (en) Magnetically guided myocardial treatment system
US20080039830A1 (en) Method and Apparatus for Ablative Recanalization of Blocked Vasculature
US20030032936A1 (en) Side-exit catheter and method for its use
US6226554B1 (en) Catheter system having a ball electrode and methods thereof
JP2001509038A (en) Percutaneous myocardial revascularization
US9597146B2 (en) Method of surgical perforation via the delivery of energy
JP2001510354A (en) Ablation and detection medical catheter
JPH02140155A (en) Method and apparatus for reducing obstruction in tube in body
EP1545314B1 (en) Cardiac ablation using microbubbles
US20210307823A1 (en) Method of surgical perforation via the delivery of energy
EP3752084B1 (en) Energy delivery device
CN216823634U (en) Treatment needle assembly and treatment system for hypertrophic cardiomyopathy
CN114795454A (en) Controllable sequence bent long sheath catheter for catheter radio frequency ablation and catheter radio frequency ablation device

Legal Events

Date Code Title Description
AS Assignment

Owner name: STEREOTAXIS, INC., MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASTINGS, ROGER N.;HALL, ANDREW F.;SELL, JONATHAN C.;REEL/FRAME:011985/0358;SIGNING DATES FROM 20010601 TO 20010705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION