DE202011110673U1 - System zum patientenspezifischen modellieren von blutfluss - Google Patents

System zum patientenspezifischen modellieren von blutfluss Download PDF

Info

Publication number
DE202011110673U1
DE202011110673U1 DE202011110673.3U DE202011110673U DE202011110673U1 DE 202011110673 U1 DE202011110673 U1 DE 202011110673U1 DE 202011110673 U DE202011110673 U DE 202011110673U DE 202011110673 U1 DE202011110673 U1 DE 202011110673U1
Authority
DE
Germany
Prior art keywords
patient
model
blood flow
computer system
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202011110673.3U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HeartFlow Inc
Original Assignee
HeartFlow Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45565333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE202011110673(U1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by HeartFlow Inc filed Critical HeartFlow Inc
Publication of DE202011110673U1 publication Critical patent/DE202011110673U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0044Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/745Details of notification to user or communication with user or patient ; user input means using visual displays using a holographic display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • A61B8/065Measuring blood flow to determine blood output from the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56366Perfusion imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/10Pre-processing; Data cleansing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/005Tree description, e.g. octree, quadtree
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • A61B2090/3764Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT] with a rotating C-arm having a cone beam emitting source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10108Single photon emission computed tomography [SPECT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20124Active shape model [ASM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/404Angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/467Encoded features or binary features, e.g. local binary patterns [LBP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

System zur Bestimmung patientenspezifischer, zeitvariabler kardiovaskulärer Informationen, wobei das System Folgendes umfasst: wenigstens ein Computersystem, das konfiguriert ist, um: zeitvariable, patientenspezifische Daten hinsichtlich einer Geometrie wenigstens eines Teils einer anatomischen Struktur des Patienten zu unterschiedlichen Zeitpunkten zu empfangen; basierend auf den zeitvariablen, patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Teil der anatomischen Struktur des Patienten repräsentiert, wobei das dreidimensionale Modell zeitvariable Informationen hinsichtlich wenigstens einer von Blutgefäßposition, Deformation, Ausrichtung oder Größe beinhaltet; und Informationen hinsichtlich einer Veränderung in einer Blutflusseigenschaft im Laufe der Zeit in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell hinsichtlich der anatomischen Struktur des Patienten zu bestimmen.

Description

  • PRIORITÄT
  • Diese Anmeldung beansprucht den Vorteil der Priorität der vorläufigen US-Patentanmeldung Nr. 61/401,462, angemeldet am 12. August 2010, der vorläufigen US-Patentanmeldung Nr. 61/401,915, angemeldet am 20. August 2010, der vorläufigen US-Patentanmeldung Nr. 61/402,308, angemeldet am 26. August 2010, der vorläufigen US-Patentanmeldung 61/402,345, angemeldet am 27. August 2010, und der vorläufigen US-Patentanmeldung Nr. 61/404,429, angemeldet am 1. Oktober 2010, die hierin durch Verweis in ihrer Gesamtheit eingeschlossen sind.
  • TECHNISCHES GEBIET
  • Ausführungsformen beinhalten Verfahren und Systeme zum Modellieren von Fluidfluss und insbesondere Verfahren und Systeme zum patientenspezifischen Modellieren von Blutfluss.
  • ALLGEMEINER STAND DER TECHNIK
  • Erkrankungen der Koronararterien können Koronarläsionen in den Blutgefäßen, die Blut zum Herz leiten, verursachen, wie eine Stenose (anormale Verengung eines Blutgefäßes). Dadurch kann der Blutfluss zum Herz eingeschränkt werden. Ein Patient, der an einer Erkrankung der Koronararterien leidet, kann Brustschmerzen verspüren, die, wenn sie während körperlicher Anstrengung auftreten, als chronische stabile Angina oder, wenn sich der Patient im Ruhezustand befindet, als instabile Angina bezeichnet werden. Eine schwerwiegendere Erscheinungsform der Erkrankung kann zu einem Myokardinfarkt oder einem Herzinfarkt führen.
  • Es besteht ein Bedarf, genauere Daten bezüglich Koronarläsionen bereitzustellen, z. B. Größe, Form, Position, funktionelle Signifikanz (z. B. ob sich die Läsion auf den Blutfluss auswirkt) usw. Patienten, die an Brustschmerzen leiden und/oder Symptome einer Erkrankung der Koronararterien aufweisen, können einem oder mehreren Tests unterzogen werden, die einige indirekte Nachweise in Bezug auf Koronarläsionen bereitstellen können. Zum Beispiel können nichtinvasive Tests Elektrokardiogramme, die Auswertung von Biomarkern aus Bluttests, Laufbandtests, Echokardiographie, Einzelphotonen-Emissionscomputertomographie (SPECT) und Positronen-Emissions-Tomographie (PET) beinhalten. Diese nichtinvasiven Tests stellen typischerweise jedoch keine direkte Bewertung von Koronarläsionen bereit oder bewerten Blutflussraten. Die nichtinvasiven Tests können indirekte Nachweise für Koronarläsionen bereitstellen, indem nach Veränderungen der elektrischen Aktivität des Herzens (z. B. unter Verwendung von Elektrokardiographie (EKG)), der Bewegung des Myokards (z. B. unter Verwendung von Belastungsechokardiographie), der Perfusion des Myokards (z. B. unter Verwendung von PET oder SPECT) oder metabolischen Veränderungen (z. B. unter Verwendung von Biomarkern) gesucht wird.
  • Zum Beispiel können anatomische Daten nichtinvasiv unter Verwendung von koronarer Computertomographie-Angiographie (CCTA) erfasst werden. CCTA kann zur Bildgebung für Patienten mit Brustschmerzen verwendet werden und umfasst die Verwendung von Computertomographie-(CT)-Technologie, um das Herz und die Koronararterien nach einer intravenösen Infusion eines Kontrastmittels bildlich darzustellen. CCTA kann jedoch ebenfalls keine direkten Informationen über die funktionelle Signifikanz von Koronarläsionen bereitstellen, z. B. ob die Läsionen den Blutfluss beeinträchtigen. Da CCTA ein ausschließlich diagnostischer Test ist, kann sie weder verwendet werden, um Veränderungen in Koronarblutfluss, -druck oder Myokardperfusion unter anderen physiologischen Bedingungen, z. B. körperlicher Betätigung, vorherzusagen noch, um die Ergebnisse von Interventionen vorherzusagen.
  • Demnach benötigen Patienten unter Umständen außerdem einen invasiven Test, wie eine diagnostische Herzkatheterisierung, um Koronarläsionen bildlich darzustellen. Diagnostische Herzkatheterisierung kann das Ausführen einer konventionellen Koronarangiographie (CCA) beinhalten, um anatomische Daten über Koronarläsionen zu sammeln, indem einem Arzt ein Bild der Größe und Form der Arterien bereitgestellt wird. CCA stellt jedoch keine Daten für das Bewerten der funktionellen Signifikanz von Koronarläsionen bereit. Zum Beispiel ist ein Arzt unter Umständen nicht in der Lage, zu diagnostizieren, ob eine Koronarläsion schädlich ist, ohne zu bestimmen, ob die Läsion funktionell signifikant ist. Demnach hat CCA zu etwas geführt, das als ein „okulostenotischer Reflex” einiger interventioneller Kardiologen bezeichnet wird, für jede unter Verwendung von CCA gefundene Läsion einen Stent einzusetzen, unabhängig davon, ob die Läsion funktionell signifikant ist. Dadurch kann CCA zu unnötigen Operationen an Patienten führen, was zusätzliche Risiken für Patienten und unnötige Behandlungskosten für Patienten verursachen kann.
  • Während einer diagnostischen Herzkatheterisierung kann die funktionelle Signifikanz einer Koronarläsion invasiv bewertet werden, indem die fraktionelle Flussreserve (FFR) einer erkannten Läsion gemessen wird. FFR ist als das Verhältnis des durchschnittlichen Blutdrucks stromabwärts einer Läsion geteilt durch den durchschnittlichen Blutdruck stromaufwärts von der Läsion definiert, z. B. der Aortendruck, unter Bedingungen mit erhöhtem Koronarblutfluss, z. B. bedingt durch intravenöse Verabreichung von Adenosin. Die Blutdrücke können durch Einführen eines Druckdrahts in den Patienten gemessen werden. Demnach kann die Entscheidung, eine Läsion basierend auf der bestimmten FFR zu behandeln, getroffen werden, nachdem die Vorkosten und das Risiko einer diagnostischen Herzkatheterisierung bereits angefallen sind.
  • Demnach besteht ein Bedarf an einem Verfahren zum nichtinvasiven Bewerten von Koronaranatomie, Myokardperfusion und Koronararterienfluss. Ein derartiges Verfahren und System kann Kardiologen helfen, die Patienten mit Verdacht auf Koronarerkrankungen diagnostizieren und Behandlungen für sie planen. Zusätzlich besteht ein Bedarf an einem Verfahren zum Vorhersagen von Koronararterienfluss und Myokardperfusion unter Bedingungen, die nicht direkt gemessen werden können, z. B. körperlicher Betätigung, und zum Vorhersagen von Auswirkungen medizinischer, intervenierender und chirurgischer Behandlungen auf den Koronararterienblutfluss und die Myokardperfusion.
  • Es versteht sich, dass sowohl die obige allgemeine Beschreibung als auch die nachfolgende ausführliche Beschreibung ausschließlich beispielhafter und erläuternder Natur sind und die Offenbarung nicht einschränken.
  • KURZBESCHREIBUNG
  • Gemäß einer Ausführungsform beinhaltet ein System zum Bestimmen kardiovaskulärer Informationen für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie des Herzens des Patienten zu empfangen und basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt des Herzens des Patienten repräsentiert. Das wenigstens eine Computersystem ist ferner konfiguriert, um ein physikbasiertes Modell zu erzeugen, das sich auf eine Blutflusseigenschaft des Herzens des Patienten bezieht, und basierend auf dem dreidimensionalen Modell und dem physikbasierten Modell eine fraktionelle Flussreserve im Herzen des Patienten zu bestimmen.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen patientenspezifischer kardiovaskulärer Informationen unter Verwendung wenigstens eines Computersystems das Eingeben von patientenspezifischen Daten bezüglich einer Geometrie des Herzens des Patienten in das wenigstens eine Computersystem und das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens einen Abschnitt des Herzens des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines physikbasierten Modells, das sich auf eine Blutflusseigenschaft des Herzens des Patienten bezieht, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, einer fraktionellen Flussreserve im Herzen des Patienten basierend auf dem dreidimensionalen Modell und dem physikbasierten Modell.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf wenigstens einem Computersystem bereitgestellt, das computerausführbare Programmierungsanweisungen zum Ausführen eines Verfahrens zum Bestimmen patientenspezifischer kardiovaskulärer Informationen enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie des Herzens des Patienten und das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt des Herzens des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Erzeugen eines physikbasierten Modells, das sich auf eine Blutflusseigenschaft im Herzen des Patienten bezieht, und das Bestimmen einer fraktionellen Flussreserve im Herzen des Patienten basierend auf dem dreidimensionalen Modell und dem physikbasierten Modell.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Planen der Behandlung für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten zu empfangen und basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert. Das wenigstens eine Computersystem ist ferner konfiguriert, um basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, erste Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen, das dreidimensionale Modell zu modifizieren und basierend auf dem modifizierten dreidimensionalen Modell zweite Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Planen der Behandlung für einen Patienten enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten und das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Bestimmen erster Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, und das Bestimmen zweiter Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf einer gewünschten Veränderung der Geometrie der anatomischen Struktur des Patienten.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Planen der Behandlung für einen Patienten unter Verwendung eines Computersystems das Eingeben patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten in wenigstens ein Computersystem und das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Bestimmen, unter Verwendung des wenigstens einen Computersystems, erster Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht. Das Verfahren beinhaltet außerdem das Modifizieren, unter Verwendung des wenigstens einen Computersystems, des dreidimensionalen Modells, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, zweiter Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem modifizierten dreidimensionalen Modell.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Planen der Behandlung für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten zu empfangen und basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert. Das wenigstens eine Computersystem ist außerdem konfiguriert, um basierend auf dem dreidimensionalen Modell und Informationen bezüglich eines physiologischen Zustands des Patienten erste Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen, den physiologischen Zustand des Patienten zu modifizieren und basierend auf dem modifizierten physiologischen Zustand des Patienten zweite Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Planen der Behandlung für einen Patienten enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten und das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Bestimmen erster Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und Informationen bezüglich eines physiologischen Zustands des Patienten und das Bestimmen zweiter Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf einer gewünschten Veränderungen im physiologischen Zustand des Patienten.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Planen der Behandlung für einen Patienten unter Verwendung wenigstens eines Computersystems das Eingeben patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten in wenigstens ein Computersystem und das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet außerdem das Bestimmen, unter Verwendung des wenigstens einen Computersystems, erster Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und Informationen bezüglich eines physiologischen Zustands des Patienten. Das Verfahren beinhaltet ferner das Modifizieren, unter Verwendung des wenigstens einen Computersystems, des physiologischen Zustands des Patienten, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, zweiter Informationen bezüglich der Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem modifizierten physiologischen Zustand des Patienten.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bestimmen patientenspezifischer kardiovaskulärer Informationen wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten zu empfangen und basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert. Das wenigstens eine Computersystem ist außerdem konfiguriert, um einen mit einem Gesamtfluss durch den Abschnitt der anatomischen Struktur des Patienten verknüpften Gesamtwiderstand zu bestimmen und Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell, einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, und dem bestimmten Gesamtwiderstand zu bestimmen.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen patientenspezifischer kardiovaskulärer Informationen unter Verwendung wenigstens eines Computersystems das Eingeben patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten in das wenigstens eine Computersystem und das Erzeugen, unter Verwendung wenigstens eines Computers, eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet außerdem das Bestimmen, unter Verwendung wenigstens eines Computers, eines mit einem Gesamtfluss durch den Abschnitt der anatomischen Struktur des Patienten verknüpften Gesamtwiderstands und das Bestimmen, unter Verwendung wenigstens eines Computers, von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell, einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, und dem bestimmten Gesamtwiderstand.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bestimmen patientenspezifischer kardiovaskulärer Informationen enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten und das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet außerdem das Bestimmen eines mit einem Gesamtfluss durch den Abschnitt der anatomischen Struktur des Patienten verknüpften Gesamtwiderstands und das Bestimmen von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell, einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, und dem bestimmten Gesamtwiderstand.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bereitstellen patientenspezifischer kardiovaskulärer Informationen unter Verwendung einer Website wenigstens ein Computersystem, das konfiguriert ist, um es einem entfernten Benutzer zu ermöglichen, auf eine Website zuzugreifen, patientenspezifische Daten bezüglich wenigstens eines Abschnitts einer Geometrie einer anatomischen Struktur des Patienten zu empfangen, basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, und basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen. Das wenigstens eine Computersystem ist außerdem konfiguriert, um Anzeigeinformationen bezüglich einer ersten dreidimensionalen Simulation wenigstens des Abschnitts der anatomischen Struktur des Patienten unter Verwendung der Website an den entfernten Benutzer zu kommunizieren. Die dreidimensionale Simulation beinhaltet die bestimmten Informationen bezüglich der Blutflusseigenschaft.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bereitstellen patientenspezifischer kardiovaskulärer Informationen unter Verwendung einer Website das Ermöglichen, unter Verwendung wenigstens eines Computersystems, dass ein entfernter Benutzer auf eine Website zugreifen kann, und das Empfangen, unter Verwendung des wenigstens einen Computersystems, patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten. Das Verfahren beinhaltet außerdem das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten. Das Verfahren beinhaltet ferner das Kommunizieren, unter Verwendung des wenigstens einen Computersystems, von Anzeigeinformationen bezüglich einer ersten dreidimensionalen Simulation wenigstens des Abschnitts der anatomischen Struktur des Patienten an den entfernten Benutzer unter Verwendung der Website. Die dreidimensionale Simulation beinhaltet die bestimmten Informationen bezüglich der Blutflusseigenschaft.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bereitstellen patientenspezifischer kardiovaskulärer Informationen unter Verwendung einer Website enthält. Das Verfahren beinhaltet das Ermöglichen, dass ein entfernter Benutzer auf eine Website zugreifen kann, das Empfangen patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten und das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet außerdem das Bestimmen von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, und das Kommunizieren von Anzeigeinformationen bezüglich einer ersten dreidimensionalen Simulation wenigstens des Abschnitts der anatomischen Struktur des Patienten an den entfernten Benutzer unter Verwendung der Website. Die dreidimensionale Simulation beinhaltet die bestimmten Informationen bezüglich der Blutflusseigenschaft.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bestimmen patientenspezifischer zeitvariabler kardiovaskulärer Informationen wenigstens ein Computersystem, das konfiguriert ist, um zeitvariable patientenspezifische Daten bezüglich einer Geometrie wenigstens eines Abschnitts einer anatomischen Struktur des Patienten zu unterschiedlichen Zeitpunkten zu empfangen und basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert. Das wenigstens eine Computersystem ist außerdem konfiguriert, um basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur des Patienten bezieht, Informationen bezüglich einer Veränderung in einer Blutflusseigenschaft im Laufe der Zeit in der anatomischen Struktur des Patienten zu bestimmen.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen patientenspezifischer zeitvariabler kardiovaskulärer Informationen unter Verwendung wenigstens eines Computersystems das Empfangen, unter Verwendung des wenigstens einen Computersystems, zeitvariabler patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten zu unterschiedlichen Zeiten. Das Verfahren beinhaltet außerdem das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten. Das Verfahren beinhaltet ferner das Bestimmen, unter Verwendung des wenigstens einen Computersystems, von Informationen bezüglich einer Veränderung einer Blutflusseigenschaft im Laufe der Zeit in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und den Informationen bezüglich eines physikbasierten Modells, das sich auf die anatomische Struktur des Patienten bezieht.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bestimmen patientenspezifischer zeitvariabler kardiovaskulärer Informationen enthält. Das Verfahren beinhaltet das Empfangen zeitvariabler patientenspezifischer Daten bezüglich einer Geometrie einer anatomischen Struktur des Patienten zu unterschiedlichen Zeiten, das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt der anatomischen Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Bestimmen von Informationen bezüglich einer Veränderung in einer Blutflusseigenschaft im Laufe der Zeit in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und den Informationen bezüglich eines physikbasierten Modells, das sich auf die anatomische Struktur des Patienten bezieht.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bestimmen kardiovaskulärer Informationen für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie und wenigstens einer Materialeigenschaft wenigstens eines Abschnitts einer anatomischen Struktur des Patienten zu empfangen. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt eines Blutgefäßes. Das wenigstens eine Computersystem ist ferner konfiguriert, um ein dreidimensionales Modell zu erzeugen, das die anatomische Struktur des Patienten basierend auf den patientenspezifischen Daten repräsentiert, und basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten zu bestimmen. Das wenigstens eine Computersystem ist außerdem konfiguriert, um eine Position einer Plaque im Blutgefäß zu identifizieren.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen kardiovaskulärer Informationen für einen Patienten unter Verwendung wenigstens eines Computersystems das Empfangen, unter Verwendung wenigstens eines Computersystems, patientenspezifischer Daten bezüglich einer Geometrie und wenigstens einer Materialeigenschaft wenigstens eines Abschnitts einer anatomischen Struktur des Patienten. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt eines Blutgefäßes. Das Verfahren beinhaltet außerdem das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das die anatomische Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten. Das Verfahren beinhaltet ferner das Identifizieren, unter Verwendung des wenigstens einen Computersystems, einer Plaque im Blutgefäß.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bestimmen kardiovaskulärer Informationen für einen Patienten bereitgestellt. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie und wenigstens einer Materialeigenschaft wenigstens eines Abschnitts einer anatomischen Struktur des Patienten. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt eines Blutgefäßes. Das Verfahren beinhaltet außerdem das Erzeugen eines dreidimensionalen Modells, das die anatomische Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, das Bestimmen von Informationen bezüglich einer Blutflusseigenschaft in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten und das Identifizieren einer Position einer Plaque im Blutgefäß.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bestimmen kardiovaskulärer Informationen für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie wenigstens eines Abschnitts einer anatomischen Struktur des Patienten zu empfangen. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt einer Mehrzahl an Arterien und Gewebe, das mit wenigstens einem Abschnitt der Mehrzahl an Arterien verbunden ist. Das wenigstens eine Computersystem ist ferner konfiguriert, um basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das die anatomische Struktur des Patienten repräsentiert, wenigstens einen Abschnitt des dreidimensionalen Modells, das das Gewebe repräsentiert, in Segmente zu unterteilen, und basierend auf dem dreidimensionalen Modell und einem physiologischen Zustand des Patienten Informationen bezüglich einer mit wenigstens einem der Segmente verknüpften Blutflusseigenschaft zu bestimmen.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen kardiovaskulärer Informationen für einen Patienten unter Verwendung wenigstens eines Computersystems das Empfangen, unter Verwendung des wenigstens einen Computersystems, von patientenspezifischen Daten bezüglich einer Geometrie wenigstens eines Abschnitts einer anatomischen Struktur des Patienten. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt einer Mehrzahl an Arterien und Gewebe, das mit wenigstens einem Abschnitt der Mehrzahl an Arterien verbunden ist. Das Verfahren beinhaltet außerdem das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das die anatomische Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Erweitern, unter Verwendung des wenigstens einen Computersystems, des dreidimensionalen Modells, um ein erweitertes Modell zu bilden. Das Verfahren beinhaltet ferner das Aufteilen, unter Verwendung des wenigstens einen Computersystems, wenigstens eines Abschnitts des erweiterten Modells, das das Gewebe repräsentiert, in Segmente und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, von Informationen bezüglich einer mit wenigstens einem der Segmente verknüpften Blutflusseigenschaft basierend auf dem erweiterten Modell und einem physiologischen Zustand des Patienten.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bestimmen kardiovaskulärer Informationen für einen Patienten enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie wenigstens eines Abschnitts einer anatomischen Struktur des Patienten. Die anatomische Struktur beinhaltet wenigstens einen Abschnitt einer Mehrzahl an Arterien und Gewebe, das mit wenigstens einem Abschnitt der Mehrzahl an Arterien verbunden ist. Das Verfahren beinhaltet außerdem das Erzeugen eines dreidimensionalen Modells, das die anatomische Struktur des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, das Unterteilen wenigstens eines Abschnitts des dreidimensionalen Modells, das das Gewebe repräsentiert, in Segmente und das Bestimmen von Informationen bezüglich einer mit wenigstens einem der Segmente verknüpften Blutflusseigenschaft basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die anatomische Struktur bezieht.
  • Gemäß einer anderen Ausführungsform beinhaltet ein System zum Bestimmen kardiovaskulärer Informationen für einen Patienten wenigstens ein Computersystem, das konfiguriert ist, um patientenspezifische Daten bezüglich einer Geometrie des Gehirns des Patienten zu empfangen. Das wenigstens eine Computersystem ist ferner konfiguriert, um basierend auf den patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Abschnitt des Gehirns des Patienten repräsentiert, und basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf das Gehirn des Patienten bezieht, Informationen bezüglich einer Blutflusseigenschaft im Gehirn des Patienten zu bestimmen.
  • Gemäß einer anderen Ausführungsform beinhaltet ein Verfahren zum Bestimmen patientenspezifischer kardiovaskulärer Informationen unter Verwendung wenigstens eines Computersystems das Eingeben von patientenspezifischen Daten bezüglich einer Geometrie wenigstens eines Abschnitts einer Mehrzahl an Hirnschlagadern des Patienten in das wenigstens eine Computersystem. Das Verfahren beinhaltet außerdem das Erzeugen, unter Verwendung des wenigstens einen Computersystems, eines dreidimensionalen Modells, das wenigstens den Abschnitt der Hirnschlagadern des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Bestimmen, unter Verwendung des wenigstens einen Computersystems, von Informationen bezüglich einer Blutflusseigenschaft in den Hirnschlagadern des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf die Hirnschlagadern des Patienten bezieht.
  • Gemäß einer anderen Ausführungsform ist ein nichtflüchtiges computerlesbares Medium zur Verwendung auf wenigstens einem Computersystem bereitgestellt, das computerausführbare Programmieranweisungen zum Ausführen eines Verfahrens zum Bestimmen patientenspezifischer kardiovaskulärer Informationen enthält. Das Verfahren beinhaltet das Empfangen patientenspezifischer Daten bezüglich einer Geometrie des Gehirns des Patienten, das Erzeugen eines dreidimensionalen Modells, das wenigstens einen Abschnitt des Gehirns des Patienten repräsentiert, basierend auf den patientenspezifischen Daten, und das Bestimmen von Informationen bezüglich einer Blutflusseigenschaft im Gehirn des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell, das sich auf das Gehirn des Patienten bezieht.
  • Zusätzliche Ausführungsformen und Vorteile werden teilweise in der nachfolgenden Beschreibung ausgeführt und sind teilweise aus der Beschreibung offensichtlich oder können durch die Umsetzung der Offenbarung erlernt werden. Die Ausführungsformen und Vorteile werden anhand der unten spezifisch genannten Elemente und Kombinationen realisiert und erzielt.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Die beiliegenden Zeichnungen, die in diese Beschreibung eingeschlossen sind und einen Teil von ihr bilden, zeigen verschiedene Ausführungsformen und dienen zusammen mit dieser Beschreibung dazu, die Grundlagen der Offenbarung zu erläutern.
  • 1 ist ein schematisches Diagramm eines Systems zum Bereitstellen verschiedener Informationen bezüglich des Koronarblutflusses in einem spezifischen Patienten gemäß einer beispielhaften Ausführungsform;
  • 2 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen bezüglich eines Blutflusses in einem spezifischen Patienten gemäß einer beispielhaften Ausführungsform;
  • 3 ist ein Ablaufdiagramm, das die Unterschritte des Verfahrens aus 2 zeigt;
  • 4 zeigt Bildgebungsdaten, die nichtinvasiv von einem Patienten erfasst wurden, gemäß einer beispielhaften Ausführungsform;
  • 5 zeigt ein beispielhaftes dreidimensionales Modell, das unter Verwendung der Bildgebungsdaten aus 4 erzeugt wurde;
  • 6 zeigt einen Abschnitt einer Scheibe der Bildgebungsdaten aus 4 einschließlich Seeds zum Bilden eines ersten Ausgangsmodells;
  • 7 zeigt einen Abschnitt des ersten Ausgangsmodells, gebildet durch Erweitern der Seeds aus 6;
  • 8 zeigt ein getrimmtes Volumenmodell gemäß einer beispielhaften Ausführungsform;
  • 9 zeigt ein beispielhaftes berechnetes FFR (cFFR) Modell, wenn sich der Patient in einem Ruhezustand befindet;
  • 10 zeigt ein beispielhaftes cFFR-Modell, wenn sich der Patient in einem Zustand maximaler Hyperämie befindet;
  • 11 zeigt ein beispielhaftes cFFR-Modell, wenn sich der Patient maximal körperlich betätigt;
  • 12 zeigt einen Abschnitt eines getrimmten Volumenmodells, der bereitgestellt ist, um ein Lumped-Parameter-Modell zu bilden, gemäß einer beispielhaften Ausführungsform;
  • 13 zeigt einen Abschnitt der Mittellinien für das getrimmte Volumenmodell aus 12, der bereitgestellt ist, um ein Lumped-Parameter-Modell zu bilden;
  • 14 zeigt basierend auf dem getrimmten Volumenmodell aus 12 gebildete Segmente, die bereitgestellt sind, um ein Lumped-Parameter-Modell zu bilden;
  • 15 zeigt die Segmente aus 14 ersetzt durch Widerstände, die bereitgestellt sind, um ein Lumped-Parameter-Modell zu bilden;
  • 16 zeigt beispielhafte Lumped-Parameter-Modelle, die die Strukturen stromaufwärts und stromabwärts an den Einfluss- und Ausflussgrenzen eines Volumenmodells repräsentieren, gemäß einer beispielhaften Ausführungsform;
  • 17 zeigt ein dreidimensionales Netz, das basierend auf dem Volumenmodell aus 8 hergestellt wurde;
  • 18 und 19 zeigen Abschnitte des dreidimensionalen Netzes aus 17;
  • 20 zeigt ein Modell der Anatomie des Patienten einschließlich Blutflussinformationen mit bestimmten Punkten auf dem Modell, die durch individuelle Referenzkennzeichnungen identifiziert sind;
  • 21 ist ein Graph simulierten Blutdrucks im Laufe der Zeit in der Aorta und an einigen der in 20 identifizierten Punkten;
  • 22 ist ein Graph des simulierten Blutflusses im Laufe der Zeit an jedem der in 20 identifizierten Punkte;
  • 23 ist ein vollendeter Bericht gemäß einer beispielhaften Ausführungsform;
  • 24 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf den Koronarblutfluss in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform;
  • 25 zeigt ein modifiziertes cFFR-Modell, das basierend auf einem Volumenmodell bestimmt ist, das durch Erweitern eines Abschnitts der linken vorderen absteigenden (LAD) Arterie und eines Abschnitts der LCX-Arterie erzeugt wurde, gemäß einer beispielhaften Ausführungsform;
  • 26 zeigt ein Beispiel eines modifizierten simulierten Blutflussmodells nach dem Erweitern eines Abschnitts der LAD-Arterie und eines Abschnitts der linken Zirkumflex-(LCX)-Arterie gemäß einer beispielhaften Ausführungsform;
  • 27 ist ein Ablaufdiagramm eines Verfahrens zum Simulieren verschiedener Behandlungsoptionen unter Verwendung eines ordnungsreduzierten Modells gemäß einer beispielhaften Ausführungsform;
  • 28 ist ein Ablaufdiagramm eines Verfahrens zum Simulieren verschiedener Behandlungsoptionen unter Verwendung eines ordnungsreduzierten Modells gemäß einer anderen beispielhaften Ausführungsform;
  • 29 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf die Myokardperfusion in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform;
  • 30 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf die Myokardperfusion in einem spezifischen Patienten beziehen, gemäß einer anderen beispielhaften Ausführungsform;
  • 31 zeigt ein patientenspezifisches Modell, das verschiedene Informationen bereitstellt, die sich auf die Myokardperfusion beziehen, gemäß einer beispielhaften Ausführungsform;
  • 32 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf die Myokardperfusion in einem spezifischen Patienten beziehen, gemäß einer weiteren beispielhaften Ausführungsform;
  • 33 ist eine Querschnittansicht einer Plaqueablagerung entlang einer Blutgefäßwand;
  • 34 zeigt ein patientenspezifisches Modell, das verschiedene Informationen bereitstellt, die sich auf die Plaquevulnerabilität beziehen, gemäß einer beispielhaften Ausführungsform;
  • 35 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf das Bewerten von Plaquevulnerabilität, Myokardvolumenrisiko und Myokardperfusionsrisiko in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform;
  • 36 ist ein schematisches Diagramm, das vom Verfahren aus 35 erfasste Informationen darstellt, gemäß einer beispielhaften Ausführungsform;
  • 37 ist ein Diagramm der Hirnschlagadern;
  • 38 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf intrakraniellen und extrakraniellen Blutfluss in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform;
  • 39 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf zerebrale Perfusion in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform;
  • 40 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf zerebrale Perfusion in einem spezifischen Patienten beziehen, gemäß einer anderen beispielhaften Ausführungsform;
  • 41 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf zerebrale Perfusion in einem spezifischen Patienten beziehen, gemäß einer weiteren beispielhaften Ausführungsform; und
  • 42 ist ein Ablaufdiagramm eines Verfahrens zum Bereitstellen verschiedener Informationen, die sich auf die Bewertung von Plaquevulnerabilität, Zerebralvolumenrisiko und Zerebralperfusionsrisiko in einem spezifischen Patienten beziehen, gemäß einer beispielhaften Ausführungsform.
  • BESCHREIBUNG DER AUSFÜHRUNGSFORMEN
  • An dieser Stelle wird ausführlich auf beispielhafte Ausführungsformen Bezug genommen, deren Beispiele in den beigefügten Zeichnungen dargestellt sind. Wo immer möglich, werden die gleichen Referenzziffern durch die Zeichnungen hindurch verwendet, um auf dieselben oder gleiche Bauteile hinzuweisen. Diese Beschreibung ist gemäß der folgenden Gliederung unterteilt:
    • I. Übersicht
    • II. Erfassen und Vorverarbeiten von patientenspezifischen anatomischen Daten
    • III. Erzeugen des dreidimensionalen Modells basierend auf erfassten anatomischen Daten
    • IV. Vorbereiten des Modells für die Analyse und Bestimmen von Grenzbedingungen A. Vorbereiten des Modells für die Analyse B. Bestimmen von Begrenzungsbedingungen i. Bestimmen ordnungsreduzierter Modelle ii. Beispielhafte Lumped-Parameter-Modelle C. Erzeugen des dreidimensionalen Netzes
    • V. Ausführen der rechnerischen Analyse und Ausgeben der Ergebnisse A. Ausführen der rechnerischen Analyse B. Anzeigen der Ergebnisse für Blutdruck, Fluss und cFFR C. Verifizieren der Ergebnisse D. Andere Ausführungsform eines Systems und Verfahrens zum Bereitstellen von Koronarblutflussinformationen
    • VI. Bereitstellen patientenspezifischer Behandlungsplanung A. Verwenden ordnungsreduzierter Modelle zum Vergleichen verschiedener Behandlungsoptionen
    • VII. Andere Ergebnisse A. Bewerten der Myokardperfusion B. Bewerten der Plaquevulnerabilität
    • VIII. Andere Anwendungen A. Modellieren des intrakraniellen und extrakraniellen Blutflusses i. Bewerten der Zerebralperfusion ii. Bewerten der Plaquevulnerabilität
  • I. Übersicht
  • In einer beispielhaften Ausführungsform bestimmt ein Verfahren und System verschiedene Informationen bezüglich des Blutflusses in einem spezifischen Patienten unter Verwendung von Informationen, die nichtinvasiv vom Patienten erfasst wurden. Die bestimmten Informationen können sich auf den Blutfluss im koronaren Gefäßsystem des Patienten beziehen. Alternativ, wie nachstehend ausführlicher beschrieben, können sich die bestimmten Informationen auf Blutfluss in anderen Bereichen des Gefäßsystems des Patienten beziehen, wie das Karotis-, Becken-Bein-, Bauch-, Nieren- und Hirngefäßsystem. Das Koronargefäßsystem beinhaltet ein komplexes Netzwerk an Gefäßen, die von großen Arterien bis hin zu Arteriolen, Kapillaren, Venolen, Venen usw. reichen. Das Koronargefäßsystem zirkuliert Blut zum und im Herzen und beinhaltet eine Aorta 2 (5), die Blut zu einer Mehrzahl an Hauptkoronararterien 4 (5) leitet (z. B. die linke vordere absteigende(LAD)-Arterie, die linke Zirkumflex-(LCX)-Arterie, die rechte Koronararterie (RCA) usw.), die sich stromabwärts von der Aorta 2 und den Hauptkoronararterien 4 weiter in Äste von Arterien oder andere Gefäßarten aufteilen können. Demnach können das beispielhafte Verfahren und System verschiedene Informationen bestimmen, die sich auf Blutfluss in der Aorta, den Hauptkoronararterien und/oder anderen Koronararterien oder Gefäßen stromabwärts von den Hauptkoronararterien beziehen. Wenngleich nachfolgend die Aorten- und Koronararterien (und die davon ausgehenden Äste) beschrieben sind, können sich das offenbarte Verfahren und System auch auf andere Arten von Gefäßen beziehen.
  • In einer beispielhaften Ausführungsform können die durch die offenbarten Verfahren und Systeme bestimmten Informationen verschiedene Blutflusseigenschaften oder -parameter, wie Blutflussgeschwindigkeit, Druck (oder ein Verhältnis davon), Flussrate und FFR an verschiedenen Positionen in der Aorta, den Hauptkoronararterien und/oder anderen Koronararterien oder Gefäßen stromabwärts von den Hauptkoronararterien beinhalten, wobei diese Auflistung nicht abschließend ist. Diese Informationen können verwendet werden, um zu bestimmen, ob eine Läsion funktionell signifikant ist und/oder ob die Läsion behandelt werden soll. Diese Informationen können unter Verwendung von nichtinvasiv vom Patienten erfassten Informationen bestimmt werden. Dadurch kann die Entscheidung, ob eine Läsion behandelt werden soll oder nicht, ohne die mit invasiven Eingriffen verknüpften Kosten und Risiken getroffen werden.
  • 1 zeigt Aspekte eines Systems zum Bereitstellen verschiedener Informationen bezüglich des Koronarblutflusses in einem spezifischen Patienten gemäß einer beispielhaften Ausführungsform. Ein dreidimensionales Modell 10 der Anatomie des Patienten kann unter Verwendung von nichtinvasiv vom Patienten erfassten Daten erzeugt werden, wie nachstehend ausführlicher beschrieben wird. Andere patientenspezifische Informationen können ebenfalls nichtinvasiv erfasst werden. In einer beispielhaften Ausführungsform kann der Abschnitt der Anatomie des Patienten, der durch das dreidimensionale Modell 10 repräsentiert wird, wenigstens einen Abschnitt der Aorta und einen proximalen Abschnitt der Hauptkoronararterien (und der davon ausgehenden Äste), die mit der Aorta verbunden sind, beinhalten.
  • Verschiedene physiologische Gesetze oder Verhältnisse 20 bezüglich des Koronarblutflusses können abgeleitet werden, z. B. aus experimentellen Daten, wie nachstehend ausführlicher beschrieben wird. Unter Verwendung des dreidimensionalen anatomischen Modells 10 und der abgeleiteten physiologischen Gesetze 20 kann eine Mehrzahl an Gleichungen 30, die sich auf den Koronarblutfluss beziehen, bestimmt werden, wie nachstehend ausführlicher beschrieben wird. Zum Beispiel können die Gleichungen 30 bestimmt und unter Verwendung eines beliebigen numerischen Verfahrens gelöst werden, z. B. Finite-Differenz-, Finite-Volumen-, Spektral-, Lattice-Boltzmann, teilchenbasierten, Level-Set, Finite-Element-Verfahren usw. Die Gleichungen 30 können auflösbar sein, um Informationen (z. B. Druck, Geschwindigkeit, FFR usw.) über den Koronarblutfluss in der Anatomie des Patienten an verschiedenen Punkten in der durch das Modell 10 repräsentierten Anatomie des Patienten zu bestimmen.
  • Die Gleichungen 30 können unter Verwendung eines Computers 40 gelöst werden. Basierend auf den gelösten Gleichungen kann der Computer 40 ein oder mehrere Bilder oder Simulationen ausgeben, die Informationen bezüglich des Blutflusses in der durch das Modell 10 repräsentierten Anatomie des Patienten anzeigen. Zum Beispiel kann/können das/die Bild(er) ein simuliertes Blutdruckmodell 50, ein simuliertes Blutfluss- oder Geschwindigkeitsmodell 52, ein berechnetes FFR-(cFFR)-Modell 54 usw. beinhalten, wie nachstehend ausführlicher beschrieben wird. Das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und das cFFR-Modell 54 stellen Informationen bezüglich des/der jeweiligen Drucks, Geschwindigkeit und cFFRs an verschiedenen Positionen entlang drei Dimensionen in der durch das Modell 10 repräsentierten Anatomie des Patienten bereit. Die cFFR kann als das Verhältnis des Blutdrucks an einer bestimmten Position im Modell 10 geteilt durch den Blutdruck in der Aorta berechnet werden, z. B. an der Einflussgrenze des Modells 10, unter Bedingungen eines erhöhten Koronarblutflusses, z. B. herkömmlicherweise verursacht durch die intravenöse Verabreichung von Adenosin.
  • In einer beispielhaften Ausführungsform kann der Computer 40 ein oder mehrere nichtflüchtige(s) computerlesbare(s) Speichergerät(e) beinhalten, das/die Anweisungen speichert/speichern, die, wenn sie von einem Prozessor, Computersystem usw. ausgeführt werden, jede beliebige der hierin beschriebenen Aktionen zum Bereitstellen verschiedener Informationen bezüglich des Blutflusses im Patienten ausführen können. Der Computer 40 kann einen Desktop oder tragbaren Computer, eine Arbeitsstation, einen Server, einen persönlichen digitalen Assistenten oder jedes beliebige andere Computersystem beinhalten. Der Computer 40 kann einen Prozessor, einen Festwertspeicher (ROM), einen Arbeitsspeicher (RAM), einen Eingabe-/Ausgabe-(110)-Adapter zum Verbinden von Peripheriegeräten (z. B. einem Eingabegerät, Ausgabegerät, Speichergerät usw.), einen Benutzerschnittstellenadapter zum Verbinden von Eingabegeräten, wie einer Tastatur, einer Maus, einem Touchscreen, einer Toneingabe und/oder anderen Geräten, einen Kommunikationsadapter zum Verbinden des Computers 40 mit einem Netzwerk, einen Anzeigeadapter zum Verbinden des Computers 40 mit einer Anzeige usw. beinhalten. Zum Beispiel kann die Anzeige verwendet werden, um das dreidimensionale Modell 10 und/oder beliebige durch das Lösen der Gleichungen 30 erzeugte Bilder anzuzeigen, wie das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und/oder das cFFR-Modell 54.
  • 2 zeigt Aspekte eines Verfahrens zum Bereitstellen verschiedener Informationen bezüglich des Blutflusses in einem spezifischen Patienten gemäß einer anderen beispielhaften Ausführungsform. Das Verfahren kann das Erfassen von patientenspezifischen anatomischen Daten, wie Informationen bezüglich der Anatomie des Patienten (z. B. wenigstens eines Abschnitts der Aorta und eines proximalen Abschnitts der Hauptkoronararterien (und der davon ausgehenden Äste), die mit der Aorta verbunden sind) und das Vorverarbeiten der Daten (Schritt 100) beinhalten. Die patientenspezifischen anatomischen Daten können nichtinvasiv erfasst werden, z. B. durch CCTA, wie nachstehend beschrieben wird.
  • Ein dreidimensionales Modell der Anatomie des Patienten kann basierend auf den erfassten anatomischen Daten erzeugt werden (Schritt 200). Zum Beispiel kann das dreidimensionale Modell das oben in Verbindung mit 1 beschriebene dreidimensionale Modell 10 der Anatomie des Patienten sein.
  • Das dreidimensionale Modell kann für die Analyse vorbereitet werden und Grenzbedingungen können bestimmt werden (Schritt 300). Zum Beispiel kann das oben in Verbindung mit 1 beschriebene dreidimensionale Modell 10 der Anatomie des Patienten getrimmt und in ein volumetrisches Netz diskretisiert werden, z. B. ein Finite-Element- oder Finite-Volumen-Netz. Das volumetrische Netz kann verwendet werden, um die oben in Verbindung mit 1 beschriebenen Gleichungen 30 zu erzeugen.
  • Grenzbedingungen können ebenfalls zugewiesen und in die oben in Verbindung mit 1 beschriebenen Gleichungen 30 integriert werden. Die Grenzbedingungen stellen Informationen über das dreidimensionale Modell 10 an dessen Grenzen bereit, z. B. den Einflussgrenzen 322 (8), den Ausflussgrenzen 324 (8), den Gefäßwandgrenzen 326 (8) usw. Die Einflussgrenzen 322 können die Grenzen beinhalten, durch die der Fluss in die Anatomie des dreidimensionalen Modells geleitet wird, wie am Ende der Aorta in der Nähe der Aortenwurzel (z. B. Ende A aus 16). Jeder Einflussgrenze 322 kann durch Koppeln eines Herzmodells und/oder eines Lumped-Parameter-Modells mit der Grenze usw. z. B. ein vorbestimmter Wert oder ein Feld für Geschwindigkeit, Flussrate, Druck oder andere Eigenschaft zugeordnet sein. Die Ausflussgrenzen 324 können die Grenzen beinhalten, durch die der Fluss von der Anatomie des dreidimensionalen Modells nach außen gerichtet wird, wie an einem Ende der Aorta in der Nähe des Aortenbogens (z. B. Ende B aus 16), und an den stromabwärts gelegenen Enden der Hauptkoronararterien und den davon ausgehenden Ästen (z. B. Enden a–m aus 16). Jede Ausflussgrenze kann zugeordnet sein, z. B. durch Koppeln eines Lumped-Parameter- oder verteilten (z. B. eindimensionales Wellenausbreitungs-)Modells, wie nachstehend ausführlich beschrieben wird. Die vorgegebenen Werte der Einfluss- und/oder Ausflussgrenzbedingungen können durch nichtinvasives Messen physiologischer Eigenschaften des Patienten bestimmt werden, wie Herzleistung (das Volumen des Blutflusses vom Herzen), Blutdruck, Myokardmasse usw., wobei diese Auflistung nicht abschließend ist. Die Gefäßwandgrenzen können die physischen Grenzen der Aorta, der Hauptkoronararterien und/oder anderer Koronararterien oder Gefäße des dreidimensionalen Modells 10 beinhalten.
  • Die rechnerische Analyse kann unter Verwendung des vorbereiteten dreidimensionalen Modells und der bestimmten Grenzbedingungen (Schritt 400) ausgeführt werden, um Blutflussinformationen für den Patienten zu bestimmen. Zum Beispiel kann die rechnerische Analyse mit den Gleichungen 30 und unter Verwendung des oben in Verbindung mit 1 beschriebenen Computers 40 ausgeführt werden, um die oben in Verbindung mit 1 beschriebenen Bilder zu erzeugen, wie das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und/oder das cFFR-Modell 54.
  • Das Verfahren kann außerdem das Bereitstellen patientenspezifischer Behandlungsoptionen unter Verwendung der Ergebnisse (Schritt 500) beinhalten. Zum Beispiel kann/können das in Schritt 200 erzeugte dreidimensionale Modell 10 und/oder die in Schritt 300 zugewiesenen Grenzbedingungen angepasst werden, um eine oder mehrere Behandlungen zu modellieren, z. B. das Einsetzen eines koronaren Stents in eine in dem dreidimensionalen Modell 10 repräsentierten Koronararterien oder andere Behandlungsoptionen. Dann kann die rechnerische Analyse wie oben in Schritt 400 beschrieben ausgeführt werden, um neue Bilder zu erzeugen, wie aktualisierte Versionen des Blutdruckmodells 50, des Blutflussmodells 52 und/oder des cFFR-Modells 54. Diese neuen Bilder können verwendet werden, um eine Veränderung in der Blutflussgeschwindigkeit und dem Druck zu bestimmen, wenn die Behandlungsoption(en) übernommen wird/werden.
  • Die hierin offenbarten Systeme und Verfahren können in ein Software-Tool integriert werden, auf das Ärzte zugreifen, um ein nichtinvasives Mittel zur Quantifizierung des Blutflusses in den Koronararterien bereitzustellen und die funktionelle Signifikanz einer Erkrankung der Koronararterien zu bewerten. Zusätzlich können Ärzte das Software-Tool verwenden, um die Auswirkung medizinischer, intervenierender und/oder chirurgischer Behandlungen auf den Koronararterienblutfluss vorherzusagen. Das Software-Tool kann die Erkrankung in anderen Abschnitten des kardiovaskulären Systems, einschließlich Halsarterien (z. B. Halsschlagadern), Arterien im Kopf (z. B. Hirnschlagadern), Arterien im Brustkorb, Arterien im Abdomen (z. B. die Bauchaorta und ihre Äste), Arterien in den Armen oder Arterien in den Beinen (z. B. die femoralen und poplitealen Arterien) verhindern, diagnostizieren, lindern und/oder behandeln. Das Software-Tool kann interaktiv sein, um es Ärzten zu ermöglichen, optimal personalisierte Therapien für Patienten zu entwickeln.
  • Zum Beispiel kann das Software-Tool wenigstens teilweise in ein Computersystem integriert sein, zum Beispiel den in 1 dargestellten Computer 40, der von einem Arzt oder einem anderen Benutzer verwendet wird. Das Computersystem kann Daten empfangen, die nichtinvasiv vom Patienten erfasst wurden (z. B. Daten, die verwendet werden, um das dreidimensionale Modell 10 zu erstellen, Daten, die verwendet werden, um Grenzbedingungen anzuwenden oder die rechnerische Analyse durchzuführen usw.). Zum Beispiel können die Daten vom Arzt eingegeben werden oder von einer anderen Quelle empfangen werden, die auf derartige Daten zugreifen oder sie bereitstellen kann, wie ein Radiologie- oder anderes medizinisches Labor. Die Daten können über ein Netzwerk oder anderes System zum Kommunizieren der Daten oder direkt auf das Computersystem übertragen werden. Das Software-Tool kann die Daten verwenden, um das dreidimensionale Modell 10 oder andere Modelle/Netze und/oder beliebige Simulationen oder andere Ergebnisse zu erzeugen und anzuzeigen, die durch Lösen der oben in Verbindung mit 1 beschriebenen Gleichungen 30 bestimmt werden, wie das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und/oder das cFFR-Modell 54. Demnach kann das Software-Tool die Schritte 100500 ausführen. In Schritt 500 kann der Arzt weitere Eingaben an das Computersystem bereitstellen, um mögliche Behandlungsoptionen auszuwählen, und das Computersystem kann dem Arzt basierend auf den ausgewählten möglichen Behandlungsoptionen neue Simulationen anzeigen. Ferner kann jeder der in 2 dargestellten Schritte 100500 unter Verwendung separater Software-Pakete oder -Module ausgeführt werden.
  • Alternativ kann das Software-Tool als Teil eines webbasierten Dienstes oder eines anderen Dienstes, z. B. eines Dienstes, der von einer vom Arzt separaten Instanz bereitstellt wird, bereitgestellt werden. Der Dienstanbieter kann zum Beispiel den webbasierten Dienst betreiben und ein Webportal oder eine andere webbasierte Anwendung bereitstellen (z. B. auf einem Server oder einem anderen durch den Dienstanbieter betriebenen Computersystem ausgeführt), auf das/die Ärzte oder andere Benutzer über ein Netzwerk oder andere Verfahren zum Kommunizieren von Daten zwischen Computersystemen zugreifen können. Zum Beispiel können die nichtinvasiv vom Patienten erfassten Daten an den Dienstanbieter bereitgestellt werden und der Dienstanbieter kann die Daten verwenden, um das dreidimensionale Modell 10 oder andere Modelle/Netze und/oder beliebige Simulationen oder andere durch das Lösen der oben in Verbindung mit 1 beschriebenen Gleichungen 30 bestimmte Ergebnisse zu erzeugen, wie das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und/oder das cFFR-Modell 54. Dann kann der webbasierte Dienst Informationen bezüglich des dreidimensionalen Modells 10 oder anderer Modelle/Netze und/oder Simulationen übertragen, sodass das dreidimensionale Modell 10 und/oder die Simulationen dem Arzt auf dem Computersystem des Arztes angezeigt werden können. Demnach kann der webbasierte Dienst die Schritte 100500 und beliebige andere unten beschriebene Schritte zum Bereitstellen patientenspezifischer Informationen ausführen. In Schritt 500 kann der Arzt weitere Eingaben bereitstellen, z. B. um mögliche Behandlungsoptionen auszuwählen oder die rechnerische Analyse anzupassen, und die Eingaben können an das vom Dienstanbieter betriebene Computersystem übertragen werden (z. B. über das Webportal). Der webbasierte Dienst kann basierend auf den ausgewählten möglichen Behandlungsoptionen neue Simulationen oder andere Ergebnisse erzeugen und kann Informationen bezüglich der neuen Simulationen zurück an den Arzt kommunizieren, sodass die neuen Simulationen dem Arzt angezeigt werden können.
  • Es versteht sich, dass einer oder mehrere der hierin beschriebenen Schritte durch einen oder mehrere menschliche(n) Bediener (z. B. einen Kardiologen oder anderen Arzt, den Patienten, einen Mitarbeiter des Dienstanbieters, der den webbasierten Dienst oder einen anderen durch Dritte bereitgestellten Dienst bereitstellt, einen anderen Benutzer usw.) oder ein oder mehrere Computersystem(e), das/die durch (einen) derartige(n) menschliche(n) Bediener verwendet werden kann/können, wie einen Desktop oder tragbaren Computer, eine Arbeitsstation, einen Server, einen persönlichen digitalen Assistenten usw. ausgeführt werden können. Das/die Computersystem(e) kann/können über ein Netzwerk oder ein anderes Verfahren zum Kommunizieren von Daten verbunden sein.
  • 3 zeigt weitere Aspekte des beispielhaften Verfahrens zum Bereitstellen verschiedener Informationen bezüglich des Blutflusses in einem spezifischen Patienten. Die in 3 dargestellten Aspekte können in das Software-Tool integriert sein, das wenigstens teilweise in ein Computersystem und/oder als Teil eines webbasierten Dienstes integriert sein kann.
  • II. Erfassen und Vorverarbeiten von patientenspezifischen anatomischen Daten
  • Wie oben in Verbindung mit dem in 2 dargestellten Schritt 100 beschrieben, kann das beispielhafte Verfahren das Erfassen von patientenspezifischen anatomischen Daten, wie Informationen bezüglich des Herzens des Patienten, und das Vorverarbeiten der Daten beinhalten. In einer beispielhaften Ausführungsform kann Schritt 100 die folgenden Schritte beinhalten: Zunächst kann ein Patient ausgewählt werden. Zum Beispiel kann der Patient durch den Arzt ausgewählt werden, wenn der Arzt bestimmt, dass Informationen über den koronaren Blutfluss erwünscht sind, z. B. wenn der Patient mit Erkrankungen der Koronararterien verknüpfte Symptome aufweist, wie Brustschmerzen, Herzinfarkt usw.
  • Patientenspezifische anatomische Daten können erfasst werden, wie Daten bezüglich der Geometrie des Herzens des Patienten, z. B. wenigstens ein Abschnitt der Aorta des Patienten, ein proximaler Abschnitt der Hauptkoronararterien (und davon ausgehende Äste), die mit der Aorta verbunden sind, und das Myokard. Die patientenspezifischen anatomischen Daten können nichtinvasiv erfasst werden, z. B. unter Verwendung eines nichtinvasiven Bildgebungsverfahrens. CCTA ist zum Beispiel ein Bildgebungsverfahren, bei dem ein Benutzer einen Computertomographie-(CT)-Scanner bedienen kann, um Bilder von Strukturen, z. B. dem Myokard, der Aorta, der Hauptkoronararterien und anderen damit verbundenen Blutgefäßen, anzusehen und zu erzeugen. Die CCTA-Daten können zeitvariable sein, z. B. um Veränderungen in der Gefäßform über einen Herzzyklus darzustellen. CCTA kann verwendet werden, um ein Bild des Herzens des Patienten zu erzeugen. Zum Beispiel können 64-Scheiben-CCTA-Daten erfasst werden, z. B. Daten, die sich auf 64 Scheiben des Herzens des Patienten beziehen, und zu einem dreidimensionalen Bild zusammengesetzt werden. 4 zeigt ein Beispiel eines dreidimensionalen Bilds 120, das durch die 64-Scheiben-CCTA-Daten erzeugt wird.
  • Alternativ können andere nichtinvasive Bildgebungsverfahren, wie Magnetresonanz-Bildgebung (MRT) oder Ultraschall (US) oder invasive Bildgebungsverfahren, wie eine digitalen Subtraktions-Angiographie (DSA), verwendet werden, um Bilder von den Strukturen der Anatomie des Patienten zu erzeugen. Die Bildgebungsverfahren können das intravenöse Injizieren des Patienten mit einem Kontrastmittel umfassen, um das Identifizieren der Strukturen der Anatomie zu ermöglichen. Die entstehenden Bildgebungsdaten (z. B. bereitgestellt durch CCTA, MRT usw.) können von einem Drittanbieter, zum Beispiel einem Radiologielabor oder einem Kardiologen, dem Arzt des Patienten usw. bereitgestellt werden.
  • Andere patientenspezifische anatomische Daten können ebenfalls nichtinvasiv vom Patienten bestimmt werden. Zum Beispiel können physiologische Daten, wie Blutdruck, Basisherzfrequenz, Größe, Gewicht, Hämatokrit, Schlagvolumen usw. des Patienten, gemessen werden. Der Blutdruck kann der Blutdruck in der Brachialarterie des Patienten sein (z. B. unter Verwendung einer Druckmanschette gemessen), wie der maximale (systolische) und minimale (diastolische) Druck.
  • Die wie oben beschrieben erfassten patientenspezifischen anatomischen Daten können über eine sichere Kommunikationsleitung (z. B. über ein Netzwerk) übertragen werden. Zum Beispiel können die Daten an einen Server oder ein anderes Computersystem übertragen werden, um die rechnerische Analyse auszuführen, z. B. die oben in Schritt 400 beschriebene rechnerische Analyse. In einer beispielhaften Ausführungsform können die Daten an einen Server oder ein anderes Computersystem übertragen werden, der/das von einem Dienstanbieter betrieben wird, der einen webbasierten Dienst bereitstellt. Alternativ können die Daten an ein Computersystem übertragen werden, das vom Arzt des Patienten oder einem anderen Benutzer bedient wird.
  • Mit erneutem Verweis auf 3 können die übertragenen Daten überprüft werden, um zu bestimmen, ob die Daten akzeptabel sind (Schritt 102). Das Bestimmen kann vom Benutzer und/oder vom Computersystem ausgeführt werden. Zum Beispiel können die übertragenen Daten (z. B. die CCTA-Daten und andere Daten) durch einen Benutzer und/oder durch das Computersystem verifiziert werden, z. B. um zu bestimmen, ob die CCTA-Daten vollständig sind (z. B. ausreichende Abschnitte der Aorta und der Hauptkoronararterien beinhalten) und dem richtigen Patienten entsprechen.
  • Die übertragenen Daten (z. B. die CCTA-Daten und andere Daten) können ebenfalls vorverarbeitet und bewertet werden. Das Vorverarbeiten und/oder Bewerten kann von einem Benutzer und/oder vom Computersystem ausgeführt werden und kann z. B. das Überprüfen auf Deckungsfehler, Inkonsistenzen oder Verschwommenheit der CCTA-Daten, Suchen nach in den CCTA-Daten abgebildeten Stents, Suchen nach anderen Artefakten, die die Sichtbarkeit von Lumen der Blutgefäße beeinträchtigen können, Überprüfen auf unzureichenden Kontrast zwischen den Strukturen (z. B. der Aorta, den Hauptkoronararterien und anderen Blutgefäßen) und den anderen Abschnitten des Patienten usw., beinhalten.
  • Die übertragenen Daten können bewertet werden, um basierend auf der oben beschriebenen Verifizierung, Vorverarbeitung und/oder Bewertung zu bestimmen, ob die Daten akzeptabel sind. Während der oben beschriebenen Verifizierung, Vorverarbeitung und/der Bewertung kann/können der Benutzer und/oder das Computersystem bestimmte Fehler oder Probleme mit den Daten unter Umständen korrigieren. Wenn jedoch zu viele Fehler oder Probleme vorliegen, kann bestimmt werden, dass die Daten inakzeptabel sind und der Benutzer und/oder das Computersystem kann/können einen Ablehnungsbericht erzeugen, der die Fehler oder Probleme erläutert, die ein Ablehnen der übertragenen Daten erforderlich machen. Optional kann ein neuer CCTA-Scan ausgeführt werden und/oder die oben beschriebenen physiologischen Daten können erneut vom Patienten gemessen werden. Wenn bestimmt wird, dass die übertragenen Daten akzeptabel sind, kann das Verfahren mit dem unten beschriebenen Schritt 202 fortfahren.
  • Dementsprechend kann der in 3 dargestellte und oben beschriebene Schritt 102 als ein Unterschritt von Schritt 100 aus 2 angesehen werden.
  • III. Erzeugen des dreidimensionalen Modells basierend auf erfassten anatomischen Daten
  • Wie oben in Verbindung mit dem in 2 dargestellten Schritt 200 beschrieben, kann das beispielhafte Verfahren das Erzeugen des dreidimensionalen Modells basierend auf den erfassten anatomischen Daten beinhalten. In einer beispielhaften Ausführungsform kann Schritt 200 die folgenden Schritte beinhalten:
    Unter Verwendung der CCTA-Daten kann ein dreidimensionales Modell der Koronargefäße erzeugt werden. 5 zeigt ein Beispiel einer Oberfläche eines unter Verwendung der CCTA-Daten erzeugten dreidimensionalen Modells 220. Zum Beispiel kann das Modell 220 z. B. wenigstens einen Abschnitt der Aorta, wenigstens einen proximalen Abschnitt einer oder mehrerer mit diesem Abschnitt der Aorta verbundener/-n Hauptkoronararterie(n), wenigstens einen proximalen Abschnitt eines oder mehrerer mit den Hauptkoronararterien verbundenen Astes/verbundener Äste usw. beinhalten. Die modellierten Abschnitte der Aorta, der Hauptkoronararterien und/oder der Äste können untereinander verbunden und baumartig sein, sodass kein Abschnitt vom Rest des Modells 220 getrennt ist. Der Prozess des Bildens des Modells 220 wird als Segmentierung bezeichnet.
  • Mit erneuter Bezugnahme auf 3 kann das Computersystem automatisch wenigstens einen Abschnitt der Aorta (Schritt 202) und des Myokards (oder anderen Herzgewebes oder anderen mit den zu modellierenden Arterien verbundenen Gewebes) (Schritt 204) segmentieren. Das Computersystem kann außerdem wenigstens einen Abschnitt der mit der Aorta verbundenen Hauptkoronararterien segmentieren. In einer beispielhaften Ausführungsform kann es das Computersystem dem Benutzer ermöglichen, eine oder mehrere koronare Arterienwurzel(n) oder Ausgangspunkte auszuwählen (Schritt 206), um die Hauptkoronararterien zu segmentieren.
  • Die Segmentierung kann unter Verwendung verschiedener Verfahren ausgeführt werden. Die Segmentierung kann basierend auf Benutzereingaben oder ohne Benutzereingaben automatisch vom Computersystem ausgeführt werden. Zum Beispiel kann der Benutzer in einer beispielhaften Ausführungsform Eingaben an das Computersystem bereitstellen, um ein erstes Ausgangsmodell zu erzeugen. Zum Beispiel kann das Computersystem das aus den CCTA-Daten erzeugte dreidimensionale Bild 120 (4) oder Scheiben davon an den Benutzer anzeigen. Das dreidimensionale Bild 120 kann Abschnitte mit verschiedener Intensität oder Helligkeit beinhalten. Zum Beispiel können hellere Bereiche die Lumen der Aorta, der Hauptkoronararterien und/oder der Äste anzeigen. Dunklere Bereiche können das Myokard und anderes Gewebe des Herzens des Patienten anzeigen.
  • 6 zeigt einen Abschnitt einer Scheibe 222 des dreidimensionalen Bilds 120, das an den Benutzer angezeigt werden kann, und die Scheibe 222 kann einen verhältnismäßig hellen Bereich 224 beinhalten. Das Computersystem kann es dem Benutzer ermöglichen, den verhältnismäßig hellen Bereich 224 auszuwählen, indem ein oder mehrere Seed(s) 226 hinzugefügt wird/werden, und die Seeds 226 können als koronare Arterienwurzel oder Ausgangspunkte zum Segmentieren der Hauptkoronararterien dienen. Auf Befehl des Benutzers hin kann das Computersystem dann die Seeds 226 als Ausgangspunkte verwenden, um das erste Ausgangsmodell zu bilden. Der Benutzer kann Seeds 226 in einer oder mehreren der Aorta und/oder der individuellen Hauptkoronararterien hinzufügen. Optional kann der Benutzer auch Seeds 226 in einem oder mehreren der mit den individuellen Hauptkoronararterien verbundenen Äste hinzufügen. Alternativ kann das Computersystem automatisch Seeds platzieren, z. B. unter Verwendung extrahierter Mittellinieninformationen. Das Computersystem kann einen Intensitätswert des Bilds 120 bestimmen, wo die Seeds 226 platziert wurden, und kann das erste Ausgangsmodell bilden, indem die Seeds 226 entlang der Abschnitte des Bilds 120 mit dem gleichen Intensitätswert (oder innerhalb eines Bereichs oder Grenzwertes an Intensitätswerten zentriert am ausgewählten Intensitätswert) erweitert werden. Demnach kann dieses Verfahren der Segmentierung als „grenzwertbasierte Segmentierung” bezeichnet werden.
  • 7 zeigt einen Abschnitt 230 des ersten Ausgangsmodells, das durch Erweitern der Seeds 226 aus 6 gebildet wird. Dementsprechend gibt der Benutzer die Seeds 226 als Ausgangspunkte für das Computersystem ein, um mit dem Bilden des ersten Ausgangsmodells zu beginnen. Dieser Prozess kann wiederholt werden, bis ganze Abschnitte von Interesse, z. B. die Abschnitte der Aorta und/oder der Hauptkoronararterien, segmentiert sind. Alternativ kann das erste Ausgangsmodell ohne Benutzereingaben vom Computersystem erzeugt werden.
  • Alternativ kann Segmentierung unter Verwendung eines Verfahrens ausgeführt werden, das als „kantenbasierte Segmentierung” bezeichnet wird. In einer beispielhaften Ausführungsform können sowohl die grenzwertbasierten als auch die kantenbasierten Segmentierungsverfahren ausgeführt werden, um das Modell 220 zu bilden, wie nachstehend beschrieben wird.
  • Ein zweites Ausgangsmodell kann unter Verwendung des kantenbasierten Segmentierungsmodells gebildet werden. Mit diesem Verfahren können die Lumenkanten der Aorta und/oder der Hauptkoronararterien ermittelt werden. Zum Beispiel kann der Benutzer in einer beispielhaften Ausführungsform Eingaben an das Computersystem bereitstellen, z. B. die Seeds 226, wie oben beschrieben, um das zweite Ausgangsmodell zu erzeugen. Das Computersystem kann die Seeds 226 entlang der Abschnitte des Bilds 120 erweitern, bis die Kanten erreicht sind. Die Lumenkanten können ermittelt werden, z. B. visuell durch den Benutzer und/oder durch das Computersystem (z. B. an Positionen, an denen eine Veränderung des Intensitätswertes über einen vorgegebenen Grenzwert vorliegt). Das kantenbasierte Segmentierungsverfahren kann durch das Computersystem und/oder den Benutzer ausgeführt werden.
  • Das Myokard oder andere Gewebe kann außerdem in Schritt 204 basierend auf den CCTA-Daten segmentiert werden. Zum Beispiel können die CCTA-Daten analysiert werden, um die Position der internen und externen Oberflächen des Myokards zu bestimmen, z. B. die linke und/oder rechte Herzkammer. Die Positionen der Oberflächen können basierend auf dem Kontrast (z. B. relative Dunkel- und Helligkeit) des Myokards im Vergleich zu anderen Strukturen des Herzens in den CCTA-Daten bestimmt werden. Demnach kann die Geometrie des Myokards bestimmt werden.
  • Die Segmentierung der Aorta, des Myokards und/oder der Hauptkoronararterien kann überprüft und/oder korrigiert werden, falls erforderlich (208). Das Überprüfen und/oder Korrigieren kann vom Computersystem und/oder dem Benutzer vorgenommen werden. Zum Beispiel kann das Computersystem in einer beispielhaften Ausführungsform automatisch die Segmentierung überprüfen und der Benutzer kann die Segmentierung manuell korrigieren, falls Fehler vorliegen, z. B. falls Abschnitte der Aorta, des Myokards und/oder der Hauptkoronararterien im Modell 220 fehlen oder ungenau sind.
  • Zum Beispiel können das erste und zweite oben beschriebene Ausgangsmodell verglichen werden, um sicherzustellen, dass die Segmentierung der Aorta und/oder der Hauptkoronararterien genau ist. Diskrepanzbereiche zwischen den ersten und zweiten Ausgangsmodellen können verglichen werden, um die Segmentierung zu korrigieren und das Modell 220 zu bilden. Zum Beispiel kann das Modell 220 ein Mittel zwischen dem ersten und zweiten Ausgangsmodell sein. Alternativ kann nur eins der oben beschriebenen Segmentierungsverfahren ausgeführt werden und das durch dieses Verfahren gebildete Ausgangsmodell kann als das Modell 220 verwendet werden.
  • Die Myokardmasse kann berechnet werden (Schritt 240). Die Berechnung kann vom Computersystem ausgeführt werden. Zum Beispiel kann die Myokardmasse basierend auf den Positionen der wie oben beschrieben bestimmten Oberflächen des Myokards berechnet werden und das berechnete Myokardvolumen kann mit der Dichte des Myokards multipliziert werden, um die Myokardmasse zu berechnen. Die Dichte des Myokards kann vorgegeben sein.
  • Die Mittellinien der verschiedenen Gefäße (z. B. der Aorta, der Hauptkoronararterien usw.) des Modells 220 (5) können bestimmt werden (Schritt 242). In einer beispielhaften Ausführungsform kann das Bestimmen automatisch durch das Computersystem ausgeführt werden.
  • Die in Schritt 242 bestimmten Mittellinien können überprüft und/oder korrigiert werden, falls erforderlich (Schritt 244). Das Überprüfen und/oder Korrigieren kann vom Computersystem und/oder dem Benutzer ausgeführt werden. Zum Beispiel kann das Computersystem die Mittellinien in einer beispielhaften Ausführungsform automatisch überprüfen und der Benutzer kann die Mittellinien manuell korrigieren, falls Fehler vorliegen, z. B. falls Mittellinien fehlen oder ungenau sind.
  • Kalzium oder Plaque (das/die eine Verengung eines Gefäßes verursachen) kann erkannt werden (Schritt 246). In einer beispielhaften Ausführungsform kann das Computersystem automatisch die Plaque erkennen. Zum Beispiel kann die Plaque im dreidimensionalen Bild 120 erkannt und aus dem Modell 220 entfernt werden. Die Plaque kann im dreidimensionalen Bild 120 identifiziert werden, da die Plaque als Bereiche erscheint, die noch heller sind als die Lumen der Aorta, der Hauptkoronararterien und/oder der Äste. Demnach kann die Plaque vom Computersystem als einen Intensitätswert unterhalb eines vorgegebenen Werts aufweisend erkannt werden oder kann visuell durch den Benutzer erkannt werden. Nach dem Erkennen der Plaque kann das Computersystem die Plaque auf dem Modell 220 entfernen, sodass die Plaque nicht als Teil des Lumens oder offenen Raumes in den Gefäßen angesehen wird. Alternativ kann das Computersystem die Plaque unter Verwendung einer anderen Farbe, Schattierung oder einer anderen visuellen Kennzeichnung als die Aorta, die Hauptkoronararterien und/oder die Äste im Modell 220 anzeigen.
  • Das Computersystem kann die erkannte Plaque außerdem automatisch segmentieren (Schritt 248). Zum Beispiel kann die Plaque basierend auf den CCTA-Daten segmentiert werden. Die CCT-Daten können analysiert werden, um die Plaque (oder eine Oberfläche davon) basierend auf dem Kontrast (z. B. verhältnismäßige Dunkel- und Helligkeit) der Plaque im Vergleich zu anderen Strukturen des Herzens in den CCTA-Daten zu ermitteln. Demnach kann auch die Geometrie der Plaque bestimmt werden.
  • Die Segmentierung der Plaque kann überprüft und/oder korrigiert werden, falls erforderlich (Schritt 250). Das Überprüfen und/oder Korrigieren kann durch das Computersystem und/oder den Benutzer ausgeführt werden. Zum Beispiel kann das Computersystem in einer beispielhaften Ausführungsform automatisch die Segmentierung überprüfen und der Benutzer kann die Segmentierung manuell korrigieren, falls Fehler vorliegen, z. B. falls eine Plaque fehlt oder nicht richtig dargestellt ist.
  • Das Computersystem kann die mit den Hauptkoronararterien verbundenen Äste automatisch segmentieren (Schritt 252). Zum Beispiel können die Äste unter Verwendung ähnlicher Verfahren zur Segmentierung der Hauptkoronararterien segmentiert werden, z. B. wie in 6 und 7 dargestellt und oben in Verbindung mit Schritt 206 beschrieben. Das Computersystem kann die Plaque in den segmentierten Ästen außerdem automatisch unter Verwendung ähnlicher Verfahren wie den oben in Verbindung mit Schritt 248 und 250 beschriebenen segmentieren. Alternativ können die Äste (und jede darin enthaltene Plaque) zur gleichen Zeit segmentiert werden wie die Hauptkoronararterien (z. B. in Schritt 206).
  • Die Segmentierung der Äste kann überprüft und/oder korrigiert werden, falls erforderlich (Schritt 254). Das Überprüfen und/oder Korrigieren kann durch das Computersystem und/oder den Benutzer ausgeführt werden. Zum Beispiel kann das Computersystem in einer beispielhaften Ausführungsform automatisch die Segmentierung überprüfen und der Benutzer kann die Segmentierung manuell korrigieren, falls Fehler vorliegen, z. B. falls Abschnitte der Äste im Modell 220 fehlen oder nicht richtig dargestellt sind.
  • Das Modell 220 kann korrigiert werden, wenn Deckungsfehler, Stents oder andere Artefakte gefunden werden (z. B. während des Überprüfens der CCTA-Daten in Schritt 102) (Schritt 256). Das Korrigieren kann durch einen Benutzer und/oder durch das Computersystem ausgeführt werden. Wenn zum Beispiel ein Deckungsfehler oder ein anderes Artefakt (z. B. Inkonsistenz, Unschärfe, ein Artefakt, das die Lumensichtbarkeit einschränkt, usw.) gefunden wird, kann das Modell 220 überprüft und/oder korrigiert werden, um eine künstliche oder falsche Veränderung in der Querschnittfläche eines Gefäßes (z. B. eine künstliche Verengung) zu verhindern. Wenn ein Stent gefunden wird, kann das Modell 220 überprüft und/oder korrigiert werden, um die Position des Stents anzuzeigen und/oder um die Querschnittfläche des Gefäßes, in dem sich der Stent befindet, zu korrigieren, z. B. basierend auf der Größe des Stents.
  • Das Segmentieren des Modells 220 kann außerdem unabhängig überprüft werden (Schritt 258). Das Überprüfen kann durch einen Benutzer und/oder das Computersystem ausgeführt werden. Zum Beispiel kann/können der Benutzer und/oder das Computersystem bestimmte Fehler im Modell 220 identifizieren, wie korrigierbare Fehler und/oder Fehler, die erfordern, dass das Modell 220 wenigstens teilweise neu erstellt oder neu segmentiert wird. Falls derartige Fehler identifiziert werden, kann die Segmentierung als inakzeptable bestimmt werden und abhängig von dem/den Fehler(n) können bestimmte Schritte, z. B. einer oder mehrere der Schritte 202208, 240256, wiederholt werden.
  • Wenn die Segmentierung des Modells 220 unabhängig als akzeptable verifiziert wird, kann das Modell 220 optional ausgegeben und geglättet werden (Schritt 260). Das Glätten kann vom Benutzer und/oder vom Computersystem ausgeführt werden. Zum Beispiel können Erhöhungen, Punkte oder andere diskontinuierliche Abschnitte geglättet werden. Das Modell 220 kann an ein separates Software-Modul ausgegeben werden, um für die rechnerische Analyse vorbereitet zu werden usw.
  • Dementsprechend können die in 3 dargestellten und oben beschriebenen Schritte 202208 und 240260 als Unterschritte von Schritt 200 aus 2 angesehen werden. IV. Vorbereiten des Modells für die Analyse und Bestimmen von Grenzbedingungen Wie oben in Verbindung mit dem in 2 dargestellten Schritt 300 beschrieben, kann das beispielhafte Verfahren das Vorbereiten des Modells für die Analyse und das Bestimmen von Grenzbedingungen beinhalten. In einer beispielhaften Ausführungsform kann der Schritt 300 die folgenden Schritte beinhalten:
  • A. Vorbereiten des Modells für die Analyse
  • Mit erneutem Verweis auf 3 können die Querschnittflächen der verschiedenen Gefäße (z. B. der Aorta, der Hauptkoronararterien und/oder der Äste) des Modells 220 (5) ebenfalls bestimmt werden (Schritt 304). In einer beispielhaften Ausführungsform kann das Bestimmen durch das Computersystem ausgeführt werden.
  • Das Modell 220 (5) kann getrimmt werden (306) und ein Volumenmodell kann erzeugt werden. 8 zeigt ein Beispiel des getrimmten Volumenmodells 320, das basierend auf einem Modell ähnlich dem in 5 dargestellten Modell 220 vorbereitet wurde. Das Volumenmodell 320 ist ein dreidimensionales patientenspezifisches geometrisches Modell. In einer beispielhaften Ausführungsform kann das Trimmen durch das Computersystem ausgeführt werden, mit oder ohne eine Eingabe eines Benutzers. Jede der Einflussgrenzen 322 und der Ausflussgrenzen 324 kann derart getrimmt werden, dass die die entsprechende Grenze bildende Oberfläche lotrecht zu den in Schritt 242 bestimmten Mittellinien liegt. Die Einflussgrenzen 322 können die Grenzen beinhalten, durch die der Fluss in die Anatomie des Modells 320 geleitet wird, wie an einem stromaufwärts gelegenen Ende der Aorta, wie in 8 dargestellt. Die Ausflussgrenzen 324 können die Grenzen beinhalten, durch die der Fluss von der Anatomie des Modells 320 nach außen geleitet wird, wie an einem stromabwärts gelegenen Ende der Aorta und den stromabwärts gelegenen Enden der Hauptkoronararterien und/oder Äste.
  • B. Bestimmen von Grenzbedingungen
  • Grenzbedingungen können bereitgestellt sein, um zu beschreiben, was an den Grenzen des Modells geschieht, z. B. dem dreidimensionalen Volumenmodell 320 aus 8. Zum Beispiel können sich die Grenzbedingungen auf wenigstens eine mit der modellierten Anatomie des Patienten verknüpfte Blutflusseigenschaft beziehen, z. B. an den Grenzen der modellierten Anatomie, und die Blutflusseigenschaft(en) kann/können Blutflussgeschwindigkeit, -druck, -flussrate, FFR usw. beinhalten. Durch das ordnungsgemäße Bestimmen der Grenzbedingungen kann eine rechnerische Analyse ausgeführt werden, um Informationen an verschiedenen Positionen im Modell zu bestimmen. Nachfolgend werden Beispiele von Grenzbedingungen und Verfahren zum Bestimmen derartiger Bedingungen beschrieben.
  • In einer beispielhaften Ausführungsform können die bestimmten Grenzbedingungen die Strukturen stromaufwärts und stromabwärts von den Abschnitten der Gefäße, die durch das Volumenmodell 320 ordnungsreduziertes Modell vereinfachen. Ein beispielhafter Satz an Gleichungen und anderen Einzelheiten zum Bestimmen der Grenzbedingungen ist zum Beispiel in US-Patentanmeldung Nr. 2010/0241404 und der vorläufigen US-Patentanmeldung Nr. 61/210,401, beide mit dem Titel „Patient-Specific Hemodynamics of the Cardiovascular System” offenbart, die beide in ihrer Gesamtheit durch Verweis hierin eingeschlossen sind.
  • Grenzbedingungen können abhängig vom physiologischen Zustand des Patienten variieren, da der Blutfluss durch das Herz abhängig vom physiologischen Zustand des Patienten variieren kann. Zum Beispiel wird die FFR typischerweise unter dem physiologischen Zustand der Hyperämie gemessen, der allgemein auftritt, wenn der Patient einen erhöhten Blutfluss im Herzen aufweist, z. B. bedingt durch Belastung usw. Die FFR ist das Verhältnis des koronaren Drucks zum Aortendruck unter maximalen Belastungsbedingungen. Hyperämie kann außerdem pharmakologisch ausgelöst werden, z. B. mit Adenosin. 911 zeigen Beispiele eines berechneten FFR-(cFFR)-Modells, das die Veränderung im Verhältnis des koronaren Drucks zum Aortendruck im Modell 320 anzeigt, abhängig vom physiologischen Zustand des Patienten (im Ruhezustand, unter maximaler Hyperämie oder unter maximaler körperlicher Belastung). 9 zeigt minimale Variationen im Verhältnis des koronaren Drucks zum Aortendruck durch das Modell 320, wenn sich der Patient im Ruhezustand befindet. 10 zeigt eine größere Variation im Verhältnis des koronaren Drucks zum Aortendruck durch das Modell 320, wenn sich der Patient in einem Zustand maximaler Hyperämie befindet. 11 zeigt eine noch größere Variation im Verhältnis des koronaren Drucks zum Aortendruck durch das Modell 320, wenn sich der Patient in einem Zustand maximaler körperlicher Betätigung befindet.
  • Mit erneutem Verweis auf 3 können Grenzbedingungen für Hyperämiezustände bestimmt werden (Schritt 310). In einer beispielhaften Ausführungsform kann die Auswirkung von Adenosin unter Verwendung einer Verringerung des Koronararterienwiderstands um einen 1-5-fachen Faktor, einer Verringerung im Aortenblutdruck um ungefähr 0–20% und eines Anstiegs der Herzfrequenz um ungefähr 0–20% modelliert werden. Zum Beispiel kann die Auswirkung von Adenosin unter Verwendung einer Verringerung des Koronararterienwiderstands um einen 4-fachen Faktor, einer Verringerung des Aortenblutdrucks um ungefähr 10% und eines Anstiegs der Herzfrequenz um ungefähr 10% modelliert werden. Wenngleich in der beispielhaften Ausführungsform die Grenzbedingungen für Hyperämiezustände bestimmt werden, versteht es sich, dass Grenzbedingungen für andere physiologische Zustände, wie Ruhezustand, variierende Hyperämieniveaus, variierende Niveaus körperlicher Betätigung, Anstrengung, Belastung oder andere Bedingungen bestimmt werden können.
  • Grenzbedingungen stellen Informationen über das dreidimensionale Volumenmodell 320 an dessen Grenzen bereit, z. B. den Einflussgrenzen 322, den Ausflussgrenzen 324, den Gefäßwandgrenzen 326 usw., wie in 8 dargestellt. Die Gefäßwandgrenzen 326 können die physischen Grenzen der Aorta, der Hauptkoronararterien und/oder anderer Koronararterien oder Gefäße des Modells 320 beinhalten.
  • Jeder Einfluss- oder Ausflussgrenze 322, 324 kann ein vorgegebener Wert oder ein Feld an Werten für Geschwindigkeit, Flussrate, Druck oder eine andere Blutflusseigenschaft zugeordnet werden. Alternativ kann jeder Einfluss- oder Ausflussgrenze 322, 324 durch Koppeln eines Herzmodells mit der Grenze einem Lumped-Parameter- oder verteilten (z. B. eindimensionalen Wellenausbreitungs-)Modell, einem anderen ein- oder zweidimensionalen Modelltyp oder einem anderen Modelltyp zugeordnet werden. Die spezifischen Grenzbedingungen können z. B. basierend auf der Geometrie der Einfluss- oder Ausflussgrenzen 322, 324, bestimmt werden, die aus den erfassten patientenspezifischen Informationen oder anderen gemessenen Parametern, wie Herzleistung, Blutdruck, der in Schritt 240 berechneten Myokardmasse usw., bestimmt wurden.
  • i. Bestimmen von ordnungsreduzierten Modellen
  • Die stromaufwärts und stromabwärts gelegenen, mit dem Volumenmodell 320 verbundenen Strukturen können als ordnungsreduzierte Modelle repräsentiert werden, die stromaufwärts und stromabwärts gelegene Strukturen repräsentieren. Zum Beispiel zeigen 1215 Aspekte eines Verfahrens zum Vorbereiten eines Lumped-Parameter-Modells aus dreidimensionalen patientenspezifischen anatomischen Daten an einer der Ausflussgrenzen 324 gemäß einer beispielhaften Ausführungsform. Das Verfahren kann separat von und vor den in 2 und 3 dargestellten Verfahren ausgeführt werden.
  • 12 zeigt einen Abschnitt 330 des Volumenmodells 320 einer der Hauptkoronararterien oder der davon ausgehenden Äste und 13 zeigt den Abschnitt der in Schritt 242 bestimmten Mittellinien des in 12 dargestellten Abschnitts 330.
  • Der Abschnitt 330 kann in Segmente 332 unterteilt werden. 14 zeigt ein Beispiel der Segmente 332, die aus dem Abschnitt 330 gebildet werden können. Die Auswahl der Längen der Segmente 332 kann durch den Benutzer und/oder das Computersystem ausgeführt werden. Die Segmente 332 können in ihrer Länge variieren, zum Beispiel abhängig von der Geometrie der Segmente 332. Verschiedene Techniken können verwendet werden, um den Abschnitt 330 zu segmentieren. Zum Beispiel können erkrankte Abschnitte, z. B. Abschnitte mit einem verhältnismäßig engen Querschnitt, einer Läsion und/oder einer Stenose (einer anormalen Verengung in einem Blutgefäß), in einem oder mehreren separatem/-n Segment(en) 332 bereitgestellt werden. Die erkrankten Abschnitte und Stenosen können identifiziert werden, z. B. durch Messen der Querschnittfläche entlang der Länge der Mittellinie und Berechnen lokaler minimaler Querschnittflächen.
  • Die Segmente 332 können durch ein Schaltdiagramm angenähert werden, das ein oder mehrere (lineare oder nichtlineare) Widerstände 334 und/oder andere Schaltelemente (z. B. Kondensatoren, Induktionsspulen usw.) beinhaltet. 15 zeigt ein Beispiel des Segments 332, die durch eine Reihe an linearen und nichtlinearen Widerständen 334 ersetzt wurden. Die individuellen Widerstände der Widerstände 334 können bestimmt werden, z. B. basierend auf einem geschätzten Fluss und/oder Druck über das entsprechende Segment 332.
  • Der Widerstand kann konstant, linear oder nichtlinear sein, z. B. abhängig von der geschätzten Flussrate durch das entsprechende Segment 332. Für komplexere Geometrien, wie eine Stenose, kann der Widerstand mit der Flussrate variieren. Widerstände für verschiedene Geometrien können basierend auf einer rechnerischen Analyse (z. B. einem Finite-Differenz-, Finite-Volumen-, Spektral, Lattice-Boltzmann-, teilchenbasiertem, Level-Set-, isogeometrischem oder Finite-Element-Verfahren oder einer anderen rechnerischen Fluid-Dynamik-(CFD)-Analysetechnik) berechnet werden und mehrere Lösungen von der unter verschiedenen Fluss- und Druckbedingungen ausgeführten rechnerischen Analyse können verwendet werden, um patientenspezifische, gefäßspezifische und/oder läsionsspezifische Widerstände abzuleiten. Die Ergebnisse können verwendet werden, um Widerstände für verschiedene Arten von Merkmalen und Geometrien jedes Segments, das modelliert werden kann, zu bestimmen. Dadurch kann es das oben beschriebene Ableiten von patientenspezifischen, gefäßspezifischen und/oder läsionsspezifischen Widerständen dem Computersystem ermöglichen, komplexere Geometrien, wie asymmetrische Stenose, mehrere Läsionen, Läsionen an Bifurkationen und Ästen und Gefäßwindungen usw., zu erkennen und zu bewerten.
  • Kondensatoren können ebenfalls enthalten sein und die Kapazität kann bestimmt werden, z. B. basierend auf der Elastizität der Gefäßwände des entsprechenden Segments. Induktionsspulen können enthalten sein und die Induktivität kann bestimmt werden, z. B. basierend auf Trägheitsauswirkungen, die sich auf Beschleunigung oder Entschleunigung des Blutvolumens, das durch das entsprechende Segment fließt, beziehen.
  • Die individuellen Werte für Widerstand, Kapazität, Induktivität und andere mit den im Lumped-Parameter-Modell verwendeten elektrischen Komponenten verknüpfte Variablen können basierend auf Daten von vielen Patienten abgeleitet werden und ähnliche Gefäßgeometrien können ähnliche Werte aufweisen. Demnach können empirische Modelle aus einer großen Population an patientenspezifischen Daten entwickelt werden, wodurch eine Sammlung an Werten, die spezifischen geometrischen Merkmalen entsprechen, erzeugt wird, die in zukünftigen Analysen auf ähnliche Patienten angewendet werden können. Geometrien können zwischen zwei verschiedenen Gefäßsegmenten zugeordnet werden, um automatisch die Werte für ein Segment 332 eines Patienten aus einer vergangenen Simulation auszuwählen.
  • ii. Beispielhafte Lumped-Parameter-Modelle
  • Alternativ können die Lumped-Parameter-Modelle vorgegeben sein, statt die oben in Verbindung mit 1215 beschriebenen Schritte auszuführen. Zum Beispiel zeigt 16 Beispiele von Lumped-Parameter-Modellen 340, 350, 360, die die stromaufwärts und stromabwärts gelegenen Strukturen an den Einfluss- und Ausflussgrenzen 322, 324 des Volumenmodells 320 repräsentieren. Das Ende A befindet sich an der Einflussgrenze 322 und die Enden a–m und B befinden sich an den Ausflussgrenzen.
  • Ein Lumped-Parameter-Herzmodell 340 kann verwendet werden, um die Grenzbedingung am Ende A an der Einflussgrenze 322 des Volumenmodells 320 zu bestimmen. Das Lumped-Parameter-Herzmodell 340 kann verwendet werden, um Blutfluss vom Herzen unter Hyperämiebedingungen zu repräsentieren. Das Lumped-Parameter-Herzmodell 340 beinhaltet verschiedene Parameter (z. B. PLA, RAV, LAV, RArt, LV-Art und E(t)), die basierend auf bekannten Informationen über den Patienten, z. B. einem Aortendruck, dem systolischen und diastolischen Blutdruck (z. B. wie in Schritt 100 bestimmt) des Patienten, der Herzleistung des Patienten (dem Volumen an Blutfluss vom Herzen, z. B. berechnet basierend auf dem Schlagvolumen und der in Schritt 100 bestimmten Herzfrequenz) und/oder experimentell bestimmten Konstanten bestimmt werden können.
  • Ein Lumped-Parameter-Koronarmodell 350 kann verwendet werden, um die Grenzbedingungen an den Enden a–m an den Ausflussgrenzen 324 des Volumenmodells 320 an den stromabwärts gelegenen Enden der Hauptkoronararterien und/oder der davon ausgehenden Äste zu bestimmen. Das Lumped-Parameter-Koronarmodell 350 kann verwendet werden, um einen Blutfluss zu repräsentieren, der durch die Enden a–m unter Hyperämiebedingungen aus den modellierten Gefäßen austritt. Das Lumped-Parameter-Koronarmodell 350 beinhaltet verschiedene Parameter (z. B. Ra, Ca, Ra-micro, Cim und RV), die basierend auf bekannten Informationen über den Patienten bestimmt werden können, z. B. der berechneten Myokardmasse (z. B. wie in Schritt 240 bestimmt) und dem terminalen Widerstand an den Enden a–m (z. B. bestimmt basierend auf Querschnittflächen der Gefäße an den Enden a–m, wie in Schritt 304 bestimmt).
  • Zum Beispiel kann die berechnete Myokardmasse verwendet werden, um eine Basislinie (im Ruhezustand) des durchschnittlichen koronaren Flusses durch die Mehrzahl an Ausflussgrenzen 324 zu schätzen. Dieses Verhältnis kann auf einem experimentell abgeleiteten physiologischen Gesetz basieren (z. B. aus den physiologischen Gesetzen 20 aus 1), das den durchschnittlichen Koronarflusses Q mit der Myokardmasse M (z. B. wie in Schritt 240 bestimmt) ins Verhältnis setzt als Q∝QoMα, wobei α ein vorgegebener Skalierungsexponent ist und Qo eine vorgegebene Konstante ist. Der gesamte Koronarfluss Q an den Ausflussgrenzen 324 unter Basislinien-(Ruhezustand)-Bedingungen und der Blutdruck des Patienten (z. B. wie in Schritt 100 bestimmt) können dann verwendet werden, um einen Gesamtwiderstand R an den Ausflussgrenzen 324 basierend auf einer vorgegebenen experimentell abgeleiteten Gleichung zu bestimmen.
  • Der Gesamtwiderstand R kann basierend auf den jeweiligen Querschnittflächen an den Enden a–m (z. B. wie in Schritt 304 bestimmt) unter den Enden a–m aufgeteilt werden. Dieses Verhältnis kann auf einem experimentell abgeleiteten physiologischen Gesetz basieren (z. B. aus den physiologischen Gesetzen 20 aus 1), das den jeweiligen Widerstand an den Enden a–m als Ri∝Ri,od β / i ins Verhältnis setzt, wobei Ri der Widerstand zum Fluss am i-ten Auslass ist und Ri,o eine vorgegebene Konstante ist, di der Durchmesser des Auslasses ist und β ein vorgegebener Potenzgesetzexponent ist, z. B. zwischen –3 und –2, –2,7 für Koronarfluss, –2,9 für Hirnfluss usw. Der Koronarfluss durch die individuellen Enden a–m und die durchschnittlichen Drücke an den individuellen Enden a–m (z. B. bestimmt basierend auf den individuellen Durchschnittsbereichen der Enden a–m der Gefäße wie in Schritt 304 bestimmt) kann verwendet werden, um eine Summe der Widerstände des Lumped-Parameter-Koronarmodells 350 an den entsprechenden Enden a–m zu bestimmen (z. B. Ra + Ra-micro + RV). Andere Parameter (z. B. Ra/Ra-micro, Ca, Cim) können experimentell bestimmte Konstanten sein.
  • Ein Windkesselmodell 360 kann verwendet werden, um die Grenzbedingung am Ende B an der Ausflussgrenze 324 des Volumenmodells 320 am stromabwärts gelegenen Ende der Aorta zum Aortenbogen hin zu bestimmen. Das Windkesselmodell 360 kann verwendet werden, um von der modellierten Aorta durch das Ende B ausströmenden Blutfluss unter Hyperämiebedingungen zu repräsentieren. Das Windkesselmodell 360 beinhaltet verschiedene Parameter (z. B. Rp, Rd und C), die basierend auf bekannten Informationen über den Patienten bestimmt werden können, z. B. der Herzleistung des Patienten, die oben in Verbindung mit dem Lumped-Parameter-Herzmodell 340 beschrieben wurde, dem oben in Verbindung mit dem Lumped-Parameter-Koronarmodell 350 beschriebenen durchschnittlichen Basislinien-Koronarfluss, einem Aortendruck (z. B. bestimmt basierend auf der Querschnittfläche der Aorta am Ende B wie in Schritt 304 bestimmt) und/oder experimentell bestimmten Konstanten.
  • Die Grenzbedingungen, z. B. die Lumped-Parameter-Modelle 340, 350, 360 (oder beliebige darin enthaltene Konstanten) oder ein anderes ordnungsreduziertes Modell, können basierend auf anderen Faktoren angepasst werden. Zum Beispiel können Widerstandswerte angepasst (z. B. erhöht) werden, wenn ein Patient ein geringeres Verhältnis von Fluss zu Gefäßgröße aufweist aufgrund einer vergleichsweise verringerten Kapazität, Gefäße unter physiologischer Belastung zu erweitern. Widerstandswerte können außerdem angepasst werden, wenn der Patient an Diabetes leidet, unter Medikamenten steht, Herzinfarkte hinter sich hat usw.
  • Alternierende Lumped-Parameter- oder verteilte, eindimensionale Netzwerkmodell können verwendet werden, um die Koronargefäße stromabwärts vom soliden Modell 320 zu repräsentieren. Bildgebung von Myokardperfusion unter Verwendung von MRT, CT, PET oder SPECT kann verwendet werden, um Parameter für derartige Modelle zuzuweisen. Außerdem können alternative Bildgebungsquellen, z. B. Magnetresonanzangiographie (MRA), retrospektives Cine-Gating oder prospektives Cine-Gating berechnete Tomographieangiographie (CTA) usw., verwendet werden, um Parameter für derartige Modelle zuzuweisen. Retrospektives Cine-Gating kann mit Bildverarbeitungsverfahren kombiniert werden, um Herzkammervolumenveränderungen über den Herzzyklus zu erfassen, um einem Lumped-Parameter-Herzmodell Parameter zuzuweisen.
  • Das Vereinfach eines Abschnitts der Anatomie des Patienten unter Verwendung der Lumped-Parameter-Modelle 340, 350, 360 oder eines anderen ordnungsreduzierten ein- oder zweidimensionalen Parametermodells ermöglicht, dass die rechnerische Analyse (z. B. der unten beschriebene Schritt 402 aus 3) schneller ausgeführt werden kann, insbesondere wenn die rechnerische Analyse mehrere Male ausgeführt wird, wie bei der. Bewertung möglicher Behandlungsoptionen (z. B. Schritt 500 aus 2) zusätzlich zu dem unbehandelten Zustand (z. B. Schritt 400 aus 2 und 3), wobei eine hohe Genauigkeit der Endergebnisse beibehalten wird.
  • In einer beispielhaften Ausführungsform kann das Bestimmen der Grenzbedingungen basierend auf den Eingaben des Benutzers, wie in Schritt 100 erfassten patientenspezifischen physiologischen Daten durch das Computersystem ausgeführt werden.
  • C. Erzeugen des dreidimensionalen Netzes
  • Mit erneutem Verweis auf 3 kann ein dreidimensionales Netz basierend auf dem in Schritt 306 erzeugten Volumenmodell 320 erzeugt werden (Schritt 312). 1719 zeigen ein Beispiel eines dreidimensionalen Netzes 380, das basierend auf dem in Schritt 306 erzeugten soliden Modell 320 erzeugt wird. Das Netz 380 beinhaltet eine Mehrzahl an Knoten 382 (Netzpunkte oder Gitterpunkte) entlang der Oberflächen des Volumenmodells 320 und durch das Innere des Volumenmodells 320. Das Netz 380 kann mit vierflächigen Elementen (die Punkte aufweisen, die die Knoten 382 bilden) gebildet sein, wie in 18 und 19 dargestellt. Alternativ können Elemente verwendet werden, die andere Formen aufweisen, z. B. Hexaeder oder andere Polyeder, Elemente mit gekrümmten Linien usw. In einer beispielhaften Ausführungsform kann die Anzahl der Knoten 382 in den Millionen liegen, z. B. fünf bis fünfzig Millionen. Die Anzahl an Knoten 382 nimmt zu, wenn das Netz 380 feiner wird. Mit einer höheren Anzahl an Knoten 382 können Informationen an mehreren Punkten im Modell 320 bereitgestellt werden, die rechnerische Analyse kann jedoch länger dauern, da eine größere Anzahl an Knoten 382 die Anzahl an Gleichungen (z. B. die in 1 dargestellten Gleichungen 30) erhöht, die gelöst werden müssen. In einer beispielhaften Ausführungsform kann das Erzeugen des Netzes 380 mit oder ohne eine Eingabe eines Benutzers (z. B. Spezifizieren einer Anzahl der Knoten 382, der Formen der Elemente usw.) vom Computersystem ausgeführt werden.
  • Mit erneutem Verweis auf 3 können das Netz 380 und die bestimmten Grenzbedingungen verifiziert werden (Schritt 314). Das Verifizieren kann von einem Benutzer und/oder vom Computersystem ausgeführt werden. Zum Beispiel kann/können der Benutzer und/oder das Computersystem in der Lage sein, bestimmte Fehler mit dem Netz 380 und/oder den Grenzbedingungen zu identifizieren, die erfordern, dass das Netz 380 und/oder die Grenzbedingungen neu erstellt werden, z. B. wenn das Netz 380 verzogen ist oder keine ausreichende räumliche Auflösung aufweist, wenn die Grenzbedingungen nicht ausreichend sind, um die rechnerische Analyse auszuführen, wenn die in Schritt 310 bestimmten Widerstände inkorrekt zu sein scheinen usw. In diesem Fall kann/können das Netz 380 und/oder die Grenzbedingungen als inakzeptabel bestimmt werden und einer oder mehrere der Schritte 304314 kann/können wiederholt werden. Wenn das Netz 380 und/oder die Grenzbedingungen als akzeptabel bestimmt werden, kann das Verfahren mit dem unten beschriebenen Schritt 402 fortfahren.
  • Zusätzlich kann der Benutzer überprüfen, dass die erfassten patientenspezifischen Daten oder andere gemessene Parameter, wie Herzleistung, Blutdrücke, Größe, Gewicht, die in Schritt 240 berechnete Myokardmasse, richtig eingegeben und/oder richtig berechnet wurden.
  • Dementsprechend können die in 3 dargestellten und oben beschriebenen Schritte 304314 als Unterschritte von Schritt 300 aus 2 angesehen werden.
  • V. Ausführen der rechnerischen Analyse und Ausgeben der Ergebnisse
  • Wie oben in Verbindung mit dem in 2 dargestellten Schritt 400 beschrieben, kann das beispielhafte Verfahren das Ausführen der rechnerischen Analyse und das Ausgeben von Ergebnissen beinhalten. In einer beispielhaften Ausführungsform kann der Schritt 400 die folgenden Schritte beinhalten:
  • A. Ausführen der rechnerischen Analyse
  • Mit Bezugnahme auf 3 kann die rechnerische Analyse durch das Computersystem ausgeführt werden (Schritt 402). In einer beispielhaften Ausführungsform kann der Schritt 402 Minuten bis Stunden dauern, abhängig z. B. von der Anzahl der Knoten 382 im Netz 380 (1719) usw.
  • Die Analyse beinhaltet das Erzeugen einer Reihe von Gleichungen, die den Blutfluss im Modell 320 beschreiben, aus denen das Netz 380 erzeugt wurde. Wie oben beschrieben, beziehen sich die gewünschten Informationen in der beispielhaften Ausführungsform auf die Simulation von Blutfluss durch das Modell 320 unter Hyperämiebedingungen.
  • Die Analyse beinhaltet außerdem die Verwendung eines numerischen Verfahrens, um die dreidimensionalen Gleichungen des Blutflusses unter Verwendung des Computersystems zu lösen.
  • Zum Beispiel kann das numerische Verfahren ein bekanntes Verfahren sein, wie ein Finite-Differenz-, Finite-Volumen-, Spektral-, Lattice-Boltzmann-, teilchenbasiertes, Level-Set-, isogeometrisches oder Finite-Element-Verfahren, oder andere rechnerische numerische Fluid-Dynamik-(CDF)-Techniken.
  • Unter Verwendung dieser numerischen Verfahren kann das Blut als newtonsches oder nicht-newtonsches oder Multiphasen-Fluid modelliert sein. Der Hämatokrit oder andere in Schritt 100 gemessene Faktoren des Patienten kann/können verwendet werden, um die Blutviskosität zur Einbeziehung in die Analyse zu bestimmen. Es kann angenommen werden, dass die Blutgefäßwände steif oder nachgiebig sind. Im zweiten Fall können Gleichungen für Wanddynamiken z. B. die elastodynamischen Gleichungen, gemeinsam mit den Gleichungen für den Blutfluss gelöst werden. In Schritt 100 erfasste zeitvariable dreidimensionale Bildgebungsdaten können als Eingaben zu Modellveränderungen in der Gefäßform über den Herzzyklus verwendet werden. Ein beispielhafter Satz an Gleichungen und Schritten zum Ausführen der rechnerischen Analyse ist zum Beispiel in US-Patent Nr. 6,236,878 mit dem Titel „Method for Predictive Modeling for Planning Medical Interventions and Simulating Physiological Conditions” und US-Patentanmeldung Nr. 2010/0241404 und der vorläufigen US-Patentanmeldung Nr. 61/210,401, beide mit dem Titel „Patient-Specific Hemodynamics of the Cardiovascular System”, beschrieben, die alle durch Verweis in ihrer Gesamtheit hierin eingeschlossen sind.
  • Die rechnerische Analyse unter Verwendung des vorbereiteten Modells und der Grenzbedingungen kann Blutfluss und -druck an jedem der Knoten 382 des Netzes 380, das das dreidimensionale Volumenmodell 320 repräsentiert, bestimmen. Zum Beispiel können die Ergebnisse der rechnerischen Analyse Werte für verschiedene Parameter an jedem der Knoten 382 beinhalten, wie zum Beispiel, jedoch nicht beschränkt auf, verschiedene Blutflusseigenschaften oder Parameter, wie Blutflussgeschwindigkeit, Druck, Flussrate oder berechnete Parameter, wie cFFR, wie unten beschrieben. Die Parameter können außerdem über das dreidimensionale Volumenmodell 320 interpoliert werden. Dadurch können die Ergebnisse der rechnerischen Analyse dem Benutzer Informationen bereitstellen, die typischerweise invasiv bestimmt werden können.
  • Mit erneutem Verweis auf 3 können die Ergebnisse der rechnerischen Analyse verifiziert werden (Schritt 404). Das Verifizieren kann von einem Benutzer und/oder dem Computersystem ausgeführt werden. Zum Beispiel kann/können der Benutzer und/oder das Computersystem bestimmte Fehler in den Ergebnissen identifizieren, die erfordern, dass das Netz 380 und/oder die Grenzbedingungen neu erstellt oder überarbeitet werden, z. B. wenn aufgrund einer unzureichenden Anzahl an Knoten 382 unzureichende Informationen vorliegen, wenn die Analyse aufgrund einer exzessiven Anzahl an Knoten 382 zu lange dauert usw.
  • Wenn die Ergebnisse der rechnerischen Analyse in Schritt 404 als inakzeptabel bestimmt werden, kann/können der Benutzer und/oder das Computer zum Beispiel bestimmen, ob und wie das in Schritt 306 erzeugte Volumenmodell 320 und/oder das in Schritt 312 erzeugte Netz 380 überarbeitet oder verfeinert werden sollen, ob und wie die in Schritt 310 bestimmten Grenzbedingungen überarbeitet werden sollen oder ob andere Revisionen an Eingaben für die rechnerische Analyse vorgenommen werden sollen. Dann kann/können einer oder mehrere der oben beschriebenen Schritte basierend auf den bestimmten Revisionen oder Verfeinerungen wiederholt werden, z. B. Schritte 306314, 402 und 404.
  • B. Anzeigen der Ergebnisse für Blutdruck, Fluss und cFFR
  • Mit erneutem Verweis auf 3, wenn die Ergebnisse der rechnerischen Analyse in Schritt 404 als akzeptabel bestimmt werden, kann das Computersystem bestimmte Ergebnisse der rechnerischen Analyse ausgeben. Zum Beispiel kann das Computersystem basierend auf den Ergebnissen der rechnerischen Analyse erzeugte Bilder anzeigen, wie die oben in Verbindung mit 1 beschriebenen Bilder, wie das simulierte Blutdruckmodell 50, das simulierte Blutflussmodell 52 und/oder das cFFR-Modell 54. Wie oben beschrieben, zeigen diese Bilder simulierten Blutdruck, Blutfluss und cFFR unter simulierten Hyperämiebedingungen an, z. B. da die in Schritt 310 bestimmten Grenzbedingungen in Bezug auf Hyperämiebedingungen bestimmt wurden.
  • Das simulierte Blutdruckmodell 50 (1) zeigt den lokalen Blutdruck (z. B. in Millimetern Quicksilber oder mmHg) durch die Anatomie des Patienten, die durch das Netz 380 aus 1719 unter simulierten Hyperämiebedingungen repräsentiert wird, an. Die rechnerische Analyse kann den lokalen Blutdruck an jedem Knoten 382 des Netzes 380 bestimmen und das simulierte Blutdruckmodell 50 kann den entsprechenden Drücken eine jeweilige Farbe, Schattierung oder andere visuelle Kennzeichnung zuweisen, sodass das simulierte Blutdruckmodell 50 visuell die Variationen im Druck über das Modell 50 anzeigen kann, ohne dass die individuellen Werte für jeden Knoten 382 spezifiziert werden müssen. Zum Beispiel zeigt das in 1 dargestellte simulierte Blutdruckmodell 50, dass der Druck für diesen bestimmten Patienten unter simulierten Hyperämiebedingungen allgemein gleichmäßig und in der Aorta höher sein kann (wie durch die dunklere Schattierung angezeigt) und dass der Druck schrittweise und kontinuierlich abnehmen kann, wenn das Blut stromabwärts in die Hauptkoronararterien und in die Äste fließt (wie durch die schrittweise und kontinuierliche Aufhellung der Schattierung zu den stromabwärts gelegenen Enden der Äste hin dargestellt). Das simulierte Blutdruckmodell 50 kann durch eine Legende begleitet werden, die die spezifischen numerischen Werte für Blutdruck anzeigt, wie in 1 dargestellt.
  • In einer beispielhaften Ausführungsform kann das simulierte Blutdruckmodell 50 in Farbe bereitgestellt sein und ein Farbspektrum kann verwendet werden, um Variationen im Druck über das Modell 50 anzuzeigen. Das Farbspektrum kann Rot, Orange, Gelb, Grün, Blau, Indigo und Violett beinhalten, in dieser Reihenfolge vom höchsten Druck zum niedrigsten Druck. Zum Beispiel kann die obere Grenze (Rot) ungefähr 110 mmHg oder mehr (oder 80 mmHg, 90 mmHg, 100 mmHg usw.) anzeigen und die untere Grenze (Violett) kann ungefähr 50 mmHg oder weniger (oder 20 mmHg, 30 mmHg, 40 mmHg usw.) anzeigen, wobei Grün ungefähr 80 mmHg (oder einen anderen Wert ungefähr auf halbem Weg zwischen der oberen und unteren Grenze) anzeigt. Demnach kann das simulierte Blutdruckmodell 50 für einige Patienten einen Großteil oder die gesamte Aorta als Rot oder eine andere Farbe am höheren Ende des Spektrums zeigen und die Farben können sich schrittweise durch das Spektrum (z. B. zum unteren Ende des Spektrum (zu Violett)) zu den distalen Enden der Koronararterien und der davon ausgehenden Äste hin verändern. Die distalen Enden der Koronararterien für einen bestimmten Patienten können verschiedene Farben aufweisen, z. B. irgendwo von Rot bis Violett, abhängig von den für die jeweiligen distalen Enden bestimmten lokalen Blutdrücken.
  • Das simulierte Blutflussmodell 52 (1) zeigt die lokale Blutgeschwindigkeit (z. B. in Zentimetern pro Sekunde oder cm/s) durch die vom Netz 380 repräsentierte Anatomie des Patienten aus 1719 unter simulierten Hyperämiebedingungen. Die rechnerische Analyse kann die lokale Blutgeschwindigkeit an jedem Knoten 382 des Netzes 380 bestimmen, und das simulierte Blutflussmodell 52 kann den entsprechenden Geschwindigkeiten eine entsprechende Farbe, Schattierung oder andere visuelle Kennzeichnungen zuweisen, sodass das simulierte Blutflussmodell 52 visuell die Variationen der Geschwindigkeit über das Modell 52 anzeigen kann, ohne dass individuelle Werte für jeden Knoten 382 spezifiziert werden müssen. Zum Beispiel zeigt das in 1 dargestellte simulierte Blutflussmodell 52, dass für diesen spezifischen Patienten unter simulierten Hyperämiebedingungen die Geschwindigkeit allgemein in bestimmten Bereichen der Hauptkoronararterien und der Äste höher ist (wie durch die dunklere Schattierung im Bereich 53 in 1 angezeigt). Das simulierte Blutflussmodell 52 kann durch eine Legende begleitet werden, die die spezifischen numerischen Werte für die Blutgeschwindigkeit anzeigt, wie in 1 dargestellt.
  • In einer beispielhaften Ausführungsform kann das simulierte Blutflussmodell 52 in Farbe bereitgestellt sein und ein Farbspektrum kann verwendet werden, um Variationen der Geschwindigkeit über das Modell 52 anzuzeigen. Das Farbspektrum kann Rot, Orange, Gelb, Grün, Blau, Indigo und Violett beinhalten, in dieser Reihenfolge von der höchsten Geschwindigkeit zur niedrigsten Geschwindigkeit. Zum Beispiel kann die obere Grenze (Rot) ungefähr 100 (oder 150) cm/s oder mehr anzeigen und die untere Grenze (Violett) kann ungefähr 0 cm/s anzeigen, wobei Grün ungefähr 50 cm/s (oder einen anderen Wert ungefähr auf halbem Weg zwischen der oberen und unteren Grenze) anzeigt. Demnach kann das simulierte Blutflussmodell 52 für einige Patienten einen Großteil oder die gesamte Aorta als eine Mischung der Farben zum unteren Ende des Spektrums hin (z. B. Grün bis Violett) anzeigen und die Farben können sich schrittweise durch das Spektrum (z. B. in Richtung des höheren Endes des Spektrums (hoch zu Rot)) an bestimmten Positionen verändern, wo die bestimmten Blutgeschwindigkeiten zunehmen.
  • Das cFFR-Modell 54 (1) zeigt die lokale cFFR durch die vom Netz 380 aus 1719 repräsentierte Anatomie des Patienten unter simulierten Hyperämiebedingungen. Wie oben beschrieben, kann die cFFR als das Verhältnis des lokalen Blutdrucks bestimmt durch die rechnerische Analyse (z. B. im simulierten Blutdruckmodell 50 dargestellt) an einem bestimmten Knoten 382 geteilt durch den Blutdruck in der Aorta, z. B. an der Einflussgrenze 322 (8), berechnet werden. Die rechnerische Analyse kann den cFFR an jedem Knoten 382 des Netzes 380 bestimmten und das cFFR-Modell 54 kann den entsprechenden cFFR-Werten eine entsprechende Farbe, Schattierung oder andere visuelle Kennzeichnung zuweisen, sodass das cFFR-Modell 54 visuell die cFFR-Variationen durch das Modell 54 anzeigen kann, ohne dass die individuellen Werte für jeden Knoten 382 angegeben werden müssen. Zum Beispiel zeigt das in 1 dargestellte cFFR-Modell 54, dass die cFFR für diesen bestimmten Patienten unter simulierten Hyperämiebedingungen allgemein gleichmäßig und ungefähr 1,0 in der Aorta sein kann, und dass die cFFR schrittweise und kontinuierlich abnimmt, wenn das Blut stromabwärts in die Hauptkoronararterien und die Äste fließt. Das cFFR-Modell 54 kann außerdem cFFR-Werte an bestimmten Punkten durch das cFFR-Modell 54 anzeigen, wie in 1 dargestellt. Das cFFR-Modell 54 kann durch eine Legende begleitet werden, die spezifische numerische Werte für die cFFR anzeigt, wie in 1 dargestellt.
  • In einer beispielhaften Ausführungsform kann das cFFR-Modell 54 in Farbe bereitgestellt sein und ein Farbspektrum kann verwendet werden, um Variationen im Druck über das Modell 54 anzuzeigen. Das Farbspektrum kann Rot, Orange, Gelb, Grün, Blau, Indigo und Violett beinhalten, in dieser Reihenfolge von der geringsten cFFR (was funktionell signifikante Läsionen anzeigt) zu der höchsten cFFR. Zum Beispiel kann die untere Grenze (Violett) eine cFFR von 1,0 anzeigen und die obere Grenze (Rot) kann ungefähr 0,7 (oder 0,75 oder 0,8) oder weniger anzeigen, wobei Grün ungefähr 0,85 (oder einen anderen Wert ungefähr auf halbem Weg zwischen der oberen und unteren Grenze) anzeigt. Zum Beispiel kann die untere Grenze basierend auf einer unteren Grenze (z. B. 0,7; 0,75 oder 0,8) bestimmt werden, die verwendet wird, um zu bestimmen, ob die cFFR-Messung eine funktionell signifikante Läsion oder ein anderes Merkmal, dass eine Intervention erforderlich macht, anzeigt. Demnach kann das cFFR-Modell 54 für einige Patienten einen Großteil oder die gesamte Aorta als Violett oder eine andere Farbe am höheren Ende des Spektrums zeigen und die Farben können sich schrittweise durch das Spektrum (z. B. zum höheren Ende des Spektrum (bis zu irgendeinem Punkt zwischen Rot und Violett)) zu den distalen Enden der Koronararterien und der davon ausgehenden Äste verändern. Die distalen Enden der Koronararterien für einen bestimmten Patienten können verschiedene Farben aufweisen, z. B. irgendwo von Rot bis Violett, abhängig von den für die jeweiligen distalen Enden bestimmten lokalen cFFR-Werten.
  • Nach dem Bestimmen, dass die cFFR unter die untere Grenze, die für das Bestimmen des Vorhandenseins einer funktionell signifikanten Läsion oder eines anderen Merkmals, das eine Intervention erforderlich macht, verwendet wird, gefallen ist, kann die Arterie oder der Ast bewertet werden, um die funktionell signifikante(n) Läsion(en) zu lokalisieren. Das Computersystem oder der Benutzer kann/können die funktionell signifikante(n) Läsion(en) basierend auf der Geometrie der Arterie oder des Astes (z. B. unter Verwendung des cFFR-Modells 54) lokalisieren. Zum Beispiel kann/können die funktionell signifikant(en) Läsion(en) gefunden werden, indem eine Verengung oder Stenose in der Nähe (z. B. stromaufwärts) von der Position des cFFR-Modells 54 mit dem lokalen minimalen cFFR-Wert gefunden wird. Das Computersystem kann dem Benutzer den/die Abschnitt(e) des cFFR-Modells 54 (oder anderen Modells) anzeigen, der/die die funktionell signifikante(n) Läsion(en) beinhaltet/-n.
  • Auch andere Bilder können basierend auf den Ergebnissen der rechnerischen Analyse erzeugt werden. Zum Beispiel kann das Computersystem zusätzliche Informationen bezüglich bestimmter Hauptkoronararterien bereitstellen, z. B. wie in 2022 dargestellt. Die Koronararterie kann durch das Computersystem ausgewählt werden, zum Beispiel wenn die entsprechende Koronararterie die niedrigste cFFR beinhaltet. Alternativ kann der Benutzer die entsprechende Koronararterie auswählen.
  • 20 zeigt ein Modell der Anatomie des Patienten, einschließlich Ergebnissen der rechnerischen Analyse mit bestimmten Punkten auf dem Modell, identifiziert durch individuelle Referenzkennzeichnungen (z. B. LM, LAD1, LAD2, LAD3 usw.). In der beispielhaften in 21 dargestellten Ausführungsform sind die Punkte in der LAD-Arterie bereitgestellt, bei der es sich um die Hauptkoronararterie mit der niedrigsten cFFR für diesen entsprechenden Patienten unter simulierten Hyperämiebedingungen handelt.
  • 21 und 22 zeigen Graphen bestimmter Variablen im Laufe der Zeit an einigen oder allen dieser Punkte (z. B. LM, LAD1, LAD2, LAD3 usw.) und/oder an bestimmten anderen Positionen auf dem Modell (z. B. in der Aorta usw.). 21 ist ein Graph des Drucks (z. B. in Millimetern Quecksilber oder mmHg) im Laufe der Zeit in der Aorta und an den Punkten LAD1, LAD2 und LAD3 aus 20. Die obere Linie des Graphen zeigt den Druck in der Aorta an, die zweite Linie von oben zeigt den Druck an Punkt LAD1, die dritte Linie von oben den Druck an Punkt LAD2 und die untere Linie den Druck an Punkt LAD3. 22 ist ein Graph des Flusses (z. B. in Kubikzentimetern pro Sekunde oder cc/s) im Laufe der Zeit an den Punkten LM, LAD1, LAD2 und LAD3 aus 20. Zusätzlich können andere Graphen bereitgestellt sein, wie ein Graph der Scherspannung im Laufe der Zeit an einigen oder allen dieser Punkte und/oder an anderen Punkten. Die obere Linie des Graphen zeigt den Fluss am Punkt LM, die zweite Linie von oben den Fluss am Punkt LAD1, die dritte Linie von oben den Fluss am Punkt LAD2 und die untere Linie den Fluss am Punkt LAD3. Außerdem können Graphen bereitgestellt sein, die die Veränderungen dieser Variablen anzeigen, z. B. Blutdruck, Fluss, Geschwindigkeit oder cFFR entlang der Länge einer bestimmten Hauptkoronararterie und/oder der davon ausgehenden Äste.
  • Optional können die verschiedenen oben beschriebenen Graphen und andere Ergebnisse in einem Bericht vollendet werden (Schritt 406). Zum Beispiel können die oben beschriebenen Bilder und andere Informationen in ein Dokument eingefügt werden, dass eine vorgegebene Vorlage aufweist. Diese Vorlage kann vorgegeben und für mehrere Patienten exemplarisch sein und kann verwendet werden, um Ergebnisse der rechnerischen Analysen an Ärzte und/oder Patienten zu berichten. Das Dokument oder der Bericht kann automatisch vom Computersystem ausgefüllt werden, nachdem die rechnerische Analyse abgeschlossen ist.
  • Zum Beispiel kann der vollendete Bericht die in 23 dargestellten Informationen beinhalten, 23 beinhaltet das cFFR-Modell 54 aus 1 und beinhaltet außerdem zusammengefasste Informationen, wie die niedrigsten cFFR-Werte in jeder der Hauptkoronararterien und den davon ausgehenden Ästen. Zum Beispiel zeigt 23, dass der niedrigste cFFR-Wert in der LAD-Arterie 0,66 beträgt, der niedrigste cFFR-Wert in der LCX-Arterie 0,72 beträgt, der niedrigste cFFR-Wert in der RCA-Arterie 0,08 beträgt. Andere zusammengefasste Informationen können den Namen des Patienten, das Alter des Patienten, den Blutdruck (BP) des Patienten (z. B. in Schritt 100 erfasst), die Herzfrequenz (HR) des Patienten (z. B. in Schritt 100 erfasst) usw. beinhalten. Der vollendete Bericht kann Versionen der Bilder und anderer wie oben beschrieben erzeugter Informationen beinhalten, auf die der Arzt oder andere Benutzer unter Umständen zugreift, um weitere Informationen zu bestimmen. Die durch das Computersystem erzeugten Bilder können formatiert werden, um es dem Arzt oder anderen Benutzer zu ermöglichen, einen Cursor über einen beliebigen Punkt zu positionieren, um an diesem Punkt den Wert einer der oben beschriebenen Variablen zu bestimmen, z. B. Blutdruck, Geschwindigkeit, Fluss, cFFR usw.
  • Der vollendete Bericht kann an den Arzt und/oder den Patienten übertragen werden. Der vollendete Bericht kann unter Verwendung eines beliebigen bekannten Kommunikationsverfahrens, z. B. über ein kabelloses oder verkabeltes Netzwerk, per Post usw., übertragen werden. Alternativ kann/können der Arzt und/oder Patient benachrichtigt werden, dass der vollendete Bericht zum Download oder zur Abholung bereit ist Der Arzt und/oder Patient kann sich dann in den webbasierten Dienst einloggen, um den vollendeten Bericht über eine sichere Kommunikationsleitung herunter zu laden.
  • C. Verifizieren der Ergebnisse
  • Mit erneutem Verweis auf 3 können die Ergebnisse der rechnerischen Analyse unabhängig verifiziert werden (Schritt 408). Zum Beispiel kann/können der Benutzer und/oder das Computersystem in der Lage sein, bestimmte Fehler in den Ergebnissen der rechnerischen Analyse zu identifizieren, z. B. den Bildern und anderen in Schritt 406 erzeugten Informationen, die erfordern, dass beliebige der oben beschriebenen Schritte wiederholt werden. Falls derartige Fehler identifiziert werden, können die Ergebnisse der rechnerischen Analyse als inakzeptabel bestimmt werden und bestimmte Schritte, z. B. Schritte 100, 200, 300, 400, Unterschritte 102, 202208, 240260, 304314 und 402408 usw. können wiederholt werden.
  • Dementsprechend können die in 3 dargestellten und oben beschriebenen Schritte 402408 als Unterschritte von Schritt 400 aus 2 angesehen werden.
  • Ein anderes Verfahren zum Verifizieren der Ergebnisse der rechnerischen Analyse kann das Messen beliebiger in den Ergebnissen enthaltener Variablen beinhalten, z. B. Blutdruck, Geschwindigkeit, Fluss, cFFR usw. des Patienten unter Verwendung eines anderen Verfahrens. In einer beispielhaften Ausführungsform können die Variablen (z. B. invasiv) gemessen werden und dann mit den durch die rechnerische Analyse bestimmten Ergebnissen verglichen werden. Zum Beispiel kann die FFR bestimmt werden, z. B. unter Verwendung eines Druckdrahtes, der wie oben beschrieben in den Patienten eingeführt wird, an einem oder mehreren Punkten in der Anatomie des Patienten, die durch das Volumenmodell 320 und das Netz 380 repräsentiert wird. Die gemessene FFR an einer Position kann mit der cFFR an derselben Position verglichen werden und der Vergleich kann an mehreren Positionen ausgeführt werden. Optional kann die rechnerische Analyse und/oder können die Grenzbedingungen basierend auf dem Vergleich angepasst werden.
  • D. Andere Ausführungsform eines Systems und Verfahrens zum Bereitstellen von Koronarblutflussinformationen
  • Eine andere Ausführungsform eines Verfahrens 600 zum Bereitstellen verschiedener Informationen über Koronarblutfluss in einem spezifischen Patienten ist in 24 dargestellt. Das Verfahren 600 kann im oben beschriebenen Computersystem implementiert sein, z. B. dem Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren. Das Verfahren 600 kann unter Verwendung einer oder mehrerer Eingaben 610 ausgeführt werden und kann das Erzeugen eines oder mehrerer Modells/Modelle 620 basierend auf den Eingaben 610, das Zuweisen einer oder mehrerer Bedingungen 630 basierend auf den Eingaben 610 und/oder den Modellen 620 und das Ableiten einer oder mehrerer Lösung(en) 640 basierend auf den Modellen 620 und den Bedingungen 630 beinhalten.
  • Die Eingaben 610 können medizinische Bildgebungsdaten 611 der Aorta, der Koronararterien (und der davon ausgehenden Äste) und des Herzens des Patienten beinhalten, wie CCTA-Daten (z. B. in Schritt 100 aus 2 erfasst). Die Eingaben 610 können außerdem eine Messung 612 des Brachialblutdrucks des Patienten und/oder andere Messungen (z. B. in Schritt 100 aus 2 erfasst) beinhalten. Die Messungen 612 können nichtinvasiv erfasst werden. Die Eingaben 610 können verwendet werden, um das/die Modell(e) 620 zu erzeugen und/oder die unten beschriebene(n) Bedingung(en) 630 zu bestimmen.
  • Wie oben beschrieben, kann/können ein oder mehrere Modell(e) 620 basierend auf den Eingaben 610 bestimmt werden. Zum Beispiel kann das Verfahren 600 das Erzeugen eines oder mehrerer patientenspezifischer dreidimensionaler geometrischer Modelle der Anatomie des Patienten (z. B. der Aorta, der Koronararterien und der davon ausgehenden Äste) basierend auf den Bildgebungsdaten 611 beinhalten (Schritt 621). Zum Beispiel kann das geometrische Modell das Volumenmodell 320 aus 8 sein, das in Schritt 306 aus 3 erzeugt wurde, und/oder das Netz 380 aus 1719, das in Schritt 312 aus 3 erzeugt wurde.
  • Mit erneutem Verweis auf 24 kann das Verfahren 600 außerdem das Erzeugen eines physikbasierten Blutflussmodells oder mehrerer physikbasierter Blutflussmodelle beinhalten (Schritt 622). Die Blutflussmodelle können ein Modell beinhalten, dass sich auf den Blutfluss durch das in Schritt 621 erzeugte patientenspezifische geometrische Modell, Herz- und Aortenzirkulation, distale koronare Zirkulation usw. beziehen. Die Blutflussmodelle können sich auf wenigstens eine Blutflusseigenschaft beziehen, die mit der modellierten Anatomie des Patienten verknüpft ist, z. B. Blutflussgeschwindigkeit, Druck, Flussrate, FFR usw. Die Blutflussmodelle können als Grenzbedingungen an den Einfluss- und Ausflussgrenzen 322, 324 des dreidimensionalen geometrischen Modells zugeordnet sein. Das Blutflussmodell kann die oben in Verbindung mit Schritt 310 aus 3 beschriebenen ordnungsreduzierten Modelle oder andere Grenzbedingungen beinhalten, z. B. das Lumped-Parameter-Herzmodell 340, das Lumped-Parameter-Koronarmodell 350, das Windkesselmodell 360 usw.
  • Wie oben beschrieben, kann/können eine oder mehrere Bedingung(en) 630 basierend auf den Eingaben 610 und/oder den Modellen 620 bestimmt werden. Die Bedingungen 630 beinhalten Parameter, die für die in Schritt 622 (und Schritt 310 aus 3) bestimmten Grenzbedingungen berechnet wurden. Zum Beispiel kann das Verfahren 600 das Bestimmen einer Bedingung durch Berechnen einer patientenspezifischen ventrikulären oder Myokardmasse basierend auf den Bildgebungsdaten 611 beinhalten (z. B. wie in Schritt 240 aus 3 bestimmt)(Schritt 631).
  • Das Verfahren 600 kann das Bestimmen einer Bedingung durch Berechnen, unter Verwendung der in Schritt 631 berechneten ventrikulären oder Myokardmasse, eines ruhenden Koronarflusses basierend auf dem Verhältnis Q = QoMα beinhalten, wobei α ein vorgegebener Skalierungsexponent, M die Ventrikel- oder Myokardmasse und Qo eine vorgegebene Konstante ist (z. B. wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben) (Schritt 632). Alternativ kann das Verhältnis die Form Q∝QoMα aufweisen, wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben.
  • Das Verfahren 600 kann außerdem das Bestimmen einer Bedingung durch Berechnen eines Koronarwiderstands im vollständigen Ruhezustand (z. B. wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben) unter Verwendung des resultierenden in Schritt 632 berechneten Koronarflusses und des gemessenen Blutdrucks 612 des Patienten beinhalten (Schritt 633).
  • Das Verfahren 600 kann außerdem das Bestimmen einer Bedingung durch Berechnen individueller Widerstände für die individuellen Koronararterien (und die davon ausgehenden Äste) unter Verwendung des in Schritt 633 berechneten Koronarwiderstands im vollständigen Ruhezustand und der Modelle 620 beinhalten (Schritt 634). Zum Beispiel, wie oben in Verbindung mit Schritt 310 aus 3 beschrieben, kann der in Schritt 633 berechnete Koronarwiderstand im vollständigen Ruhezustand basierend auf den Größen (z. B. bestimmt gemäß dem in Schritt 621 bestimmten geometrischen Modell) der distalen Enden der individuellen Koronararterien und Äste berechnet werden, und basierend auf dem Verhältnis R = Rodβ, wobei R der Widerstand zum Fluss an einem bestimmten distalen Ende ist und Ro eine vorgegebene Konstante ist, d die Größe ist (z. B. Durchmesser des distalen Endes) und β ein vorgegebener Potenzgesetzexponent ist, wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben.
  • Mit erneutem Verweis auf 24 kann das Verfahren 600 das Anpassen der Grenzbedingungen basierend auf einer oder mehreren physischen Bedingung(en) des Patienten beinhalten (Schritt 635). Zum Bespiel können die in den Schritten 631634 bestimmten Parameter basierend darauf angepasst werden, ob die Lösung 640 einen Ruhezustand, verschiedene Hyperämieniveaus, verschiedene Niveaus körperlicher Betätigung oder Anstrengungen, verschiedene Medikamente usw. simulieren soll. Basierend auf den Eingaben 610, den Modellen 620 und den Bedingungen 630 kann eine rechnerische Analyse ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um die Lösung 640 zu bestimmen, die Informationen über den Koronarblutfluss des Patienten unter den in Schritt 635 ausgewählten physischen Bedingungen beinhaltet (Schritt 641). Bespiele für Informationen, die von der Lösung 640 bereitgestellt werden können, werden nachfolgend beschrieben.
  • Das kombinierte patientenspezifische anatomische (geometrische) und physiologische (physikbasierte) Modell kann verwendet werden, um die Auswirkung verschiedener Medikamente oder Veränderungen der Lebensweise (z. B. Aufhören mit dem Rauchen, Ernährungsumstellung oder erhöhte körperliche Betätigung) zu bestimmen, die die Herzfrequenz, das Schlagvolumen, den Blutdruck oder die koronare Mikrozirkulationsfunktion im Koronararterienblutfluss verändern. Derartige Informationen können verwendet werden, um die medizinische Behandlung zu optimieren oder potenziell gefährliche Auswirkungen von Medikamenten zu verhindern. Das kombinierte Modell kann außerdem verwendet werden, um die Wirkung von koronarem Arterienblutfluss alternativer Formen und/oder variierender Niveaus körperlicher Betätigung oder Risiken für das Aussetzen gegenüber einer potenziell extrinsischen Kraft zu bestimmen, z. B. beim Spielen von Football, während eines Raumfluges, während eines Tauchgangs, während eines Fluges in einem Flugzeug usw. Derartige Informationen können verwendet werden, um Arten und Niveaus körperlicher Aktivität zu identifizieren, die für einen spezifischen Patienten sicher und wirksam sein können. Das kombinierte Modell kann außerdem verwendet werden, um einen potenziellen Nutzen perkutaner koronarer Eingriffe in den Koronararterienblutfluss vorherzusagen, um die optimale Eingriffsstrategie auszuwählen und/oder um einen potenziellen Nutzen von koronarem Arterien-Bypass-Grafting für den Koronararterienblutfluss vorherzusagen, um die optimale chirurgische Strategie auszuwählen.
  • Das kombinierte Modell kann außerdem verwendet werden, um potenziell desaströse Auswirkungen einer Erhöhung der Belastung durch die arterielle Erkrankung auf den Koronararterienblutfluss darzustellen und unter Verwendung mechanistischer oder phänomenologischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann eine fortschreitende Krankheit zu einer Einschränkung des Blutflusses zum Herzmuskel führen kann. Derartige Informationen können das Bestimmen eines „Garantiezeitraumes” ermöglichen, während dem erwartet werden kann, dass ein Patient, der zunächst unter Verwendung von nichtinvasiver Bildgebung als frei von hämodynamisch signifikanter Erkrankung bestimmt wird, keine medizinische, intervenierende oder chirurgische Behandlung benötigt, oder alternativ, die Rate, mit der der Verlauf fortschreiten kann, wenn die nachteiligen Faktoren beibehalten werden.
  • Das kombinierte Modell kann außerdem verwendet werden, um potenziell vorteilhafte Auswirkungen auf den Koronararterienblutfluss darzustellen, die durch eine Verringerung der Belastung durch koronare Arterienerkrankung bedingt wird, und unter Verwendung mechanistischer oder phänomenologischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann eine Regression der Erkrankung zu einem erhöhten Blutfluss durch die Koronararterien zum Herzmuskel führen kann. Derartige Informationen können verwendet werden, um medizinische Versorgungsprogramme zu leiten, einschließlich, jedoch nicht beschränkt auf, Umstellung der Ernährung, erhöhte körperliche Betätigung, Verschreiben von Statinen oder anderen Medikamenten usw.
  • VI. Bereitstellen patientenspezifischer Behandlungsplanung
  • Wie oben in Verbindung mit dem in 2 dargestellten Schritt 500 beschrieben, kann das beispielhafte Verfahren das Bereitstellen von patientenspezifischer Behandlungsplanung bereitstellen. In einer beispielhaften Ausführungsform kann Schritt 500 die folgenden Schritte beinhalten. Wenngleich 3 die nachfolgenden Schritte nicht darstellt, versteht es sich, dass diese Schritte in Verbindung mit den in 3 dargestellten Schritten ausgeführt werden können, z. B. nach Schritten 406 oder 408.
  • Wie oben beschrieben, zeigt das in 1 und 23 dargestellte cFFR-Modell 54 die cFFR-Werte über die durch das Netz 380 aus 1719 repräsentierte Anatomie des Patienten in einem unbehandelten Zustand und unter simulierten Hyperämiebedingungen. Unter Verwendung dieser Informationen kann der Arzt dem Patienten Behandlungen verschreiben, wie erhöhte körperliche Betätigung, eine Ernährungsumstellung, ein Rezept für Medikamente, einen chirurgischen Eingriff an einem beliebigen Abschnitt der modellierten Anatomie oder anderen Abschnitten des Herzens (z. B. Koronararterien-Bypass-Grafting, Einsetzen eines oder mehrerer koronarer Stents usw.) usw.
  • Um zu bestimmen, welche Behandlung(en) verschrieben werden sollen, kann das Computersystem verwendet werden, um vorherzusagen, wie sich die durch die rechnerische Analyse bestimmten Informationen basierend auf derartiger/-n Behandlung(en) verändern würden. Zum Beispiel können bestimmte Behandlungen, wie das Einsetzen von Stents oder andere chirurgische Eingriffe, zu einer Veränderung der Geometrie der modellierten Anatomie führen. Dementsprechend kann das in Schritt 306 erzeugte Volumenmodell 320 überarbeitet werden, um eine Erweiterung eines oder mehrerer Lumen anzuzeigen, in die ein Stent eingesetzt wird.
  • Zum Beispiel zeigt das in 1 und 23 dargestellte cFFR-Modell 54, dass der niedrigste cFFR-Wert in der LAD-Arterie 0,66 beträgt, der niedrigste cFFR-Wert in der LCX-Arterie 0,72 beträgt, der niedrigste cFFR-Wert in der RCA-Arterie 0,80 beträgt. Die Behandlung kann vorgeschlagen werden, wenn ein cFFR-Wert zum Beispiel niedriger als 0,75 ist. Dementsprechend kann das Computersystem dem Benutzer vorschlagen, das Volumenmodell 320 zu überarbeiten, damit es eine Erweiterung der LAD-Arterie und der LCX-Arterie anzeigt, um das Einsetzen von Stents in diese Koronararterien zu simulieren. Der Benutzer kann aufgefordert werden, die Position und das Ausmaß der Erweiterung (z. B. die Länge und den Durchmesser) auszuwählen, die der Position und Größe des simulierten Stents entspricht. Alternativ können die Position und das Ausmaß der Erweiterung automatisch basierend auf verschiedenen Faktoren, wie der/den Position(en) des/der Knoten(s) mit cFFR-Werten, die niedriger sind als 0,75, einer Position einer signifikanten Verengung der Gefäße, Größen herkömmlicher Stents usw., durch das Computersystem bestimmt werden.
  • 25 zeigt ein Beispiel eines modifizierten cFFR-Modells 510, das basierend auf einem soliden Modell bestimmt wurde, das durch Erweitern eines Abschnitts der LAD-Arterie an Position 512 und eines Abschnitts der LCX-Arterie an Position 514 erzeugt wurde. In einer beispielhaften Ausführungsform können beliebige der oben beschriebenen Schritte, z. B. Schritte 310314 und 402408, unter Verwendung des modifizierten Volumenmodells wiederholt werden. In Schritt 406 kann der vollendete Bericht die Informationen über den unbehandelten Patienten (z. B. ohne die Stents), wie die in 23 dargestellten Informationen, und Informationen über die simulierte Behandlung für den Patienten, wie die in 25 und 26 dargestellten Informationen, beinhalten.
  • 25 beinhaltet das modifizierte cFFR-Modell 510 und beinhaltet außerdem Übersichtsinformationen, wie die niedrigsten cFFR-Werte in den Hauptkoronararterien und davon ausgehenden Ästen für das mit der vorgeschlagenen Behandlung verknüpfte modifizierte Volumenmodell. Zum Beispiel zeigt 25, dass der niedrigste cFFR-Wert in der LAD-Arterie (und ihren stromabwärts gelegenen Ästen) 0,78 beträgt, der niedrigste cFFR-Wert in der LCX-Arterie (und ihren stromabwärts gelegenen Ästen) 0,78 beträgt, der niedrigste cFFR-Wert in der RCA-Arterie (und ihren stromabwärts gelegenen Ästen) 0,79 beträgt. Dementsprechend zeigt ein Vergleich des cFFR-Modells 54 des unbehandelten Patienten (ohne Stents) und des cFFR-Modells 510 für die vorgeschlagene Behandlung (mit eingesetzten Stents), dass die vorgeschlagene Behandlung die minimale cFFR in der LAD-Arterie von 0,66 auf 0,78 erhöhen kann und die minimale cFFR in der LCX-Arterie von 0,72 auf 0,76 erhöhen würde, während eine minimale Verringerung der minimalen cFFR in der RCA-Arterie von 0,80 auf 0,79 stattfinden würde.
  • 26 zeigt ein Beispiel eines modifizierten simulierten Blutflussmodells 520, bestimmt nach dem Erweitern von Abschnitten der LAD-Arterie an Position 512 und der LCX-Arterie an Position 514, wie oben beschrieben. 26 beinhaltet außerdem Übersichtsinformationen, wie die Blutflusswerte an verschiedenen Positionen in den Hauptkoronararterien und den davon ausgehenden Ästen für das mit der vorgeschlagenen Behandlung verknüpfte modifizierte Volumenmodell. Zum Beispiel zeigt 26 Blutflusswerte für vier Positionen LAD1, LAD2, LAD3 und LAD4 in der LAD-Arterie und für zwei Positionen LCX1 und LCX2 in der LCX-Arterie für den unbehandelten Patienten (ohne Stents) und für den behandelten Patienten (mit eingesetzten Stents). 26 zeigt außerdem eine prozentuale Veränderung in Blutflusswerten zwischen den unbehandelten und behandelten Zuständen. Dementsprechend zeigt ein Vergleich des simulierten Blutflussmodells 52 des unbehandelten Patienten und des simulierten Blutflussmodells 520 für die vorgeschlagene Behandlung, dass die vorgeschlagene Behandlung den Fluss durch die LAD-Arterie und LCX-Arterie an allen der Positionen LAD1–LAD4, LCX1 und LCX2 abhängig von der Position um 9% bis 19% erhöhen kann.
  • Andere Informationen können ebenfalls zwischen den unbehandelten und behandelten Zuständen verglichen werden, wie der Koronararterienblutdruck. Basierend auf diesen Informationen kann der Arzt mit dem Patienten besprechen, ob mit der vorgeschlagenen Behandlungsoption fortgefahren wird oder nicht.
  • Andere Behandlungsoptionen können außerdem das Modifizieren des Volumenmodells 320 auf verschiedene Weisen beinhalten. Zum Beispiel kann Koronararterien-Bypass-Grafting das Erzeugen neuer Lumen oder Durchgänge im soliden Modell 320 beinhalten und das Entfernen einer Läsion kann das Erweitern eines Lumens oder Durchganges beinhalten. Andere Behandlungsoptionen können das Modifizieren des Volumenmodells 320 beinhalten. Zum Beispiel kann eine verstärkte körperliche Betätigung oder Anstrengung, eine Ernährungsumstellung oder eine andere Umstellung der Lebensweise, das Verschreiben von Medikamenten usw. das Verändern der in Schritt 310 bestimmten Grenzbedingungen beinhalten, z. B. aufgrund von Vasokonstriktion, Aufweitung, erhöhter Herzfrequenz usw. Zum Beispiel können die Herzfrequenz, die Herzleistung, das Schlagvolumen, der Blutdruck, die koronare Mikrozirkulationsfunktion, die Konfigurationen der Lumped-Parameter-Modelle usw. von den verschriebenen Medikamenten, der Art und Häufigkeit der ausgewählten körperlichen Betätigung (oder anderen Anstrengung), der Art der Umstellung der Lebensweise (z. B. Aufhören mit dem Rauchen, Ernährungsumstellung usw.) abhängen, wodurch die in Schritt 310 bestimmten Grenzbedingungen auf unterschiedliche Weise beeinflusst werden.
  • In einer beispielhaften Ausführungsform können modifizierte Grenzbedingungen unter Verwendung von Daten von vielen Patienten experimentell bestimmt werden, und ähnliche Behandlungsoptionen können erfordern, dass die Grenzbedingungen auf ähnliche Weise modifiziert werden. Empirische Modelle können aus einer großen Population an patientenspezifischen Daten entwickelt werden, wodurch eine Sammlung an Grenzbedingungen oder Funktionen für das Berechnen von Grenzbedingungen erzeugt wird, die spezifischen Behandlungsoptionen entsprechen, die in zukünftigen Analysen auf ähnliche Patienten angewendet werden können.
  • Nach dem Modifizieren der Grenzbedingungen können die oben beschriebenen Schritte, z. B. Schritte 312, 314 und 402408, unter Verwendung der modifizierten Grenzbedingungen wiederholt werden und in Schritt 406 kann der vollendete Bericht die Informationen über den unbehandelten Patienten, wie die in 23 dargestellten Informationen, und Informationen über die simulierte Behandlung für den Patienten, wie die in 25 und 26 dargestellten Informationen, beinhalten.
  • Alternativ kann dem Arzt, dem Patienten oder einem anderen Benutzer eine Benutzerschnittstelle bereitgestellt werden, die eine Interaktion mit einem dreidimensionalen Modell (z. B. dem Volumenmodell 320 aus 8) ermöglicht. Das Modell 320 kann in benutzerauswählbare Segmente unterteilt werden, die durch den Benutzer bearbeitet werden können, um eine oder mehrere Behandlungsoption(en) widerzuspiegeln. Zum Beispiel kann der Benutzer ein Segment mit einer Stenose (oder einem Verschluss, z. B. einem akuten Verschluss) auswählen und das Segment anpassen, um die Stenose zu entfernen, der Benutzer kann ein Segment zum Modell 320 hinzufügen, um als Bypass zu dienen usw. Der Benutzer kann außerdem aufgefordert werden, andere Behandlungsoptionen und/oder physiologische Parameter anzugeben, die die oben bestimmten Grenzbedingungen verändern können, z. B. eine Veränderung der Herzleistung, einer Herzfrequenz, einer Schlagleistung, eines Blutdrucks, eines Niveaus körperlicher Betätigung oder Anstrengung, eines Hyperämieniveaus, Medikamente usw. In einer alternativen Ausführungsform kann das Computersystem eine Behandlungsoption bestimmen oder vorschlagen.
  • Die Benutzerschnittstelle kann eine Interaktion mit dem dreidimensionalen Modell 320 ermöglichen, um es dem Benutzer zu ermöglichen, eine Stenose (oder einen Verschluss, z. B. einen akuten Verschluss) zu simulieren. Zum Beispiel kann der Benutzer ein Segment zum Einschließen der Stenose auswählen und das Computersystem kann verwendet werden, um vorherzusagen, wie sich die durch die rechnerische Analyse bestimmten Informationen basierend auf dem Hinzufügen der Stenose verändern würden. Demnach können die hierin beschriebenen Verfahren verwendet werden, um die Auswirkung des Verschließens einer Arterie vorherzusagen.
  • Die Benutzerschnittstelle kann außerdem eine Interaktion mit dem dreidimensionalen Modell 320 ermöglichen, um eine beschädigte Arterie oder das Entfernen einer Arterie zu simulieren, was zum Beispiel bei bestimmten chirurgischen Eingriffen, wie beim Entfernen krebsartiger Tumore, vorkommen kann. Das Modell kann außerdem modifiziert werden, um die Auswirkung des Verhinderns von Blutfluss durch bestimmte Arterien zu simulieren, um das Potenzial für kollabierte Durchgänge für das Bereitstellen eines adäquaten Blutflusses für den Patienten vorherzusagen.
  • A. Verwenden von ordnungsreduzierten Modellen zum Vergleichen verschiedener Behandlungsoptionen
  • In einer beispielhaften Ausführungsform kann es das Computersystem dem Benutzer ermöglichen, verschiedene Behandlungsoptionen schneller zu simulieren, indem das dreidimensionale Volumenmodell 320 oder Netz 380 durch ein ordnungsreduziertes Modell ersetzt wird. 27 zeigt ein schematisches Diagramm eines Verfahrens 700 zum Simulieren verschiedener Behandlungsoptionen unter Verwendung eines ordnungsreduzierten Modells gemäß einer beispielhaften Ausführungsform. Das Verfahren 700 kann im oben beschriebenen Computersystem implementiert sein.
  • Ein oder mehrere patientenspezifische(s) simulierte(s) Blutflussmodell(e), das/die Blutfluss oder andere Parameter repräsentiert/repräsentieren, kann/können von der oben beschriebenen rechnerischen Analyse ausgegeben werden (Schritt 701). Zum Beispiel können die simulierten Blutflussmodelle das simulierte Blutdruckmodell 50 aus 1, das simulierte Blutflussmodell 52 aus 1, das cFFR-Modell 54 aus 1 usw. beinhalten, die unter Verwendung der oben beschriebenen und in 2 und 3 dargestellten Verfahren bereitgestellt werden. Wie oben beschrieben, kann das simulierte Blutflussmodell ein dreidimensionales geometrisches Modell der Anatomie des Patienten beinhalten.
  • Funktionelle Informationen können aus den simulierten Blutflussmodellen extrahiert werden, um Bedingungen für ein ordnungsreduziertes Modell zu spezifizieren (Schritt 702). Zum Beispiel können die funktionellen Informationen die unter Verwendung der oben beschriebenen rechnerischen Analyse bestimmten Blutdruck-, Fluss- oder Geschwindigkeitsinformationen beinhalten.
  • Ein ordnungsreduziertes Modell (z. B. nulldimensional oder eindimensional) kann bereitgestellt werden, um das dreidimensionale Volumenmodell 320 zu ersetzen, das verwendet wird, um die in Schritt 701 erzeugten patientenspezifischen simulierten Blutflussmodelle zu erzeugen, und das ordnungsreduzierte Modell kann verwendet werden, um Informationen über den Koronarblutfluss im Patienten zu bestimmen (Schritt 703). Zum Beispiel kann das ordnungsreduzierte Modell ein Lumped-Parameter-Modell sein, das wie oben in Verbindung mit Schritt 310 aus 3 beschrieben erzeugt wurde. Demnach ist das Lumped-Parameter-Modell ein vereinfachtes Modell der Anatomie des Patienten, das verwendet werden kann, um Informationen über den Koronarblutfluss im Patienten zu bestimmen, ohne das mit dem Netz 380 aus 1719 verknüpfte komplexere System an Gleichungen lösen zu müssen.
  • Durch das Lösen des ordnungsreduzierten Modells in Schritt 703 bestimmte Informationen können dann auf ein dreidimensionales Volumenmodell (z. B. das Volumenmodell 320) der Anatomie des Patienten übertragen oder extrapoliert werden (Schritt 704) und der Benutzer kann je nach Wunsch Veränderungen am ordnungsreduzierten Modell vornehmen, um verschiedene Behandlungsoptionen und/oder Veränderungen der physiologischen Parameter für den Patienten, die durch den Benutzer ausgewählt werden können (Schritt 705), zu simulieren. Die auswählbaren physiologischen Parameter können Herzleistung, Niveau körperlicher Betätigung oder Anstrengung, Hyperämieniveau, Art der Medikamente usw. beinhalten. Die auswählbaren Behandlungsoptionen können das Entfernen einer Stenose, das Einfügen eines Bypasses usw. beinhalten.
  • Das ordnungsreduzierte Modell kann dann basierend auf den Behandlungsoptionen und/oder den durch den Benutzer ausgewählten physiologischen Parametern modifiziert werden und das modifizierte ordnungsreduzierte Modell kann verwendet werden, um Informationen über den Koronarblutfluss im Patienten zu bestimmen, die mit der ausgewählten Behandlungsoption und/oder dem physiologischen Parameter verknüpft sind (Schritt 703). Informationen, die durch das Lösen des ordnungsreduzierten Modells in Schritt 703 bestimmt wurden, können dann auf das dreidimensionale Volumenmodell 320 der Anatomie des Patienten übertragen oder extrapoliert werden, um die Auswirkungen der ausgewählten Behandlungsoption und/oder der physiologischen Parameter auf den Koronarblutfluss in der Anatomie des Patienten vorherzusagen (Schritt 704).
  • Die Schritte 703705 können für verschiedene Behandlungsoptionen und/oder physiologische Parameter wiederholt werden, um die vorhergesagten Auswirkungen verschiedener Behandlungsoptionen miteinander und mit den Informationen über den Koronarblutfluss im unbehandelten Patienten zu vergleichen. Dadurch können vorhergesagte Ergebnisse für verschiedenen Behandlungsoptionen und/oder physiologischen Parameter miteinander, gegeneinander und gegen Informationen über den unbehandelten Patienten abgewogen werden, ohne dass die komplexeren Analysen unter Verwendung des dreidimensionalen Netzes 380 erneut ausgeführt werden müssen. Stattdessen kann ein ordnungsreduziertes Modell verwendet werden, das es dem Benutzer ermöglichen kann, verschiedene Behandlungsoptionen und/oder physiologische Parameter einfacher und schneller zu analysieren und zu vergleichen.
  • 28 zeigt weitere Aspekte des beispielhaften Verfahrens zum Simulieren verschiedener Behandlungsoptionen unter Verwendung eines ordnungsreduzierten Modells gemäß einer beispielhaften Ausführungsform. Das Verfahren 700 kann im oben beschriebenen Computersystem implementiert sein.
  • Wie oben in Verbindung mit Schritt 306 aus 3 beschrieben, kann ein patientenspezifisches geometrisches Modell basierend auf Bildgebungsdaten für den Patienten erzeugt werden (Schritt 711). Zum Beispiel können die Bildgebungsdaten die in Schritt 100 aus 2 erfassten CCTA-Daten beinhalten und das geometrische Modell kann das in Schritt 306 aus 3 erzeugte Volumenmodell 320 aus 8 und/oder das in Schritt 312 aus 3 erzeugte Netz 380 aus 1719 sein.
  • Unter Verwendung des patientenspezifischen dreidimensionalen geometrischen Modells kann die rechnerische Analyse ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um Informationen über den Koronarblutfluss des Patienten zu bestimmen (Schritt 712). Die rechnerische Analyse kann ein oder mehrere dreidimensionale(s) patientenspezifische(s) simulierte(s) Blutflussmodell(e) ausgeben, das/die Blutfluss oder andere Parameter repräsentiert/-en, z. B. das simulierte Blutdruckmodell 50 aus 1, das simulierte Blutflussmodell 52 aus 1, das cFFR-Modell 54 aus 1 usw.
  • Das simulierte Blutflussmodell kann basierend auf den anatomischen Merkmalen des Modells segmentiert werden (z. B. wie oben in Verbindung mit 14 beschrieben) (Schritt 713). Zum Beispiel können von den Hauptkoronararterien ausgehende Äste in separaten Segmenten bereitgestellt sein (Schritt 714), Abschnitte mit Stenose oder erkrankte Abschnitte können in separaten Segmenten bereitgestellt sein (Schritt 716) und Abschnitte zwischen den Ästen und den Abschnitten mit Stenose oder erkrankten Abschnitten können in separaten Segmenten bereitgestellt sein (Schnitt 715). Verschiedene Auflösungsgrade können für die Segmentierung des simulierten Blutflussmodells bereitgestellt sein, sodass jedes Gefäß eine Mehrzahl an kurzen, einzelnen Segmenten oder längeren Segmenten beinhalten kann, z. B. einschließlich des gesamten Gefäßes. Außerdem können verschiedene Techniken zum Segmentieren des simulierten Blutflussmoduls bereitgestellt sein, einschließlich des Erzeugens von Mittellinien und des Segmentierens basierend auf erzeugten Mittellinien oder des Erkennens von Verzweigungspunkten und des Segmentierens basierend auf den erkannten Verzweigungspunkten. Die erkrankten Abschnitte und Stenosen können identifiziert werden, z. B. durch Messen der Querschnittfläche entlang der Länge der Mittellinie und Berechnen lokaler minimaler Querschnittflächen. Die Schritte 711716 können als Unterschritte von Schritt 701 aus 27 angesehen werden.
  • Die Segmente können durch Komponenten eines Lumped-Parameter-Modells ersetzt werden, wie Widerstände, Kondensatoren, Induktionsspulen usw., wie oben in Verbindung mit 15 beschrieben. Die individuellen Werte für den Widerstand, die Kapazität, die Induktivität und andere mit anderen im Lumped-Parameter-Modell verwendeten elektrischen Komponenten verknüpfte Variablen können von den in Schritt 712 bereitgestellten simulierten Blutflussmodellen abgeleitet werden. Zum Beispiel können für Äste und Abschnitte zwischen den Ästen und Abschnitte mit Stenose oder erkrankten Bereichen vom simulierten Blutflussmodell abgeleitete Informationen verwendet werden, um den entsprechenden Segmenten lineare Widerstände zuzuweisen (Schritt 717). Für Abschnitte mit komplexer Geometrie, wie einer Stenose oder einem erkrankten Bereich, kann der Widerstand mit der Flussrate variieren. Demnach können mehrere rechnerische Analysen erfasst werden, um simulierte Blutflussmodelle für verschiedene Fluss- und Druckbedingungen zu erfassen, um patientenspezifische gefäßspezifische und läsionsspezifische Widerstandsfunktionen für diese komplexen Geometrien abzuleiten, wie oben in Verbindung mit 15 beschrieben. Dementsprechend können für Abschnitte mit Stenose und oder erkrankte Bereiche Informationen, die von diesen von bisherigen Daten abgeleiteten mehreren rechnerischen Analysen oder Modellen abgeleitet wurden, verwendet werden, um nichtlineare flussabhängige Widerstände entsprechenden Segmenten zuzuweisen (Schritt 718). Die Schritte 717 und 718 können als Unterschritte von Schritt 702 aus 27 angesehen werden.
  • Unter Verwendung der in Schritten 717 und 718 bestimmten Widerstände kann ein ordnungsreduziertes Modell (z. B. nulldimensional oder eindimensional) erzeugt werden (Schritt 719). Zum Beispiel kann das ordnungsreduzierte Modell ein Lumped-Parameter-Modell sein, das wie oben in Verbindung mit Schritt 310 aus 3 beschrieben erzeugt wird. Demnach ist das Lumped-Parameter-Modell ein vereinfachtes Modell der Anatomie des Patienten, das verwendet werden kann, um Informationen über den Koronarblutfluss im Patienten zu bestimmen, ohne dass das mit dem Netz 380 aus 1719 verknüpfte komplexere System an Gleichungen gelöst werden muss.
  • Eine Benutzerschnittstelle kann bereitgestellt sein, die es dem Benutzer ermöglicht, mit dem in Schritt 719 erzeugten ordnungsreduzierten Modell zu interagieren (Schritt 720). Zum Beispiel kann der Benutzer verschiedene Segmente des ordnungsreduzierten Modells auswählen und bearbeiten, um verschiedene Behandlungsoptionen zu simulieren, und/oder verschiedene physiologische Parameter bearbeiten. Zum Beispiel kann ein Eingriff, wie das Einsetzen eines Stents, um einen erkrankten Bereich zu reparieren, modelliert werden, indem der Widerstand des Segments, in das der Stent eingesetzt werden soll, verringert wird. Das Einfügen eines Bypasses kann nachgeahmt werden, indem ein Segment mit einem niedrigen Widerstand parallel zu einem erkrankten Segment hinzugefügt wird.
  • Das modifizierte ordnungsreduzierte Modell kann gelöst werden, um Informationen über den Koronarblutfluss im Patienten unter der Behandlung und/oder einer Veränderung in den in Schritt 720 ausgewählten physiologischen Parametern zu bestimmen (Schritt 721). Die in Schritt 721 für Fluss und Druck in jedem Segment bestimmten Lösungswerte können dann mit der in Schritt 712 bestimmten dreidimensionalen Lösung verglichen werden und jegliche Differenz kann minimiert werden, indem die Widerstandsfunktionen der Segmente angepasst werden (z. B. wie in den Schritten 717 und 718 bestimmt) und das ordnungsreduzierte Modell aufgelöst wird (z. B. Schritt 721), bis die Lösungen passen. Dadurch kann das ordnungsreduzierte Modell erzeugt und dann mit einem vereinfachten Satz an Gleichungen gelöst werden, die eine verhältnismäßig schnelle Berechnung ermöglichen (z. B. im Vergleich zu einem vollständigen dreidimensionalen Modell) und verwendet werden können, um die Flussrate und den Druck zu lösen, die die Ergebnisse einer vollständigen dreidimensionalen rechnerischen Lösung annähern können. Das ordnungsreduzierte Modell ermöglicht verhältnismäßig schnelle Iterationen für verschiedene unterschiedliche Behandlungsoptionen.
  • Durch das Lösen des ordnungsreduzierten Modells in Schritt 721 bestimmte Informationen können dann auf ein dreidimensionales Volumenmodell der Anatomie des Patienten übertragen oder extrapoliert werden (z. B. das Volumenmodell 320)(Schritt 722). Die Schritte 719722 können den Schritten 703705 aus 27 ähneln und können, wie vom Benutzer gewünscht, wiederholt werden, um verschiedene Kombinationen für Behandlungsoptionen und/oder physiologische Parameter zu simulieren.
  • Statt den Widerstand entlang der Segmente vom dreidimensionalen Modell (z. B. wie oben für Schritte 717 und 718 beschrieben) zu berechnen, können Fluss und Druck alternativ an Intervallen entlang der Mittellinie in ein Lumped-Parameter- oder eindimensionales Modell zugeordnet werden. Die effektiven Widerstands- oder Verlustkoeffizienten können unter den Einschränkungen der Grenzbedingungen gelöst werden und ihnen können Fluss und Druck zugeordnet werden.
  • Außerdem können die Flussraten und Druckgradienten über individuelle Segmente verwendet werden, um einen epikardialen Koronarwiderstand zu berechnen, unter Verwendung der vom ordnungsreduzierten Modell abgeleiteten Lösung (z. B. wie oben für Schritt 721 beschrieben). Der epikardiale Koronarwiderstand kann als ein äquivalenter Widerstand der epikardialen Koronararterien (den Abschnitten der Koronararterien und der davon ausgehenden Äste, die im aus den medizinischen Bildgebungsdaten rekonstruierten patientenspezifischen Modell enthalten sind) berechnet werden. Dies kann eine klinische Signifikanz haben, da erklärt wird, warum Patienten mit diffuser Atherosklerose in den Koronararterien Symptome von Ischämie (Einschränken der Blutversorgung) aufweisen können. Außerdem können der Fluss pro Einheit an Myokardgewebevolumen (oder Masse) und/oder der Fluss pro Einheit der Herzleistung unter Bedingungen simulierter pharmakologisch induzierter Hyperämie oder variierender Intensität körperlicher Betätigung unter Verwendung von Daten von den ordnungsreduzierten Modellen berechnet werden.
  • Dadurch kann die Genauigkeit des dreidimensionalen Modellierens des Blutflusses mit der rechnerischen Einfachheit und der verhältnismäßig hohen Geschwindigkeit von eindimensionalen und Lumped-Parameter-Modelltechnologien kombiniert werden. Dreidimensionale rechnerische Verfahren können verwendet werden, um patientenspezifische eindimensionale oder Lumped-Parameter-Modelle numerisch abzuleiten, die numerisch abgeleitete empirische Modelle für Druckverluste über normale Segmente, Stenosen, Äste und andere anatomische Merkmale einbetten. Es kann eine verbesserte Diagnose für Patienten mit kardiovaskulären Erkrankungen bereitgestellt werden und das Planen von medizinischen, intervenierenden und chirurgischen Behandlungen kann schneller ausgeführt werden.
  • Außerdem kann die Genauigkeit von dreidimensionalen rechnerischen Fluid-Dynamiktechnologien mit der rechnerischen Einfachheit und den Leistungsfähigkeiten von Lumped-Parameter- und eindimensionalen Modellen des Blutflusses kombiniert werden. Ein dreidimensionales geometrisches und physiologisches Modell kann automatisch in ein ordnungsreduziertes eindimensionales oder Lumped-Parameter-Modell zerlegt werden. Das dreidimensionale Modell kann verwendet werden, um die linearen oder nichtlinearen hämodynamischen Auswirkungen von Blutfluss durch normale Segmente, Stenose und/oder Äste zu berechnen und die Parameter empirischer Modelle festzulegen. Die eindimensionalen oder Lumped-Parameter-Modelle können effizienter und schneller für Blutfluss und Druck in einem patientenspezifischen Modell aufgelöst werden und die Ergebnisse der Lumped-Parameter- oder eindimensionalen Lösungen anzeigen.
  • Das ordnungsreduzierte patientenspezifische anatomische und physiologische Modell kann verwendet werden, um die Auswirkung verschiedener Medikamente oder Umstellungen der Lebensweise (z. B. Aufhören mit dem Rauchen, Ernährungsumstellung oder erhöhte körperliche Betätigung) zu bestimmen, die die Herzfrequenz, das Schlagvolumen, den Blutdruck oder die koronare mikrozirkulatorische Funktion auf den Koronararterienblutfluss verändert. Derartige Informationen können verwendet werden, um medizinische Therapie zu optimieren oder potenziell gefährliche Folgen von Medikamenten zu verhindern. Das ordnungsreduzierte Modell kann außerdem verwendet werden, um die Auswirkung alternativer Formen und/oder variierender Niveaus körperlicher Aktivität auf den Koronararterienblutfluss oder Risiken des Aussetzens gegenüber potenzieller extrinsischer Kraft zu bestimmen, z. B. beim Spielen von Football, während eines Raumfluges, beim Tauchen, während eines Fluges in einem Flugzeug usw. Derartige Informationen können verwendet werden, um die Arten und Pegel körperlicher Aktivität zu identifizieren, die für einen spezifischen Patienten sicher und effektiv sein können. Das ordnungsreduzierte Modell kann außerdem verwendet werden, um einen potenziellen Nutzen perkutaner koronarer Eingriffe in den Koronararterienblutfluss vorherzusagen, um die optimale Eingriffsstrategie auszuwählen und/oder einen potenziellen Nutzen von Koronararterien-Bypass-Grafting für den koronaren Blutfluss vorherzusagen, um die optimale chirurgische Strategie auszuwählen.
  • Das ordnungsreduzierte Modell kann außerdem verwendet werden, um potenziell gesundheitsschädliche Auswirkungen einer Erhöhung der Belastung durch arterielle Erkrankung auf den koronaren Blutfluss darzustellen und unter Verwendung mechanistischer oder phänomenologischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann das Fortschreiten der Erkrankung zu einer Beeinträchtigung des Blutflusses zum Herzmuskel führen kann. Derartige Informationen ermöglichen das Bestimmen eines „Garantiezeitraumes”, in dem ein Patient, der zunächst unter Verwendung nichtinvasiver Bildgebung frei von hämodynamisch signifikanter Erkrankung zu sein scheint, keine medizinische, intervenierende oder chirurgische Therapie erfordert, oder alternativ, die Rate, mit der der Verlauf fortschreiten kann, wenn die nachteiligen Faktoren beibehalten werden.
  • Das ordnungsreduzierte Modell kann außerdem verwendet werden, um potenziell nützliche Auswirkungen auf den Koronararterienblutfluss darzustellen, die aus einer Verringerung der Belastung durch die koronare Arterienerkrankung entsteht, und um unter Verwendung mechanistischer oder phänomenologischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann die Regression der Erkrankung zu einem erhöhten Blutfluss durch die Koronararterien zum Herzmuskel führen kann. Derartige Informationen können verwendet werden, um medizinische Versorgungsprogramme zu leiten, einschließlich, jedoch nicht beschränkt auf, Umstellungen der Ernährung, erhöhte körperliche Aktivität, Verschreiben von Statinen oder anderen Medikamenten usw.
  • Das ordnungsreduzierte Modell kann in ein Angiographiesystem integriert werden, um eine Echtzeit-Berechnung von Behandlungsoptionen zu ermöglichen, während ein Arzt einen Patienten in einem Herzkathetisierungslabor untersucht. Das Modell kann auf dieselbe Ausrichtung eingestellt werden, wie die Angiographieanzeige, wodurch das Anzeigen der Ergebnisse einer Live-Angiographieansicht der Koronararterien mit simulierten Blutflusslösungen nebeneinander oder überlappend ermöglicht wird. Der Arzt kann Behandlungspläne planen und verändern, während im Laufe der Prozeduren Beobachtungen gemacht werden, wodurch verhältnismäßig schnelles Feedback ermöglicht wird, bevor medizinische Entscheidungen getroffen werden. Der Arzt kann invasiv Druck-, FFR- oder Blutflussmessungen vornehmen und die Messungen können verwendet werden, um das Modell weiter zu verfeinern, bevor prädiktive Simulationen ausgeführt werden.
  • Das ordnungsreduzierte Modell kann außerdem in ein medizinisches Bildgebungssystem oder eine Arbeitsstation integriert sein. Falls sie aus einer Sammlung vergangener patientenspezifischer Simulationsergebnisse abgeleitet wurden, können die ordnungsreduzierten Modelle in Verbindung mit geometrischen Segmentierungsalgorithmen verwendet werden, um Blutflussinformationen verhältnismäßig schnell zu lösen, nachdem ein Bildgebungsscan ausgeführt wurde.
  • Das ordnungsreduzierte Modell kann außerdem verwendet werden, um die Effizienz neuer medizinischer Therapien oder Kosten/Nutzen von Behandlungsoptionen auf großen Populationen von Patienten zu modellieren. Eine Datenbank mehrerer patientenspezifischer Lumped-Parameter-Modelle (z. B. hunderte, tausende oder mehr) kann Modelle bereitstellen, die in verhältnismäßig kurzen Zeiträumen gelöst werden. Eine verhältnismäßig schnelle Iteration und Optimierung kann für Medikamente, Therapien oder Simulationen oder Planung von klinischen Studien bereitgestellt werden. Das Anpassen der Modelle, um Behandlungen, Patientenreaktionen auf Medikamente oder chirurgische Eingriffe zu repräsentieren, kann Schätzungen der Effizienz ermöglichen, die erreicht werden kann, ohne dass möglicherweise kostenintensive und potenziell riskante umfangreiche klinische Studien ausgeführt werden müssen.
  • VII. Andere Ergebnisse
  • A. Bewerten der Myokardperfusion
  • Andere Ergebnisse können berechnet werden. Zum Beispiel kann die rechnerische Analyse Ergebnisse bereitstellen, die Myokardperfusion (Blutfluss durch das Myokard) quantitativ bestimmen. Das Quantifizieren von Myokardperfusion kann dabei helfen, Bereiche mit reduziertem Myokardblutfluss zu identifizieren, wie durch Ischämie (ein Einschränken einer Blutversorgung), Vernarbung oder andere Herzprobleme bedingt.
  • 29 zeigt ein schematisches Diagramm, das sich auf ein Verfahren 800 zum Bereitstellen verschiedener Informationen über Myokardperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 800 kann in das oben beschriebene Computersystem implementiert sein, z. B. das Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren.
  • Das Verfahren 800 kann unter Verwendung einer oder mehrerer Eingaben 802 ausgeführt werden. Die Eingaben 802 können medizinische Bildgebungsdaten 803 der Aorta, der Koronararterien (und den davon ausgehenden Ästen) und des Herzens des Patienten beinhalten, wie CCTA-Daten (z. B. in Schritt 100 aus 2 erfasst). Die Eingaben 802 können außerdem zusätzliche physiologische Daten 804 beinhalten, die vom Patienten gemessen wurden, wie den brachialen Blutdruck, die Herzfrequenz des Patienten und/oder andere Messungen (z. B. in Schritt 100 aus 2 erfasst). Die zusätzlichen physiologischen Daten 804 können nichtinvasiv erfasst werden. Die Eingaben 802 können verwendet werden, um die unten beschriebenen Schritte durchzuführen.
  • Ein dreidimensionales geometrisches Modell des Myokardgewebes des Patienten kann basierend auf den Bildgebungsdaten 803 erzeugt werden (Schritt 810) und das geometrische Modell kann in Segmente oder Volumen unterteilt werden (Schritt 812). Zum Beispiel zeigt 31 ein dreidimensionales geometrisches Modell 846 einschließlich eines dreidimensionalen geometrischen Modells 838 des Myokardgewebes des Patienten, unterteilt in Segmente 842. Die Größen und Positionen der einzelnen Segmente 842 können basierend auf den Ausflussgrenzen 324 (8) der Koronararterien (und der davon ausgehenden Äste), den Größen der Blutgefäße in dem oder verbunden mit dem jeweiligen Segment 842 (z. B. den angrenzenden Blutgefäßen) usw. bestimmt werden. Das Unterteilen des geometrischen Myokardmodells 838 in Segmente 842 kann unter Verwendung verschiedener bekannter Verfahren ausgeführt werden, wie ein Fast-Marching-Verfahren, ein generalisiertes Fast-Marching-Verfahren, ein Level-Set-Verfahren, eine Diffusionsgleichung, Gleichungen, die einen Fluss durch ein poröses Medium regeln, usw.
  • Das dreidimensionale geometrische Modell kann außerdem einen Abschnitt der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten beinhalten, die basierend auf den Bildgebungsdaten 803 modelliert werden können (Schritt 814). Zum Beispiel beinhaltet das dreidimensionale geometrische Modell 846 aus 31 ein dreidimensionales geometrisches Modell 837 der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten und das in Schritt 810 erzeugte dreidimensionale geometrische Modell 838 des Myokardgewebes des Patienten.
  • Mit erneutem Verweis auf 29 kann eine rechnerische Analyse ausgeführt werden, z. B. wie in Verbindung mit Schritt 402 aus 3 beschrieben, um eine Lösung zu bestimmen, die Informationen über den koronaren Blutfluss des Patienten unter einem durch den Benutzer bestimmten physischen Zustand beinhaltet (Schritt 816). Zum Beispiel kann der physische Zustand einen Ruhezustand, ein ausgewähltes Hyperämieniveau, ein ausgewähltes Niveau an körperlicher Betätigung oder Anstrengung oder andere Zustände beinhalten. Die Lösung kann Informationen, wie Blutfluss und Druck, an verschiedenen Positionen in der in Schritt 814 modellierten Anatomie des Patienten und unter dem spezifizierten physischen Zustand bereitstellen. Die rechnerische Analyse kann unter Verwendung von Grenzbedingungen an den Ausflussgrenzen 324 (8) ausgeführt werden, die von Lumped-Parameter- oder eindimensionalen Modellen abgeleitet wurden. Die eindimensionalen Modelle können erzeugt werden, um die Segmente 842 wie unten in Verbindung mit 30 beschrieben zu füllen.
  • Basierend auf den in Schritt 816 bestimmten Blutflussinformationen kann die Perfusion des Blutflusses in die jeweiligen in Schritt 812 erzeugten Segmente 842 des Myokards berechnet werden (Schritt 818). Zum Beispiel kann die Perfusion durch Teilen des Flusses von einem Auslass zu den Ausflussgrenzen 324 (8) durch das Volumen des segmentierten Myokards, zu dem der Auslass führt, berechnet werden.
  • Die Perfusion der jeweiligen in Schritt 818 bestimmten Segmente des Myokards kann auf dem in Schritt 810 oder 812 erzeugten geometrischen Modell des Myokards angezeigt werden (z. B. dem dreidimensionalen geometrischen Modell 838 des in 31 dargestellten Myokardgewebes des Patienten) (Schritt 820). Zum Beispiel zeigt 31, dass die Segmente 842 des Myokards des geometrischen Modells 838 mit einer anderen Schattierung oder Farbe dargestellt werden können, um die Perfusion des Blutflusses in die jeweiligen Segmente 842 anzuzeigen.
  • 30 zeigt ein anderes schematisches Diagramm, das sich auf ein Verfahren zum Bereitstellen verschiedener Informationen über Myokardperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 820 kann in das oben beschriebene Computersystem implementiert sein, z. B. das Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren.
  • Das Verfahren 820 kann unter Verwendung einer oder mehrerer Eingaben 832 ausgeführt werden, die medizinische Bildgebungsdaten 833 der Aorta, der Koronararterien (und der davon ausgehenden Äste) und des Herzens des Patienten beinhalten, wie CCTA-Daten (z. B. in Schritt 100 aus 2 erfasst). Die Eingaben 832 können verwendet werden, um die unten beschriebenen Schritte durchzuführen.
  • Ein dreidimensionales geometrisches Modell des Myokardgewebes des Patienten kann basierend auf den Bildgebungsdaten 833 erzeugt werden (Schritt 835). Das Modell kann außerdem einen Abschnitt der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten beinhalten, der ebenfalls basierend auf den Bildgebungsdaten 803 erzeugt wurde. Wie oben beschrieben, zeigt 31 zum Beispiel ein dreidimensionales geometrisches Modell 836 einschließlich des geometrischen Modells 837 der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten und dem geometrischen Modell 838 des Myokardgewebes des Patienten. Der Schritt 835 kann die oben beschriebenen Schritte 810 und 814 aus 29 beinhalten.
  • Mit erneutem Verweis auf 30 kann das geometrische Myokardmodell 838 in Volumen oder Segmente 842 unterteilt werden (Schritt 840). Schritt 840 kann den oben beschriebenen Schritt 812 aus 29 beinhalten. Wie oben beschrieben, zeigt 31 das dreidimensionale geometrische Modell 846 einschließlich des geometrischen Modells 838 des in die Segmente 842 unterteilten Myokardgewebes des Patienten.
  • Mit erneutem Verweis auf 30 kann das geometrische Modell 846 modifiziert werden, um eine nächste Generation an Ästen 857 im Koronarbaum zu beinhalten (Schritt 855). Die Position und Größe der Äste 857 (durch gestrichelte Linien 31 dargestellt) kann basierend auf Mittellinien für die Koronararterien (und die davon ausgehenden Äste) bestimmt werden. Die Mittellinien können z. B. basierend auf den Bildgebungsdaten 833 bestimmt werden (Schritt 845). Außerdem kann ein Algorithmus verwendet werden, um die Position und Größe der Äste 857 basierend auf morphometrischen Modellen (Modellen, die verwendet werden, um Gefäßposition und -größe stromabwärts von den bekannten Auslässen der Ausflussgrenzen 324 vorherzusagen (8)) und/oder physiologischen Verzweigungsgesetzten bezüglich der Gefäßgröße zu bestimmen (Schritt 850). Das morphometrische Modell kann auf die stromabwärts gelegenen Enden der Koronararterien (und der davon ausgehenden Äste) erweitert werden, die im geometrischen Modell 837 enthalten und auf der epikaridalen Oberfläche (der äußeren Schicht des Herzgewebes) bereitgestellt oder im geometrischen Modell 838 der Myokardwand enthalten sind.
  • Das Myokard kann ferner basierend auf den in Schritt 855 erzeugten Ästen 857 segmentiert werden (Schritt 860). Zum Beispiel zeigt 31, dass die Segmente 842 in Untervolumen oder Untersegmente 862 unterteilt werden können.
  • Zusätzliche Äste 857 können in den Untersegmenten 862 erzeugt werden und die Untersegmente 862 können ferner in kleinere Segmente 867 segmentiert werden (Schritt 865). Die Schritte des Erzeugens von Ästen und des Untersegmentierens der Volumen können wiederholt werden, bis eine gewünschte Auflösung der Volumengröße und/oder Verzweigungsgröße erreicht wird. Das Modell 846, das in den Schritten 855 und 865 erweitert wurde, um neue Äste 857 zu beinhalten, kann dann verwendet werden, um koronaren Blutfluss und Myokardperfusion in die Untersegmente, wie die in Schritt 865 erzeugten Untersegmente 867, zu berechnen.
  • Dementsprechend kann das erweiterte Modell verwendet werden, um die oben beschriebene rechnerische Analyse durchzuführen. Die Ergebnisse der rechnerischen Analyse können Informationen über den Blutfluss vom patientenspezifischen Koronararterienmodell, z. B. dem Modell 837 aus 31, in das erzeugte morphometrische Modell (einschließlich der in den Schritten 855 und 865 erzeugten Äste 857) bereitstellen, die in jedes der in Schritt 865 erzeugten Perfusionsuntersegmente 867 reichen. Die rechnerische Analyse kann unter Verwendung eines statischen Myokardperfusionsvolumens oder eines dynamischen Modells, das Daten von gekoppelten Herzmechanikmodellen integriert, ausgeführt werden.
  • 32 zeigt ein anderes schematisches Diagramm, das sich auf ein Verfahren 870 zum Bereitstellen verschiedener Informationen über die Myokardperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 870 kann im oben beschriebenen Computersystem implementiert werden, z. B. dem Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren.
  • Das Verfahren 870 kann unter Verwendung einer oder mehrerer Eingaben 872 ausgeführt werden. Die Eingaben 872 können medizinische Bildgebungsdaten 873 der Aorta, der Koronararterien (und der davon ausgehenden Äste) und des Herzens des Patienten beinhalten, wie CCTA-Daten (z. B. in Schritt 100 aus 2 erfasst). Die Eingaben 872 können außerdem physiologische Daten 874 beinhalten, die vom Patienten gemessen wurden, wie den brachialen Blutdruck, die Herzfrequenz und oder andere Messungen vom Patienten (z. B. in Schritt 100 aus 2 erfasst). Die zusätzlichen physiologischen Daten 874 können nichtinvasiv erfasst werden. Die Eingaben 872 können ferner Herzperfusionsdaten 875 beinhalten, die vom Patienten gemessen wurden (z. B. unter Verwendung von CT, PET, SPECT usw.). Die Eingaben 872 können verwendet werden, um die unten beschriebenen Schritte auszuführen.
  • Ein dreidimensionales geometrisches Modell der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten können basierend auf den Bildgebungsdaten 873 erzeugt werden (Schritt 880). Zum Beispiel zeigt 31 das dreidimensionale geometrische Modell 837 der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten. Schritt 880 kann dem oben beschriebenen Schritt 814 aus 29 ähneln.
  • Eine rechnerische Analyse kann ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um eine Lösung zu bestimmen, die Informationen über den koronaren Blutfluss des Patienten in einem durch den Benutzer bestimmten körperlichen Zustand beinhaltet (Schritt 882). Zum Beispiel kann der physische Zustand einen Ruhezustand, ein ausgewähltes Hyperämieniveau, ein ausgewähltes Niveau an körperlicher Betätigung oder Anstrengung oder andere Zustände beinhalten. Die Lösung kann Informationen, wie Blutfluss und Druck, an verschiedenen Positionen in der in Schritt 880 und unter dem spezifizierten physischen Zustand modellierten Anatomie des Patienten bereitstellen. Der Schritt 882 kann dem oben beschriebenen Schritt 816 aus 29 ähneln.
  • Außerdem kann basierend auf den Bildgebungsdaten 873 ein dreidimensionales geometrisches Modell des Myokardgewebes des Patienten erzeugt werden (Schritt 884). Zum Beispiel zeigt 31, wie oben beschrieben, das dreidimensionale geometrische Modell 836 einschließlich des dreidimensionalen geometrischen Modells 838 des Myokardgewebes des Patienten (z. B. wie in Schritt 884 erzeugt) und des dreidimensionalen geometrischen Modells 837 der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten (z. B. wie in Schritt 880 beschrieben). Der Schritt 884 kann dem oben beschriebenen Schritt 810 aus 29 ähneln.
  • Das geometrische Modell kann in Segmente oder Untervolumen unterteilt werden (Schritt 886). Zum Beispiel zeigt 31 das geometrische Modell 846 einschließlich des Modells 838 des Myokardgewebes des Patienten unterteilt in die Segmente 842. Der Schritt 886 kann dem oben beschriebenen Schritt 812 aus 29 ähneln.
  • Basierend auf den in Schritt 882 bestimmten Informationen kann die Perfusion des Blutflusses in die jeweiligen in Schritt 886 erzeugten Segmente 842 des Myokards berechnet werden (Schritt 888). Der Schritt 888 kann dem oben beschriebenen Schritt 818 aus 29 ähneln.
  • Die berechnete Perfusion für die jeweiligen Segmente des Myokards kann auf dem in Schritt 884 oder 886 erzeugten geometrischen Modell des Myokards angezeigt werden (z. B. dem dreidimensionalen geometrischen Modell 838 des in 31 dargestellten Myokardgewebes des Patienten) (Schritt 890). Zum Beispiel zeigt 31, dass die Segmente 842 des Myokards aus dem geometrischen Modell 838 mit einer anderen Schattierung oder Farbe dargestellt werden können, um die Perfusion des Blutflusses in die jeweiligen Segmente 842 anzuzeigen. Der Schritt 890 kann dem oben beschriebenen Schritt 820 aus 29 ähneln.
  • Die simulierten, in Schritt 890 auf das dreidimensionale geometrische Modell des Myokards übertragenen Perfusionsdaten können mit den gemessenen Herzperfusionsdaten 875 verglichen werden (Schritt 892). Der Vergleich kann z. B. auf einer voxelbasierten Repräsentation des Myokards oder einer anderen diskreten Repräsentation des Myokards ausgeführt werden, z. B. einem Finite-Element-Netz. Der Vergleich kann die Unterschiede in den simulierten und gemessenen Perfusionsdaten unter Verwendung verschiedener Farben und/oder Schattierungen auf der dreidimensionalen Darstellung des Myokards anzeigen.
  • Die Grenzbedingungen an den Ausflüssen des in Schritt 880 erzeugten dreidimensionalen geometrischen Modells können angepasst werden, um den Fehler zwischen den simulierten und gemessenen Perfusionsdaten zu verringern (Schritt 894). Um den Fehler zu verringern, können zum Beispiel die Grenzbedingungen angepasst werden, sodass der vorgegebene Widerstand zum Fluss der Gefäße, die einen Bereich (z. B. das Segment 842, 862 oder 867) versorgen, in dem die simulierte Perfusion geringer ist als die gemessene Perfusion, verringert werden kann. Andere Parameter der Grenzbedingungen können angepasst werden. Alternativ kann die Verzweigungsstruktur des Modells modifiziert werden. Zum Beispiel kann das in Schritt 880 erzeugt geometrische Modell wie oben in Verbindung mit 30 und 31 beschrieben erweitert werden, um das morphometrische Modell zu erzeugen. Die Parameter der Grenzbedingungen und/oder der morphometrischen Modelle können empirisch oder systematisch unter Verwendung einer Parameterschätzung oder eines Datenassimilationsverfahrens angepasst werden, wie dem in US-Patentanmeldung Nr. 2010/0017171 mit dem Titel „Method for Tuning Patient-Specific Cardiovascular Simulations” beschriebenen oder anderen Verfahren.
  • Die Schritte 882, 888, 890, 892, 894 und/oder andere Schritte aus 32 können wiederholt werden, z. B. bis der Fehler zwischen den simulierten und gemessenen Perfusionsdaten unter einem vorgegebenen Grenzwert liegt. Dadurch kann die rechnerische Analyse unter Verwendung eines Modells ausgeführt werden, das sich auf anatomische Informationen, koronare Blutflussinformationen und Myokardperfusionsinformationen bezieht. Ein derartiges Modell kann zu Diagnosezwecken nützlich sein und um die Nutzen medizinischer, intervenierender oder chirurgischer Therapien vorherzusagen.
  • Dadurch können koronarer Blutfluss und Myokardperfusion unter Ruhe- und/oder Stressbedingungen in einem patientenspezifischen geometrischen Modell simuliert werden, das aus dreidimensionalen medizinischen Bildgebungsdaten konstruiert wurde. Gemessene Myokardperfusionsdaten können in Verbindung mit simulierten Myokardperfusionsergebnissen verwendet werden, um die Grenzbedingungen anzupassen, bis die simulierten Myokardperfusionsergebnisse den gemessenen Myokardperfusionsdaten innerhalb einer jeweiligen Toleranz entsprechen (z. B. wie oben in Verbindung mit 32 beschrieben). Genauere patientenspezifische koronare Arterienblutflussberechnungen können bereitgestellt werden und Kardiologen können in der Lage sein, Koronararterienblutfluss und Myokardperfusion unter Umständen vorherzusagen, in denen gemessene Daten unter Umständen nicht verfügbar sind, wie wenn simuliert wird, dass sich der Patient unter maximaler körperlicher Betätigung oder Anstrengung befindet, bei simulierten Behandlungen oder anderen Zuständen.
  • Das patientenspezifische dreidimensionale Modell des linken und/oder rechten Herzkammermyokards kann in Perfusionssegmente oder Untervolumen unterteilt werden. Außerdem kann ein patientenspezifisches dreidimensionales geometrisches Modell der Koronararterien, das aus medizinischen Bildgebungsdaten bestimmt wurde, mit einem morphometrischen Modell eines Abschnitts des verbleibenden Koronararterienbaums auf der epikardialen Oberfläche oder enthalten in der linken und/oder rechten Herzkammermyokardwand, repräsentiert durch die Perfusionsuntervolumen, kombiniert werden, um ein erweitertes Modell zu bilden. Die Prozentzahl des gesamten Myokardvolumens stromabwärts einer jeweiligen, z. B. erkrankten, Position im erweiterten Modell kann berechnet werden. Die Prozentzahl des gesamten Myokardblutflusses an einer jeweiligen, z. B. erkrankten, Position im erweiterten Modell kann ebenfalls berechnet werden. Das erweiterte Modell kann verwendet werden, um koronaren Blutfluss und Myokardperfusion zu berechnen. Das koronare Blutflussmodell kann außerdem modifiziert werden, bis die simulierte Perfusion gemessenen Perfusionsdaten innerhalb einer vorgeschriebenen Toleranz entspricht.
  • B. Bewerten der Plaquevulnerabilität
  • Die rechnerische Analyse kann außerdem Ergebnisse bereitstellen, die patientenspezifische biomechanische Kräfte quantifizieren, die auf eine Plaque wirken, die sich in der Aorta und den Koronararterien (und den davon ausgehenden Ästen) des Patienten ablagern kann, z. B. koronare atherosklerotische Plaque. Die biomechanischen Kräfte können durch pulsierenden Druck, Strömung und Herzbewegung verursacht werden.
  • 33 zeigt ein Beispiel einer Plaque 900, die sich entlang einer Blutgefäßwand 902 abgelagert hat, wie einer Wand einer der Hauptkoronararterien oder eines der davon ausgehenden Äste. Die Differenz in Druck und/oder Oberflächenbereich zwischen den stromaufwärts und stromabwärts gelegenen Enden der Plaque können eine Kraft 904 erzeugen, die wenigstens entlang der Richtung des Blutflusses auf die Plaque 900 wirkt, z. B. verursacht durch das Fließen von Blut durch das Gefäß. Eine andere Kraft 906 kann auf eine Oberfläche der Plaque 900 wenigstens entlang der Richtung und lotrecht zu der Gefäßwand 902 wirken. Die Kraft 906 kann durch den Blutdruck des durch das Gefäß fließenden Bluts verursacht werden. Eine weitere andere Kraft 908 kann auf die Oberfläche der Plaque 900 wenigstens entlang der Richtung des Blutflusses wirken und kann durch hämodynamische Kräfte während Ruhezuständen, körperlicher Betätigung usw. verursacht werden.
  • Die Ergebnisse können außerdem das Risiko einer Plaqueruptur (z. B. wenn an einer Gefäßwand abgelagerte Plaque instabil wird und abbricht oder aufbricht) und das Myokardvolumen, das von einer derartigen Ruptur betroffen wäre, bewerten. Die Ergebnisse können unter verschiedenen simulierten physiologischen Zuständen bewertet werden, wie Ruhezustand, körperliche Betätigung usw. Das Risiko einer Plaqueruptur kann als ein Verhältnis simulierter Plaquebelastung zu einer Plaquestärke, die unter Verwendung von aus CCTA oder MRT (z. B. bestimmt in Schritt 100 aus 2) abgeleiteten Materialzusammensetzungsdaten geschätzt wird, definiert werden.
  • Zum Beispiel zeigt 34 ein Beispiel von Ergebnissen, die die rechnerische Analyse ausgeben kann. Die Ergebnisse können das dreidimensionale geometrische Modell 846 aus 31 beinhalten, welches das dreidimensionale geometrische Modell 837 der Aorta und der Koronararterien (und der davon ausgehenden Äste) des Patienten und das dreidimensionale geometrische Modell 838 des in Segmente 842 unterteilten Myokardgewebes des Patienten beinhalten kann. Die Ergebnisse können außerdem eine Position 910 in einer der Koronararterien (oder den davon ausgehenden Ästen) anzeigen, an der Plaque als vulnerabel bestimmt werden kann und die Position 910 kann basierend auf der Bewertung des Risikos einer Plaqueruptur, wie nachstehend ausführlicher beschrieben wird, und/oder basierend auf einer Eingabe von einem Benutzer identifiziert werden. Wie in 34 dargestellt, kann ein Myokardsegment 912 (der Mehrzahl an Segmenten 842) außerdem als eine hohe Wahrscheinlichkeit einer geringen Perfusion aufgrund der Ruptur der an Position 910 identifizierten Plaque aufweisend identifiziert werden.
  • 35 und 36 sind schematische Diagramme, die Aspekte eines Verfahrens 920 zum Bereitstellen verschiedener Informationen über das Bewerten von Plaquevulnerabilität, Myokardvolumenrisiko und Myokardperfusionsrisiko in einem spezifischen Patienten darstellen, gemäß einer beispielhaften Ausführungsform. Das Verfahren 920 kann in dem oben beschriebenen Computersystem implementiert sein, z. B. dem Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren. Das Verfahren 920 kann unter Verwendung einer oder mehrerer Eingaben 922 ausgeführt werden und kann das Erzeugen eines oder mehrerer Modells/-e 930 basierend auf den Eingaben 922, das Ausführen einer oder mehrerer biomechanischer Analyse(n) 940 basierend auf dem einen oder den mehreren der Modelle 930 und das Bereitstellen verschiedener Ergebnisse basierend auf den Modellen 930 und den biomechanischen Analysen 940 beinhalten.
  • Die Eingaben 922 können medizinische Bildgebungsdaten 923 der Aorta, der Koronararterien (und der davon ausgehenden Äste) und des Herzens des Patienten beinhalten, wie CCTA-Daten (z. B. erfasst in Schritt 100 aus 2). Die Eingaben 922 können außerdem zusätzliche physiologische Daten 924 beinhalten, die vom Patienten gemessen wurden, wie Brachialblutdruck, Herzfrequenz und/oder andere Messungen des Patienten (z. B. in Schritt 100 aus 2 erfasst). Die zusätzlichen physiologischen Daten 924 können nichtinvasiv erfasst werden. Die Eingaben 922 können verwendet werden, um die Modelle 930 zu erzeugen und/oder die oben beschriebenen biomechanischen Analysen 940 auszuführen.
  • Wie oben beschrieben, kann/können ein oder mehrere Modell(e) 930 basierend auf den Eingaben 922 erzeugt werden. Zum Beispiel kann das Verfahren 920 das Erzeugen eines hämodynamischen Modells 932 beinhalten, das den berechneten Blutfluss- und Druckinformationen an verschiedenen Positionen durch ein dreidimensionales geometrisches Modell der Anatomie des Patienten beinhaltet. Das Modell der Anatomie des Patienten kann unter Verwendung der medizinischen Bildgebungsdaten 923 erzeugt werden, z. B. das in Schritt 306 aus 3 erzeugte Volumenmodell 320 aus 8 und/oder das in Schritt 312 aus 3 erzeugte Netz 380 aus 1719 und in einer beispielhaften Ausführungsform kann das hämodynamische Modell 932 das simulierte Blutdruckmodell 50 (1), das simulierte Blutflussmodell 52 (1), das cFFR-Modell 54 (1) oder eine andere nach dem Ausführen einer rechnerischen Analyse erzeugte Simulation sein, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben. Volumenmechanikmodelle, einschließlich Fluid-Struktur-Interaktionsmodellen, können mit der rechnerischen Analyse mit bekannten numerischen Verfahren gelöst werden. Eigenschaften für Plaque und Gefäße können als linear oder nichtlinear, isotrop oder anisotrop modelliert werden. Die Lösung kann Belastung und Spannung der Plaque und der Schnittstelle zwischen Plaque und Gefäß bereitstellen. In der beispielhaften in 36 dargestellten Ausführungsform ist das hämodynamische Modell 932 das cFFR-Modell 54.
  • Das Verfahren 920 kann das Ausführen einer biomechanischen Analyse 940 unter Verwendung des hämodynarnischen Modells 932 durch Berechnen eines Drucks 906 (33) und einer Scherspannung 908 (33) beinhalten, die aufgrund hämodynamischer Kräfte in verschiedenen physiologischen Zuständen, wie Ruhezustand, verschiedene Niveaus körperlicher Betätigung oder Anstrengung usw., auf eine Plaque-Lumenoberfläche wirken (Schritt 942). Der Druck 906 und die Scherspannung 908 können basierend auf Informationen vom hämodynamischen Modell 932, z. B. Blutdruck und -fluss, berechnet werden.
  • Optional kann das Verfahren 920 außerdem das Erzeugen eines geometrischen Analysemodells 934 zum Quantifizieren von Gefäßverformung aus vierdimensionalen Bildgebungsdaten beinhalten, z. B. Bildgebungsdaten, die in mehreren Phasen des Herzzyklus erfasst wurden, wie den systolischen und diastolischen Phasen. Die Bildgebungsdaten können unter Verwendung verschiedener bekannter Bildgebungsverfahren erfasst werden. Das geometrische Analysemodell 934 kann Informationen bezüglich Gefäßposition, Verformung, Ausrichtung und Größe, z. B. aufgrund von Herzbewegung, in den unterschiedlichen Phasen des Herzzyklus beinhalten. Zum Beispiel können verschiedene Arten von Verformung der Aorta, der Koronararterien (und der davon ausgehenden Äste) und der Plaque des Patienten, wie längliche Erweiterung (Verlängerung) oder Verkürzung, Verdrehen (Torsion), radiale Ausweitung oder Kompression und Biegen durch das geometrische Analysemodell 934 simuliert werden.
  • Das Verfahren 920 kann das Ausführen einer biomechanischen Analyse 940 unter Verwendung des geometrischen Analysemodells 934 durch Berechnen verschiedener Verformungseigenschaften beinhalten, wie längliche Erweiterung (Verlängerung) oder Verkürzung, Verdrehen (Torsion), radiale Ausweitung oder Kompression und Biegen usw. der Aorta, der Koronararterien (und der davon ausgehenden Äste) und der Plaque des Patienten aufgrund von durch das Herz bedingtem pulsierendem Druck (Schritt 944). Diese Verformungseigenschaften können basierend auf Informationen vom geometrischen Analysemodell 934, z. B. einer Veränderung der Gefäßposition, Ausrichtung und Größe über mehrere Phasen des Herzzyklus, berechnet werden.
  • Das Berechnen der Verformungseigenschaften kann vereinfacht werden, indem die Mittellinien oder Oberflächennetze der modellierten Geometrie bestimmt werden (z. B. der Geometrie der Aorta, der Koronararterien (und der davon ausgehenden Äste), der Plaque des Patienten usw.). Um eine Veränderung in der modellierten Geometrie zwischen verschiedenen Phasen zu bestimmen, können Ostien der Äste, kalzifizierte Läsionen und weicher Plaque als Orientierungspunkte verwendet werden. In den Bereichen, die keine Orientierungspunkte aufweisen, können Querschnittflächenprofile entlang einer Länge der modellierten Geometrie verwendet werden, um entsprechende Positionen zwischen zwei Bildframes zu identifizieren (um die zwei Bildframes zu „registrieren”). Verformbare Registrierungsalgorithmen, die auf Rohbilddaten basieren, können verwendet werden, um dreidimensionale Verformungsfelder zu extrahieren. Das berechnete dreidimensionale Verformungsfeld kann dann auf eine kurvenförmige Achse projiziert werden, die mit der modellierten Geometrie (z. B. der Gefäßlänge) ausgerichtet ist, um tangentiale und normale Komponenten des Verformungsfeldes zu berechnen. Die sich daraus ergebende Differenz in der modellierten Geometrie (z. B. Gefäßlänge), Winkel der Verzweigung und Krümmung zwischen Systole und Diastole kann verwendet werden, um die Belastung eines Gefäßes zu bestimmen.
  • Das Verfahren 920 kann außerdem das Erzeugen eines Plaquemodells 936 zum Bestimmen der Zusammensetzung und der Eigenschaften der Plaque aus den medizinischen Bildgebungsdaten 923 beinhalten. Zum Beispiel kann das Plaquemodell 936 Informationen über die Dichte und andere Materialeigenschaften der Plaque beinhalten.
  • Das Verfahren 920 kann außerdem das Erzeugen eines Gefäßwandmodells 938 zum Berechnen von Informationen über die Plaque, die Gefäßwände und/oder die Schnittstelle zwischen der Plaque und den Gefäßwänden beinhalten. Zum Beispiel kann das Gefäßwandmodell 938 Informationen über Belastung und Spannung beinhalten, die basierend auf der Zusammensetzung und den Eigenschaften der Plaque, die im Plaquemodell 936 enthalten ist, dem/der in Schritt 942 berechneten Druck 906 und Scherspannung 908 und/oder den in Schritt 944 berechneten Verformungseigenschaften berechnet werden können.
  • Das Verfahren 920 kann das Ausführen einer biomechanischen Analyse 940 unter Verwendung des Gefäßwandmodells 938 durch Berechnen von Belastung (z. B. akuter oder kumulativer Belastung) der Plaque aufgrund von hämodynamischen Kräften und durch Herzbewegung bedingte Spannung beinhalten (Schritt 946). Zum Beispiel kann die flussbedingte Kraft 904 (33), die auf die Plaque wirkt, berechnet werden. Die Belastung oder Kraft auf die Plaque aufgrund von hämodynamischen Kräften und durch Herzbewegung bedingter Spannung kann basierend auf Informationen vom Gefäßwandmodell 938 berechnet werden, z. B. Belastung und Spannung der Plaque.
  • Das Verfahren 920 kann das Bestimmen weiterer Informationen basierend auf einem oder mehreren der Modelle 930 und einer oder mehreren der oben beschriebenen biomechanischen Analysen 940 beinhalten.
  • Ein Plaquerupturvulnerabilitätsindex kann berechnet werden (Schritt 950). Der Plaquerupturvulnerabilitätsindex kann z. B. basierend auf der gesamten hämodynamischen Belastung, Belastungsfrequenz, Belastungsrichtung und/oder Stärke der Plaque oder anderen Eigenschaften berechnet werden. Zum Beispiel kann ein Bereich, der eine Plaqueablagerung von Interesse umgibt, vom dreidimensionalen Modell 930 der Plaque, wie dem Plaquemodell 936, isoliert sein. Die Stärke der Plaque kann aus den im Plaquemodell 936 bereitgestellten Materialeigenschaften bestimmt werden. Eine Hämodynamik- und Gewebebelastung auf die Plaque von Interesse aufgrund von pulsierendem Druck, Fluss und Herzbewegung kann unter Verwendung der vorab in Schritt 946 berechneten hämodynamischen Belastungen und bewegungsbedingten Spannungen unter simulierten Basislinien- und Betätigungs- (oder Anstrengungs-)Bedingungen berechnet werden. Die Vulnerabilität der Plaque kann basierend auf dem Verhältnis der Plaquebelastung zur Plaquestärke bewertet werden.
  • Ein Myokardvolumenrisikoindex (MVRI) kann ebenfalls berechnet werden (Schritt 952). Der MVRI kann als ein prozentualer Anteil des durch eine Plaqueruptur und einen Verschluss (Schließen oder Versperren) eines Gefäßes an einer jeweiligen Position im Arterienbaum betroffenen Myokardgesamtvolumens definiert sein. Der MVRI kann basierend auf dem Abschnitt des Myokards, der durch die Gefäße stromabwärts von der entsprechenden Plaque versorgt wird, berechnet werden, was die Größe der Plaque im Verhältnis zu der Größe der stromabwärts gelegenen Gefäße und der Wahrscheinlichkeit, dass die Plaque in andere Gefäße fließen kann, basierend auf der dreidimensionalen hämodynamischen Lösung in Betracht zieht.
  • Das Myokard kann modelliert und in Segmente 842 unterteilt werden, die von jedem Gefäß in der hämodynamischen Simulation versorgt werden (z. B. wie in Verbindung mit Schritt 835 und 840 aus 30 beschrieben). Das geometrische Modell kann modifiziert werden, um eine nächste Generation an Asten 857 im Koronarbaum zu enthalten (z. B. wie in Verbindung mit Schritt 855 aus 30 beschrieben) und das Myokard kann weiter segmentiert werden (z. B. wie in Verbindung mit Schritt 860 aus 30 beschrieben). Zusätzliche Äste 857 können in den Untersegmenten 862 erzeugt werden und die Untersegmente 862 können weiter in kleinere Segmente 867 segmentiert werden (z. B. wie in Verbindung mit Schritt 865 aus 30 beschrieben). Physiologische Verhältnisse können wie oben beschrieben verwendet werden, um die Größe eines Gefäßes mit einer proportionalen versorgten Menge des Myokards ins Verhältnis zu setzen.
  • Potenzielle Pfade, denen eine rupturierte Plaque folgen kann, können bestimmt werden. Die hämodynamische Lösung kann verwendet werden, um eine prozentuale Wahrscheinlichkeit zu bestimmen, dass ein Plaquefragment oder Embolus in verschiedene stromabwärts gelegene Gefäße fließt.
  • Die Größe der rupturierten Plaque kann mit der Größe der stromabwärts gelegenen Gefäße verglichen werden, um zu bestimmen, ob die Plaque eventuell ein Hindernis für den Fluss darstellen kann. Diese Informationen können mit dem Vulnerabilitätsindex kombiniert werden, um eine Wahrscheinlichkeitskarte des Volumens des Myokards bereitzustellen, das potenziell durch die rupturierte Plaque betroffen sein kann. Der MVRI kann jedem potenziell betroffenen Segment zugewiesen werden. 34 zeigt ein Beispiel eines Segments 912, in dem die vulnerable Plaque an Position 910 in einem distalen Gefäß eine hohe Wahrscheinlichkeit aufweist, einen kleinen Bereich des Myokards zu beeinträchtigen.
  • Ein Myokardperfusionsrisikoindex (MPRI) kann ebenfalls berechnet werden (Schritt 954). Der MPRI kann als ein Prozentsatz des gesamten durch eine Plaqueruptur und einen Verschluss eines Gefäßes an einer jeweiligen Position im Arterienbaum betroffenen Myokardblutflusses definiert sein. Zum Beispiel würde eine Ruptur von Plaque in einem distalen Abschnitt der LAD-Arterie einen niedrigeren MVRI und einen niedrigeren MPRI ergeben als eine Ruptur von Plaque in einem proximalen Abschnitt der LAD-Arterie. Diese Anzeichen können jedoch variieren, wenn ein Abschnitt des durch eine vulnerable Plaque in einem zuführenden Gefäß betroffenen Myokardvolumens nicht funktionsfähig ist (z. B. aufgrund von Narbengewebe, das sich nach einem Herzinfarkt bilden kann). Demnach zeigt der MPRI einen potenziellen Perfusionsverlust zu den Myokardsegmenten an, statt des betroffenen Volumens, wie es durch den MVRI angezeigt wird. Die Perfusionsrate zu jedem Segment 842, 862 oder 867 aus 31 kann berechnet werden und der Perfusionsverlust kann basierend auf dem Vulnerabilitätsindex, der hämodynamischen Lösung und den Größen von Plaque und Gefäßen berechnet werden.
  • Dadurch kann Plaquebelastung aufgrund von pulsierendem Blutdruck, pulsierendem Blutfluss, pulsierender Blutscherpannung und/oder pulsierender Herzbewegung berechnet werden und die Plaquestärke kann basierend auf medizinischen Bildgebungsdaten geschätzt werden und Anzeichen bezüglich der Plaquevulnerabilität, des Myokardvolumenrisikos und des Myokardperfusionsrisikos können quantifiziert werden.
  • VIII. Andere Anwendungen
  • Die oben beschriebenen Ausführungsformen sind mit dem Bewerten von Informationen über koronaren Blutfluss in einem Patienten verknüpft. Alternativ können die Ausführungsformen auch auf Blutfluss in anderen Bereichen des Körpers angepasst werden, wie die Karotis-, Becken-Bein-, Bauch-, Nieren-, Oberschenkel-, Kniekehlen- und Hirnarterien, wobei diese Auflistung nicht abschließend ist.
  • A. Modellieren des intrakraniellen und extrakraniellen Blutflusses
  • Ausführungsformen, die sich auf Hirnschlagadern beziehen, werden nun beschrieben. Zahlreiche Erkrankungen können den Blutfluss und Druck in den extrakraniellen oder intrakraniellen Arterien beeinflussen oder durch ihn beeinflusst werden. Atherosklerotische Erkrankungen in den extrakraniellen Arterien, z. B. Halsschlagadern und Hirnschlagadern, können den Blutfluss zum Gehirn einschränken. Eine ernsthafte Erscheinungsform einer atherosklerotischen Erkrankung kann zu einer vorübergehenden Durchblutungsstörung oder einem ischämischen Schlaganfall führen. Ein Aneurysma in den intrakraniellen oder extrakraniellen Arterien kann ein Embolisierungsrisiko darstellen, das zu einem ischämischen Schlaganfall oder einer Aneurysmaruptur führen kann, was zu einem hämorrhagischen Schlaganfall führen kann. Andere Zustände, wie Kopftrauma, Hypertension, Krebs in Kopf und Hals, arteriovenösen Missbildungen, orthostatischer Unverträglichkeit usw., können den Hirnblutfluss ebenfalls beeinträchtigen. Ferner können Verringerungen des Hirnblutflusses Symptome wie Synkope hervorrufen oder chronische neurologische Erkrankungen beeinflussen, wie durch Alzheimer oder Parkinson bedingte Demenz.
  • Patienten mit einer bekannten oder vermuteten extrakraniellen oder intrakraniellen Arterienerkrankung können typischerweise einem oder mehreren der folgenden nichtinvasiven diagnostischen Tests unterzogen werden: US, MRT, CT, PET. Diese Tests sind jedoch unter Umständen nicht in der Lage, effizient anatomische und physiologische Daten für extrakranielle und intrakranielle Arterien für die meisten Patienten bereitzustellen.
  • 37 ist ein Diagramm von Hirnschlagadern, das intrakranielle (im Schädel) und extrakranielle (außerhalb des Schädels) Arterien beinhaltet. Die Verfahren zum Bestimmen von Informationen über patientenspezifischen intrakraniellen und extrakraniellen Blutfluss können allgemein den oben beschriebenen Verfahren zum Bestimmen von Informationen über patientenspezifischen Blutfluss ähneln.
  • 38 ist ein schematisches Diagramm, das Aspekte des Verfahrens 1000 zum Bereitstellen verschiedener Informationen über den intrakraniellen und extrakraniellen Blutfluss in einem spezifischen Patienten darstellt. Das Verfahren 1000 kann in ein Computersystem implementiert werden, das z. B. dem Computersystem ähnelt, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren. Das Verfahren 1000 kann unter Verwendung einer oder mehrerer Eingabe(n) 1010 ausgeführt werden und kann das Erzeugen eines Modells oder mehrerer Modelle 1020 basierend auf den Eingaben 1010 und/oder den Modellen 1020 und das Ableiten einer oder mehrerer Lösung(en) 1040 basierend auf den Modellen 1020 und den Bedingungen 1030 beinhalten.
  • Die Eingaben 1010 können medizinische Bildgebungsdaten 1011 der intrakraniellen und extrakraniellen Arterien des Patienten beinhalten, z. B. der Aorta, der Halsschlagadern (in 37 dargestellt), der Vertebralarterien (in 37 dargestellt) und des Gehirns des Patienten, wie CCTA-Daten (z. B. auf ähnliche Weise wie oben in Verbindung mit Schritt 100 aus 2 beschrieben, erfasst). Die Eingaben 1010 können eine Messung 1012 des Brachialblutdrucks, des Karotisblutdrucks (z. B. unter Verwendung von Tonometrie) und/oder anderen Messungen vom Patienten beinhalten (z. B. auf ähnliche Weise wie oben in Verbindung mit Schritt 100 aus 2 beschrieben, erfasst). Die Messungen 1012 können nichtinvasiv erfasst werden. Die Eingaben 1010 können verwendet werden, um das/die Modell(e) 1020 zu erzeugen und die unten beschriebene(n) Bedingung(en) 1030 zu bestimmen.
  • Wie oben angemerkt, kann/können ein oder mehrere Modell(e) 1020 basierend auf den Eingaben 1010 erzeugt werden. Zum Beispiel kann das Verfahren 1000 das Erzeugen eines oder mehrerer patientenspezifischen/-r dreidimensionalen/-r Modells/-e der intrakraniellen und extrakraniellen Arterien des Patienten basierend auf den Bildgebungsdaten 1011 beinhalten (Schritt 1021). Das dreidimensionale geometrische Modell 1021 kann unter Verwendung ähnlicher Verfahren wie oben für das Erzeugen des Volumenmodells 320 aus 8 und des Netzes 380 aus 1719 beschrieben, erzeugt werden. Zum Beispiel können ähnliche Schritte wie die Schritte 306 und 312 aus 3 verwendet werden, um ein dreidimensionales Modell und Netz, das die intrakraniellen und extrakraniellen Arterien des Patienten repräsentiert, zu erzeugen.
  • Mit erneutem Verweis auf 38 kann das Verfahren 1000 außerdem das Erzeugen eines oder mehrerer physikbasierter Blutflussmodells/-e beinhalten (Schritt 1022). Zum Beispiel kann das Blutflussmodell ein Modell sein, das den Fluss durch das in Schritt 1021 erzeugte patientenspezifische geometrische Modell, Herz- und Aortenzirkulation, distale intrakranielle und extrakranielle Zirkulation usw. repräsentiert. Das Blutflussmodell kann ordnungsreduzierte Modelle beinhalten, wie oben in Verbindung mit Schritt 310 aus 3 beschrieben, z. B. die Lumped-Parameter-Modelle oder verteilten (eindimensionalen Wellenpropagations-)Modelle usw., an den Einflussgrenzen und/oder Ausflussgrenzen des dreidimensionalen geometrischen Modells 1021. Alternativ können den Einflussgrenzen und/oder Ausflussgrenzen entsprechende vorgegebene Werte oder Felder für Geschwindigkeit, Flussrate, Druck oder andere Eigenschaften usw. zugewiesen werden. Als andere Alternative kann die Einflussgrenze mit einem Herzmodell gekoppelt sein, das z. B. den Aortenbogen beinhaltet. Die Parameter für die Einfluss- und/oder Ausflussgrenzen können angepasst werden, um gemessenen oder ausgewählten physiologischen Bedingungen zu entsprechen, einschließlich, jedoch nicht beschränkt auf, Herzleistung und Blutdruck.
  • Wie oben beschrieben, kann/können eine oder mehrere Bedingung(en) 1030 basierend auf den Eingaben 1010 und/oder den Modellen 1020 bestimmt werden. Die Bedingungen 1030 beinhalten die Parameter, die für die in Schritt 1022 (und Schritt 310 aus 3) bestimmten Grenzbedingungen berechnet wurden. Zum Beispiel kann das Verfahren 1000 das Bestimmen einer Bedingung durch Berechnen eines patientenspezifischen Gehirn- oder Kopfvolumens basierend auf den Bildgebungsdaten 1011 (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 240 aus 3 beschrieben) beinhalten (Schritt 1031).
  • Das Verfahren 1000 kann das Bestimmen einer Bedingung durch Berechnen, unter Verwendung des in Schritt 1031 berechneten Gehirn- oder Kopfvolumens, eines ruhenden zerebralen Blutflusses Q basierend auf dem Verhältnis Q = QoMα beinhalten, wobei α ein vorgegebener Skalierungsexponent ist, M die aus dem Gehirn- oder Kopfvolumen bestimmte Gehirnmasse ist, und Qo eine vorgegebene Konstante ist (z. B. ähnlich dem oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschriebenen physiologischen Verhältnis) (Schritt 1032). Alternativ kann das Verhältnis die Form Q∝QoMα aufweisen, wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben.
  • Das Verfahren 1000 kann außerdem das Bestimmen einer Bedingung durch Berechnen, unter Verwendung des sich ergebenden in Schritt 1032 berechneten Koronarflusses und des gemessenen Blutdrucks 1012 des Patienten, eines zerebralen Gesamtwiderstands im Ruhezustand (z. B. ähnlich wie die oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschriebenen Verfahren) beinhalten (Schritt 1033). Zum Beispiel können der in Schritt 1032 bestimmte zerebrale Gesamtblutfluss Q an den Ausflussgrenzen des dreidimensionalen geometrischen Modells 1021 unter (ruhenden) Basislinienbedingungen und der gemessene Blutdruck 1012 verwendet werden, um einen Gesamtwiderstand R an den Ausflussgrenzen basierend auf einer vorgegebenen, experimentell abgeleiteten Gleichung zu bestimmen. Widerstand, Kapazität, Induktivität und andere mit verschiedenen in Lumped-Parameter-Modellen verwendeten elektrischen Komponenten verknüpfte Variablen können in die Grenzbedingungen integriert werden (z. B. wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben).
  • Das Verfahren 1000 kann außerdem das Bestimmen einer Bedingung durch Berechnen individueller Widerstände für die individuellen intrakraniellen und extrakraniellen Arterien unter Verwendung des in Schritt 1033 und den Modellen 1020 berechneten, zerebralen Gesamtwiderstandes im Ruhezustand beinhalten (Schritt 1034). Zum Beispiel kann der in Schritt 1033 berechnete zerebrale Gesamtwiderstand R im Ruhezustand, ähnlich wie die oben in Verbindung mit Schritt 310 aus 3 beschriebenen Verfahren auf die individuellen intrakraniellen und extrakraniellen Arterien verteilt werden, basierend auf den Größen (z. B. bestimmt aus dem in Schritt 1021 erzeugten geometrischen Modell) der distalen Enden der individuellen intrakraniellen und extrakraniellen Arterien und basierend auf dem Verhältnis R = Rodβ, wobei R der Widerstand zum Fluss an einem bestimmten distalen Ende ist und Ro eine vorgegebene Konstante ist, d die Größe ist (z. B. Durchmesser dieses distalen Endes) und β ein vorgegebener Potenzgesetzexponent ist, wie oben in Verbindung mit dem Bestimmen des Lumped-Parameter-Modells in Schritt 310 aus 3 beschrieben.
  • Mit erneutem Verweis auf 38 kann das Verfahren 1000 das Anpassen der Grenzbedingungen basierend auf einem physischen Zustand oder mehreren physischen Zuständen des Patienten beinhalten (Schritt 1035). Zum Beispiel können die in den Schritten 10311034 bestimmten Parameter basierend darauf modifiziert werden, ob die Lösung 1040 einen Ruhezustand, variierende Belastungsniveaus, variierende Niveaus von Barorezeptorreaktionen oder andere autonome Rückmeldungssteuerung, variierende Hyperämieniveaus, variierende Niveaus körperlicher Betätigung, Anstrengung, Hypertension oder Hypotension, verschiedene Medikamente, Lagerungsveränderung und/oder andere Zustände simulieren soll. Die Parameter (z. B. die Parameter bezüglich der Grenzbedingungen an den Ausflussgrenzen) können außerdem basierend auf einer vasodilatorischen Kapazität der intrakraniellen oder extrakraniellen Arterien (der Fähigkeit der Blutgefäße, sich zu erweitern) angepasst werden, z. B. aufgrund einer mikrovaskulären Fehlfunktion oder Endothelgesundheit.
  • Basierend auf den Eingaben 1010, den Modellen 1020 und den Bedingungen 1030 kann eine rechnerische Analyse ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um die Lösung 1040 zu bestimmen, die Informationen über den Koronarblutfluss des Patienten unter den in Schritt 1035 ausgewählten Bedingungen beinhaltet (Schritt 1041). Beispiele von Informationen, die von der Lösung 1040 bereitgestellt werden können, können den oben in Verbindung mit 1 und 2124 bereitgestellten Beispielen ähneln, z. B. einem simulierten Blutdruckmodell, einem simulierten Blutflussmodell usw. Die Ergebnisse können außerdem verwendet werden, um z. B. Flussrate, Gesamtgehirnfluss, Gefäßwandscherspannung, auf Gefäßwände oder atherosklerotische Plaque oder Aneurysma wirkende Traktion oder Scherkraft, Teilchen-/Blutwiderstandszeit, Gefäßwandbewegung, Blutscherrate usw. zu bestimmen. Diese Ergebnisse können außerdem verwendet werden, um zu analysieren, wohin Emboli, die aus einem bestimmten Bereich im vaskulären System stammen, mit höchster Wahrscheinlichkeit durch die Blutzirkulation wandern.
  • Das Computersystem kann es dem Benutzer ermöglichen, verschiedene Veränderungen in der Geometrie zu simulieren. Zum Beispiel können die Modelle 1020, z. B. das in Schritt 1021 erzeugte patientenspezifische geometrische Modell, modifiziert werden, um die Auswirkung des Verschließens einer Arterie (z. B. eines akuten Verschlusses) vorherzusagen. In einigen chirurgischen Eingriffen, wie beim Entfernen von krebsartigen Tumoren, kann/können eine oder mehrere extrakranielle Arterien beschädigt oder entfernt werden. Demnach kann das in Schritt 1021 erzeugte patientenspezifische geometrische Modell außerdem modifiziert werden, um die Auswirkung des Verhinderns von Blutfluss zu einer oder mehreren der extrakraniellen Arterien zu simulieren, um das Potenzial für kollaterale Pfade zum Bereitstellen eines ausreichenden Blutflusses für den Patienten vorherzusagen.
  • Das Rechnersystem kann es dem Benutzer ermöglichen, die Ergebnisse verschiedener Behandlungsoptionen zu simulieren, wie intervenierender oder chirurgischer Reparaturen, z. B. eines akuten Verschlusses. Die Simulationen können schneller durch Ersetzen des dreidimensionalen Volumenmodells oder Netzes, das, wie oben beschrieben, die intrakraniellen und extrakraniellen Arterien repräsentiert, durch ordnungsreduzierte Modelle, wie oben in Verbindung mit 2728 beschrieben, ausgeführt werden. Dadurch können die ordnungsreduzierten Modelle, wie eindimensionale oder Lumped-Parameter-Modelle, effizienter und schneller auf Blutfluss und Druck in einem patientenspezifischen Modell lösen und die Ergebnisse von Lösungen anzeigen.
  • Eine Reaktion auf vasodilatorische Anreize durch einen spezifischen Patienten können basierend auf hämodynamischen Informationen für den Patienten im Ruhezustand oder basierend auf populationsbasierten Daten für verschiedene Erkrankungsstadien vorhergesagt werden. Zum Beispiel wird eine (ruhende) Basisliniensimulation (z. B. wie oben in Schritt 1041 beschrieben) mit Flussverteilung, die basierend auf Potenzgesetzen und Gehirnmasse (z. B. wie oben in Verbindung mit Schritt 1032 beschrieben) zugewiesen wird, ausgeführt. Die Widerstandswerte (z. B. bestimmt in Schritten 1033 und 1034) können angepasst werden, um eine angemessene Perfusion zu ermöglichen. Alternativ werden Daten von Patientenpopulationen mit Faktoren wie Diabetes, Medikamenten und vorherigen Herzinfarkten verwendet, um verschiedene Widerstände zuzuweisen. Das Anpassen des Widerstands unter ruhenden Bedingungen, einzeln oder in Kombination mit hämodynamischen Informationen (z. B. Wandscherspannungen oder ein Verhältnis von Fluss und Gefäßgröße), können verwendet werden, um eine verbleibende Kapazität für distale Gehirngefäße, sich zu erweitern, zu bestimmen. Patienten, die Widerstandsverringerungen erfordern, um Flussanforderungen im Ruhezustand zu erfüllen, oder Patienten mit einem hohen Verhältnis von Fluss zu Gefäßgröße können eine verringerte Kapazität aufweisen, ihre Gefäße unter physiologischer Belastung weiter zu erweitern.
  • Flussraten und Druckunterschiede über individuelle Segmente der zerebralen Arterien (z. B. wie in Schritt 1041 bestimmt) können verwendet werden, um einen Widerstand der Hirnschlagadern zu berechnen. Der Widerstand der Hirnschlagadern kann als ein äquivalenter Widerstand der Abschnitte der extrakraniellen und intrakraniellen Arterien, die in dem aus medizinischen Bildgebungsdaten (z. B. in Schritt 1021 erzeugt) erzeugten patientenspezifischen geometrischen Modell enthalten sind, berechnet werden. Der Widerstand der Hirnschlagadern kann klinische Signifikanz beim Erklären haben, warum Patienten mit diffuser Artherosklerose in extrakraniellen und/oder intrakraniellen Arterien Synkope (zeitweiliger Verlust von Bewusstsein oder Körperhaltung, z. B. Ohnmacht) oder Ischämie (Einschränken der Blutzufuhr) als Symptome aufweisen.
  • Außerdem kann der Fluss pro Einheit an Gehirngewebevolumen (oder Masse) unter Basislinien- oder veränderten physiologischen Bedingungen berechnet werden, z. B. basierend auf den in Schritt 1041 bestimmten Flussinformationen und dem/der in Schritt 1031 berechneten Gehirngewebevolumen oder -masse. Diese Berechnung kann nützlich sein, um die Auswirkung von Verringerungen des Blutflusses auf chronische neurologische Erkrankungen zu verstehen. Diese Berechnung kann außerdem nützlich sein, um medizinische Therapien auszuwählen oder zu verfeinern, z. B. Dosierung von Antihypertensiven. Zusätzliche Ergebnisse können das Quantifizieren der Auswirkungen von Trauma, Gehirnerschütterung, externen physiologischen Belastungen, übermäßigen G-Kräften, Schwerelosigkeit, Raumflug, Tiefseedekompression (z. B. Taucherkrankheit) usw. beinhalten.
  • Das kombinierte patientenspezifische anatomische (geometrische) und physiologische (physikbasierte) Modell kann verwendet werden, um die Auswirkung von verschiedenen Medikamenten oder Umstellungen der Lebensweise (z. B. Aufhören mit dem Rauchen, Ernährungsumstellung oder erhöhte körperliche Aktivität) zu bestimmen, die die Herzfrequenz, das Schlagvolumen, den Blutdruck oder die zerebrale mikrozirkulatorische Funktion auf den Blutfluss der Hirnschlagadern verändert. Das kombinierte Modell kann außerdem verwendet werden, um die Auswirkung anderer Formen und/oder variierender Niveaus körperlicher Aktivität auf den Blutfluss der Hirnschlagader oder das Risiko des Aussetzens gegenüber potenzieller äußerer Kraft zu bestimmen, z. B. beim Spielen von Football, während eines Raumfluges, beim Tauchen, während eines Fluges in einem Flugzeug usw. Derartige Informationen können verwendet werden, um die Arten und Niveaus körperlicher Aktivität zu identifizieren, die für einen spezifischen Patienten sicher und effektiv sein können. Die kombinierten Modelle können außerdem verwendet werden, um einen potenziellen Nutzen perkutaner Eingriffe auf den Blutfluss der Hirnschlagadern vorherzusagen, um die optimale intervenierende Strategie auszuwählen und/oder um einen potenziellen Nutzen von Karotis-Endarterektomie oder von Bypass-Grafting von der äußeren Halsschlagader zur inneren Halsschlagader auf den Blutfluss der Hirnschlagader vorherzusagen, um die optimale chirurgische Strategie auszuwählen.
  • Das kombinierte Modell kann außerdem verwendet werden, um potenziell gesundheitsschädliche Auswirkungen auf eine Erhöhung der Belastung durch die arterielle Erkrankung auf den Blutfluss der Hirnschlagader darzustellen und um unter Verwendung mechanistischer oder phänomenlogischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann das Fortschreiten der Krankheit zu einer Kompromittierung des Blutflusses zum Gehirn führen kann. Derartige Informationen können das Bestimmen eines „Garantiezeitraums” ermöglichen, in dem erwartet werden kann, dass ein Patient, der zunächst unter Verwendung nichtinvasiver Bildgebung frei von hämodynamisch signifikanter Erkrankung zu sein scheint, keine medizinische, intervenierende oder chirurgische Therapie benötigt, oder alternativ die Rate, mit der der Verlauf fortfahren kann, wenn die nachteiligen Faktoren beibehalten werden.
  • Das kombinierte Modell kann außerdem verwendet werden, um potenziell vorteilhafte Auswirkungen auf den Blutfluss der Hirnschlagader darzustellen, die durch eine Verringerung der Belastung durch die Erkrankung bedingt sind, und um unter Verwendung mechanistischer oder phänomenologischer Krankheitsverlaufsmodelle oder empirischer Daten vorherzusagen, wann die Regression der Erkrankung zu einem erhöhten Blutfluss zum Gehirn führen kann. Derartige Informationen können verwendet werden, um medizinische Versorgungsprogramme zu leiten, einschließlich, jedoch nicht beschränkt auf, Ernährungsumstellungen, erhöhte körperliche Betätigung, Verschreiben von Statinen oder anderen Medikamenten usw.
  • Das kombinierte Modell kann außerdem verwendet werden, um die Auswirkung des Verschließens einer Arterie vorherzusagen. Bei einigen chirurgischen Eingriffen, wie beim Entfernen krebsartiger Tumore, können einige extrakranielle Arterien beschädigt oder entfernt werden. Das Simulieren der Auswirkung des Verhinderns von Blutfluss zu einer der extrakraniellen Arterien kann das Vorhersagen des Potenzials für kollaterale Pfade, einen ausreichenden Blutfluss für einen spezifischen Patienten bereitzustellen, ermöglichen.
  • i. Bewerten der Zerebralperfusion
  • Andere Ergebnisse können berechnet werden. Zum Beispiel kann die rechnerische Analyse Ergebnisse bereitstellen, die die Zerebralperfusion (Blutfluss durch das Großhirn) quantifizieren. Das Quantifizieren der Zerebralperfusion kann beim Identifizieren von Bereichen mit einem reduzierten zerebralen Blutfluss helfen.
  • 39 zeigt ein schematisches Diagramm, das sich auf ein Verfahren 1050 zum Bereitstellen verschiedener Informationen über Zerebralperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 1050 kann in das oben beschriebene Computersystem implementiert sein, z. B. ähnlich dem Computersystem, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellte Schritte zu implementieren.
  • Das Verfahren 1050 kann unter Verwendung einer oder mehrerer Eingabe(n) 1052 ausgeführt werden. Die Eingaben 1052 können medizinische Bildgebungsdaten 1053 der intrakraniellen und extrakraniellen Arterien des Patienten beinhalten, z. B. der Aorta, der Halsschlagadern (in 37 dargestellt), der Vertebralarterien (in 37 dargestellt) und des Gehirns des Patienten, wie CCTA-Daten (z. B. auf ähnlich Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die Eingaben 1052 können außerdem zusätzliche physiologische Daten 1054 beinhalten, die vom Patienten gemessen wurden, wie den Brachialblutdruck, die Herzfrequenz und/oder andere Messungen des Patienten (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die zusätzlichen physiologischen Daten 1054 können nichtinvasiv erfasst werden. Die Eingaben 1052 können verwendet werden, um die unten beschriebenen Schritte auszuführen.
  • Ein dreidimensionales geometrisches Modell des Gehirngewebes des Patienten kann basierend auf den Bildgebungsdaten 1053 erzeugt werden (Schritt 1060) und das geometrische Modell kann in Segmente oder Volumen unterteilt werden (Schritt 1062) (z. B. auf ähnliche Weise wie oben in Verbindung mit 2932 beschrieben). Die Größen und Positionen der individuellen Segmente können basierend auf den Positionen der Ausflussgrenzen der intrakraniellen und extrakraniellen Arterien, der Größe der Blutgefäße in den oder verbunden mit den jeweiligen Segmenten (z. B. den benachbarten Blutgefäßen) usw. bestimmt werden. Das Unterteilen des geometrischen Modells in Segmente kann unter Verwendung verschiedener bekannter Verfahren ausgeführt werden, wie Fast-Marching-Verfahren, einem generalisierten Fast-Marching-Verfahren, einem Level-Set-Verfahren, einer Diffusionsgleichung, Gleichungen, die Fluss durch ein poröses Medium regeln, usw.
  • Das dreidimensionale geometrische Modell kann einen Abschnitt der intrakraniellen und extrakraniellen Arterien des Patienten beinhalten, der basierend auf den Bildgebungsdaten 1053 modelliert sein kann (Schritt 1064). Zum Beispiel kann in Schritt 1062 und 1064 ein dreidimensionales geometrisches Modell erzeugt werden, das das Gehirngewebe und die intrakraniellen und extrakraniellen Arterien beinhaltet.
  • Eine rechnerische Analyse kann ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um eine Lösung zu bestimmen, die Informationen über den Hirnblutfluss des Patienten in einem durch den Benutzer bestimmten physischen Zustand beinhalten (Schritt 1066). Zum Beispiel kann der physische Zustand einen Ruhezustand, verschiedene Belastungsniveaus, verschiedene Niveaus von Barorezeptorreaktion oder anderer autonomer Feedback-Steuerung, variierende Hyperämieniveaus, variierende Niveaus körperlicher Betätigung oder Anstrengung, verschiedene Medikamente, Lagerungsveränderung und/oder andere Bedingungen beinhalten. Die Lösung kann Informationen, wie Blutfluss und -druck, an verschiedenen Positionen in der in Schritt 1064 modellierten Anatomie des Patienten und unter der spezifizierten physischen Bedingung bereitstellen. Die rechnerische Analyse kann unter Verwendung von Grenzbedingungen an den Ausflussgrenzen ausgeführt werden, die von Lumped-Parameter-Modellen oder eindimensionalen Modellen abgeleitet wurden. Die eindimensionalen Modelle können erzeugt werden, um die Segmente an Gehirngewebe wie unten in Verbindung mit 40 beschrieben zu füllen.
  • Basierend auf den in Schritt 1066 bestimmten Blutflussinformationen kann die Perfusion des Blutflusses in die jeweiligen in Schritt 1062 erzeugten Segmente des Gehirns berechnet werden (Schritt 1068). Zum Beispiel kann die Perfusion durch Teilen des Flusses von jedem Ausfluss zu den Ausflussgrenzen durch das Volumen des segmentierten Gehirns, in das der Auslass perfundiert, berechnet werden.
  • Die Perfusion der jeweiligen in Schritt 1068 bestimmten Segmente des Gehirns kann auf dem in Schritt 1060 oder 1062 erzeugten geometrischen Modell des Gehirns angezeigt werden (Schritt 1070). Zum Beispiel können die im in Schritt 1060 erzeugten geometrischen Modell dargestellten Segmente des Gehirns mit einer anderen Schattierung oder Farbe dargestellt werden, um die Perfusion des Blutflusses in die jeweiligen Segmente anzuzeigen.
  • 40 zeigt ein anderes schematisches Diagramm, das sich auf ein Verfahren 1100 zum Bereitstellen verschiedener Informationen über Zerebralperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 1100 kann in das oben beschriebene Computersystem implementiert sein, das z. B. dem Computersystem ähnelt, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren.
  • Das Verfahren 1100 kann unter Verwendung einer oder mehrerer Eingaben 1102 ausgeführt werden, die medizinische Bildgebungsdaten 1103 der Aorta, der Halsschlagadern (in 37 dargestellt), der Vertebralarterien (in 37 dargestellt) und des Gehirns des Patienten beinhalten, wie CCTA-Daten (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die Eingaben 1102 können verwendet werden, um die unten beschriebenen Schritte auszuführen.
  • Ein dreidimensionales geometrisches Modell des Gehirngewebes des Patienten kann basierend auf den Bildgebungsdaten 1103 erzeugt werden (Schritt 1110). Das Modell kann außerdem einen Abschnitt der Aorta, der Halsschlagadern (in 37 dargestellt) und der Vertebralarterien (in 37 dargestellt) das Patienten beinhalten, der ebenfalls basierend auf den Bildgebungsdaten 1103 erzeugt werden kann. Zum Beispiel kann, wie oben beschrieben, ein dreidimensionales geometrisches Modell erzeugt werden, das das Gehirngewebe und die intrakraniellen und extrakraniellen Arterien beinhaltet. Der Schritt 1110 kann die oben beschriebenen Schritte 1060 und 1064 aus 39 beinhalten.
  • Das in Schritt 1110 erzeugte geometrische Modell des Gehirngewebes kann in Volumen oder Segmente unterteilt werden (Schritt 1112). Schritt 1112 kann den oben beschriebenen Schritt 1062 aus 39 beinhalten. Das geometrische Gehirngewebemodell kann ferner modifiziert werden, um eine nächste Generation an Asten im zerebralen Baum zu beinhalten (Schritt 1118) (z. B. auf ähnliche Weise wie oben in Verbindung mit 2932 beschrieben). Die Position und Größe der Äste kann basierend auf Mittellinien für die intrakraniellen und extrakraniellen Arterien bestimmt werden. Die Mittellinien können z. B. basierend auf den Bildgebungsdaten 1103 bestimmt werden (Schritt 1114). Ein Algorithmus kann verwendet werden, um die Position und Größe der Äste basierend auf morphometrischen Modellen (Modellen, die verwendet werden, um Gefäßposition und Größe stromabwärts von den bekannten Auslässen der Ausflussgrenzen) und/oder physiologische Verzweigungsgesetze bezüglich der Gefäßgröße vorherzusagen (Schritt 1116). Das morphometrische Modell kann auf stromabwärts gelegene Enden der intrakraniellen und extrakraniellen Arterien erweitert werden, die im geometrischen Modell enthalten sind und auf der äußeren Schicht des Gehirngewebes bereitgestellt oder im geometrischen Modell des Gehirngewebes enthalten sind.
  • Das Gehirn kann basierend auf den in Schritt 1118 erzeugten Ästen weiter segmentiert werden (Schritt 1120) (z. B. auf ähnliche Weise wie oben in Verbindung mit 2932 beschrieben). Zusätzliche Äste können in den Untersegmenten erzeugt werden und die Untersegmente können weiter in kleinere Segmente segmentiert werden (Schritt 1122) (z. B. auf ähnliche Weise wie oben in Verbindung mit 2932 beschrieben). Die Schritte des Erzeugens von Ästen und des Untersegmentierens der Volumen können wiederholt werden, bis eine gewünschte Auflösung von Volumengröße und/oder Verzweigungsgröße erzielt wird. Das geometrische Modell, das in Schritt 1118 und 1122 erweitert wurde, um neue Äste einzuschließen, kann dann verwendet werden, um den Hirnblutfluss und die Zerebralperfusion in die Untersegmente, wie die in Schritt 1122 erzeugten Untersegmente, zu berechnen.
  • Dementsprechend kann das erweiterte Modell verwendet werden, um die oben beschriebene rechnerische Analyse auszuführen. Die Ergebnisse der rechnerischen Analyse können Informationen über den Blutfluss vom patientenspezifischen zerebralen Arterienmodell in das erzeugte morphometrische Modell (einschließlich der in Schritt 1118 und 1122 erzeugten Äste) bereitstellen, der in jedes der in Schritt 1122 erzeugten Perfusionsuntersegmente reichen kann.
  • 41 zeigt ein anderes schematisches Diagramm, das sich auf ein Verfahren 1150 zum Bereitstellen verschiedener Informationen über Zerebralperfusion in einem spezifischen Patienten bezieht, gemäß einer beispielhaften Ausführungsform. Das Verfahren 1150 kann im oben beschriebenen Computersystem implementiert sein, z. B. dem Computersystem, das verwendet werden kann, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren.
  • Das Verfahren 1150 kann unter Verwendung einer oder mehrerer Eingaben 1152 ausgeführt werden. Die Eingaben 1152 können medizinische Bildgebungsdaten 1153 der Aorta, der Halsschlagadern (in 37 dargestellt), der Vertebralarterien (in 37 dargestellt) und des Gehirns des Patienten beinhalten, wie CCTA-Daten (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die Eingaben 1152 können außerdem zusätzliche physiologische Daten 1154 beinhalten, die vom Patienten gemessen wurden, wie den Brachialblutdruck, die Herzfrequenz und/oder andere Messungen vom Patienten (z. B. in Schritt 100 aus 2 erfasst). Die zusätzlichen physiologischen Daten 1154 können nichtinvasiv erfasst werden. Die Eingaben 1152 können ferner Gehirnperfusionsdaten 1155 beinhalten, die vom Patienten gemessen wurden (z. B. unter Verwendung von CT, PET, SPECT, MRT usw.). Die Eingaben 1152 können verwendet werden, um die unten beschriebenen Schritte auszuführen.
  • Ein dreidimensionales geometrisches Modell der intrakraniellen und extrakraniellen Arterien des Patienten kann basierend auf den Bildgebungsdaten 1153 erzeugt werden (Schritt 1160). Schritt 1160 kann dem oben beschriebenen Schritt 1064 aus 39 ähneln.
  • Eine rechnerische Analyse kann ausgeführt werden, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben, um eine Lösung zu bestimmen, die Informationen über den Hirnblutfluss des Patienten unter einer durch den Benutzer bestimmten physischen Bedingung beinhaltet (Schritt 1162). Zum Beispiel kann die physische Bedingung einen Ruhezustand, variierende Belastungsniveaus, variierende Niveaus von Barorezeptorreaktion oder automatischer Feedback-Steuerung, variierende Hyperämieniveaus, variierende Niveaus körperlicher Betätigung oder Anstrengung, verschiedene Medikamente, Lagerungsveränderungen und/oder andere Bedingungen beinhalten. Die Lösung kann Informationen bereitstellen, wie Blutfluss und -druck an verschiedenen Positionen in der in Schritt 1160 modellierten Anatomie des Patienten und unter der spezifizierten physischen Bedingung. Der Schritt 1162 kann dem oben beschriebenen Schritt 1066 aus 39 ähneln.
  • Ein dreidimensionales geometrisches Modell des Gehirngewebes des Patienten kann ebenfalls basierend auf den Bildgebungsdaten 1153 erzeugt werden (Schritt 1164). Zum Beispiel kann in den Schritten 1160 und 1164 ein dreidimensionales geometrisches Modell erzeugt werden, das das Gehirngewebe und die intrakraniellen und extrakraniellen Arterien beinhaltet. Schritt 1164 kann dem oben beschriebenen Schritt 1060 aus 39 ähneln.
  • Das geometrische Modell kann in Segmente oder Untervolumen unterteilt werden (Schritt 1166). Der Schritt 1166 kann dem oben beschriebenen Schritt 1062 aus 39 ähneln.
  • Basierend auf den in Schritt 1162 bestimmten Blutflussinformationen kann die Perfusion des Blutflusses in die jeweiligen in Schritt 1166 erzeugten Segmente des Gehirngewebes berechnet werden (Schritt 1168). Schritt 1168 kann dem oben beschriebenen Schritt 1068 aus 39 ähneln.
  • Die berechnete Perfusion für die jeweiligen Segmente des Gehirngewebes kann auf dem in Schritt 1164 oder 1166 erzeugten geometrischen Modell des Gehirngewebes angezeigt werden (Schritt 1170). Schritt 1170 kann dem oben beschriebenen Schritt 1070 aus 39 ähneln.
  • Die in Schritt 1170 auf das dreidimensionale geometrische Modell des Gehirngewebes übertragenen simulierten Perfusionsdaten können mit den gemessenen Zerebralperfusionsdaten 1155 verglichen werden (Schritt 1172). Der Vergleich kann die Unterschiede der simulierten und gemessenen Perfusionsdaten unter Verwendung verschiedener Farben und/oder Schattierungen auf der dreidimensionalen Darstellung des Gehirngewebes anzeigen.
  • Die Grenzbedingungen an den Auslässen des in Schritt 1160 erzeugten dreidimensionalen geometrischen Modells können angepasst werden, um den Fehler zwischen den simulierten und gemessenen Perfusionsdaten zu verringern (Schritt 1174). Um den Fehler zu verringern, können die Grenzbedingungen zum Beispiel angepasst werden, sodass der vorgegebene Widerstand zum Russ der Gefäße, die in einen Bereich führen (z. B. die in Schritt 1166 erzeugten Segmente), in dem die simulierte Perfusion geringer ist als gemessene Perfusion, verringert werden kann. Andere Parameter der Grenzbedingungen können angepasst werden. Alternativ kann die Verzweigungsstruktur des Modells modifiziert werden. Zum Beispiel kann das in Schritt 1160 erzeugte geometrische Modell wie oben in Verbindung mit 40 beschrieben erweitert werden, um das morphometrische Modell zu erzeugen. Die Parameter der Grenzbedingungen und/oder morphometrischen Modelle können unter Verwendung eines Parameterschätzungs- oder Datenassimilationsverfahrens, wie in US-Patentanmeldung Nr. 2010/0017171 mit dem Titel „Method for Tuning Patient-Specific Cardiovascular Simulations” beschrieben, oder anderen Verfahren empirisch oder systematisch angepasst werden.
  • Die Schritte 1162, 1168, 1170, 1172, 1174 und/oder andere Schritte aus 41 können wiederholt werden, z. B. bis der Fehler zwischen den simulierten und gemessenen Perfusionsdaten unter einem vorbestimmten Grenzwert liegt. Dadurch kann die rechnerische Analyse unter Verwendung eines Modells ausgeführt werden, das anatomische Informationen, Informationen über den Hirnblutfluss und Informationen über die Zerebralperfusion ins Verhältnis setzt. Ein derartiges Modell kann zu Diagnosezwecken nützlich sein und zum Vorhersagen der Nutzen medizinischer, intervenierender oder chirurgischer Therapien.
  • Dadurch können der extrakranielle und intrakranielle Arterienblutfluss und die Zerebralperfusion unter Basislinienbedingungen oder veränderten physiologischen Zuständen berechnet werden. Zerebralperfusionsdaten können in Verbindung mit simulierten Zerebralperfusionsergebnissen verwendet werden, um die Grenzbedingungen der intrakraniellen Arterienblutflussberechnungen anzupassen, bis die simulierten Zerebralperfusionsergebnisse den gemessenen Zerebralperfusionsdaten innerhalb einer vorgegebenen Toleranz entsprechen. Demnach können genauere patientenspezifische extrakranielle und intrakranielle Arterienblutflussberechnungen bereitgestellt werden und Ärzte können Hirnschlagaderblutfluss und Zerebralperfusion vorhersagen, wenn keine gemessenen Daten verfügbar sind, z. B. bestimmte physische Bedingungen, wie körperliche Betätigung, Anstrengung, Lagerungsveränderungen oder simulierte Behandlungen. Das patientenspezifische dreidimensionale Modell des Gehirns kann in Perfusionssegmente oder Untervolumen unterteilt werden und es kann bestimmt werden, ob ein Patient eine ausreichende minimale Perfusion zu verschiedenen Bereichen des Gehirns erhält.
  • Ein patientenspezifisches dreidimensionales geometrisches Modell der intrakraniellen Arterien kann aus medizinischen Bildgebungsdaten erzeugt werden und mit einem morphometrischen Modell eines Abschnitts des verbleibenden intrakraniellen Arterienbaums kombiniert werden, der durch Perfusionssegmente oder Untervolumen (z. B. oben in Verbindung mit 40 beschrieben) repräsentiert wird, um ein erweitertes Modell zu bilden. Der prozentuale Anteil des gesamten Gehirnvolumens (oder der Masse) stromabwärts von einer jeweiligen, z. B. erkrankten, Position im erweiterten Modell kann berechnet werden. Außerdem kann der prozentuale Anteil des gesamten Hirnblutflusses an einer jeweiligen, z. B. erkrankten, Position im erweiterten Modell berechnet werden. Zudem können Defizite, die in funktionellen Bildgebungsstudien (z. B. funktioneller Magnetresonanzbildgebung (fMRI)), Perfusions-CT oder MRT erkannt wurden, dann auf eine Erkrankung in den speisenden Gefäßen, anatomische Varianten, einen eingeschränkten autoregulatorischen Mechanismus, Hypotension oder andere Erkrankungen zurückgeführt werden, was für Patienten mit ischämischem Schlaganfall, Synkope, orthostatischer Intoleranz, Trauma oder chronischen neurologischen Erkrankungen nützlich sein kann.
  • ii. Bewerten der Plaquevulnerabilität
  • Die rechnerische Analyse kann außerdem Ergebnisse bereitstellen, die patientenspezifische biomechanische Kräfte quantifizieren, die auf die Plaque wirken, die sich in den intrakraniellen und extrakraniellen Arterien des Patienten ablagern kann, z. B. artherosklerotischer Karotis-Plaque. Die biomechanischen Kräfte können durch pulsierenden Druck, Fluss und Halsbewegung ausgelöst werden.
  • 42 ist ein schematisches Diagramm, das Aspekte eines Verfahrens 1200 zum Bereitstellen verschiedener Informationen über das Bewerten der Plaquevulnerabilität, des zerebralen Volumenrisikos und des zerebralen Perfusionsrisikos in einem spezifischen Patienten gemäß einer beispielhaften Ausführungsform bereitstellt. Das Verfahren 1200 kann im oben beschriebenen Computersystem implementiert sein, das z. B. dem Computersystem ähnelt, das verwendet wird, um einen oder mehrere der oben beschriebenen und in 3 dargestellten Schritte zu implementieren. Das Verfahren 1200 kann unter Verwendung einer oder mehrerer Eingaben 1202 ausgeführt werden und kann das Erzeugen eines oder mehrerer Modelle 1210 basierend auf den Eingaben 1202, das Ausführen einer oder mehrerer biomechanischer Analysen 1220 basierend auf dem einen oder den mehreren der Modell(en) 1210 und das Bereitstellen verschiedener Ergebnisse basierend auf den Modellen 1210 und den biomechanischen Analysen 1220 beinhalten.
  • Die Eingaben 1202 können medizinische Bildgebungsdaten 1203 der intrakraniellen und extrakraniellen Arterien des Patienten beinhalten, z. B. der Aorta, der Halsschlagadern (in 37 dargestellt), der Vertebralarterien (in 37 dargestellt) und des Gehirns des Patienten, wie CCTA-Daten (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die Eingaben 1202 können außerdem zusätzliche physiologische Daten 1204 beinhalten, die vom Patienten gemessen wurden, wie Brachialblutdruck, Herzfrequenz und/oder andere Messungen des Patienten (z. B. auf ähnliche Weise erfasst wie oben in Verbindung mit Schritt 100 aus 2 beschrieben). Die zusätzlichen physiologischen Daten 1204 können nichtinvasiv erfasst werden. Die Eingaben 1202 können verwendet werden, um die Modelle 1210 zu erzeugen und/oder die unten beschriebenen biomechanischen Analysen 1220 auszuführen.
  • Wie oben angemerkt, kann/können ein oder mehrere Modell(e) 1210 basierend auf den Eingaben 1202 erzeugt werden. Zum Beispiel kann das Verfahren 1200 das Erzeugen eines hämodynamischen Modells 1212 beinhalten, das berechnete Blutfluss- und Druckinformationen an verschiedenen Positionen durch ein dreidimensionales geometrisches Modell der Anatomie des Patienten beinhaltet. Das Modell der Anatomie des Patienten kann unter Verwendung der medizinischen Bildgebungsdaten 1203 erzeugt werden und in einer beispielhaften Ausführungsform kann das hämodynamische Modell 1212 ein simuliertes Blutdruckmodell, das simulierte Blutflussmodell oder eine andere nach dem Ausführen einer rechnerischen Analyse erzeugte Simulation sein, z. B. wie oben in Verbindung mit Schritt 402 aus 3 beschrieben. Volumenmechanikmodelle, einschließlich Fluid-Struktur-Interaktionsmodellen, können mit der rechnerischen Analyse mit bekannten numerischen Verfahren gelöst werden. Eigenschaften der Plaque und der Gefäße können als linear oder nichtlinear, isotrop oder anisotrop modelliert werden. Die Lösung kann eine Belastung und Spannung der Plaque und der Schnittstelle zwischen Plaque und Gefäß bereitstellen. Die Schritte zum Erzeugen des hämodynamischen Modells 1212 können den Schritten zum Erzeugen des oben beschriebenen hämodynamischen Modells 932 aus 35 ähneln.
  • Das Verfahren 1200 kann das Ausführen einer biomechanischen Analyse 1220 unter Verwendung des hämodynamischen Modells 1212 durch Berechnen eines Drucks und einer Scherspannung, der/die aufgrund hämodynamischer Kräfte in verschiedenen physiologischen Zuständen auf eine Plaque-Lumenoberfläche wirkt, wie Ruhezustand, variierende Niveaus körperlicher Betätigung oder Anstrengung usw. (Schritt 1222), beinhalten. Der Druck und die Scherspannung können basierend auf Informationen vom hämodynamischen Modell 1212 berechnet werden, z. B. Blutdruck und -fluss. Der Schritt 1222 kann dem oben beschriebenen Schritt 942 aus 35 ähneln.
  • Optional kann das Verfahren 1200 außerdem das Erzeugen eines geometrischen Analysemodells zum Quantifizieren von Gefäßverformung aus vierdimensionalen Bildgebungsdaten beinhalten, z. B. Bildgebungsdaten, die in mehreren Phasen des Herzzyklus erfasst wurden, wie in den systolischen und diastolischen Phasen, auf ähnliche Weise wie oben für das geometrische Analysemodell 934 aus 35 beschrieben. Das Verfahren 1200 kann außerdem das Ausführen einer biomechanischen Analyse 1220 unter Verwendung des geometrischen Analysemodells beinhalten, indem verschiedene Verformungseigenschaften berechnet werden, wie Dehnung in Längsrichtung (Verlängerung) oder Verkürzung, Verdrehung (Torsion), radiale Expansion oder Kompression und Biegung usw. der intrakraniellen und extrakraniellen Arterien des Patienten und der Plaque aufgrund von durch das Herz bedingtem pulsierendem Druck, auf ähnliche Weise wie oben für Schritt 944 aus 35 beschrieben.
  • Das Verfahren 1200 kann außerdem das Erzeugen eines Plaquemodells 1214 zum Bestimmen der Zusammensetzung und Eigenschaften der Plaque aus den medizinischen Bildgebungsdaten 1203 beinhalten. Zum Beispiel kann das Plaquemodell 1214 Informationen über die Dichte und andere Materialeigenschaften der Plaque beinhalten.
  • Das Verfahren 1200 kann außerdem das Erzeugen eines Gefäßwandmodells 1216 zum Berechnen von Informationen über die Plaque, die Gefäßwände und/oder die Schnittstelle zwischen Plaque und den Gefäßwänden beinhalten. Zum Beispiel kann das Gefäßwandmodell 1216 Informationen über Belastung und Spannung beinhalten, die basierend auf der im Plaquemodell 1214 enthaltenen Zusammensetzung und den Eigenschaften und der in Schritt 1220 berechneten Belastung und Scherspannung berechnet werden kann. Optional können Belastung und Spannung auch unter Verwendung berechneter Verformungseigenschaften berechnet werden, wie oben beschrieben. Die Schritte zum Erzeugen des Plaquemodells 1214 und/oder des Gefäßwandmodells 1216 können den oben beschriebenen Schritten zum Erzeugen des Plaquemodells 936 und/oder des Gefäßwandmodells 938 aus 35 ähneln.
  • Das Verfahren 1200 kann das Ausführen einer biomechanischen Analyse 1220 unter Verwendung des Gefäßwandmodells 1216 durch Berechnen von Belastung (z. B. akuter oder kumulativer Belastung) der Plaque aufgrund von hämodynamischen Kräften und durch Halsbewegung verursachter Belastung beinhalten (Schritt 1224). Zum Beispiel kann die auf die Plaque wirkende flussbedingte Kraft 904 (33) berechnet werden. Die Belastung oder Kraft auf die Plaque aufgrund von hämodynamischen Faktoren und durch Halsbewegung bedingte Spannung kann basierend auf Informationen vom Gefäßwandmodell 1216 berechnet werden, z. B. Belastung und Spannung auf die Plaque. Schritt 1224 kann dem oben beschriebenen Schritt 946 aus 35 ähneln.
  • Das Verfahren 1200 kann das Bestimmen weiterer Informationen basierend auf einem oder mehreren der Modelle 1210 und einer oder mehreren der oben beschriebenen biomechanischen Analysen 1220 beinhalten.
  • Ein Plaquerupturvulnerabilitätsindex kann berechnet werden (Schritt 1230). Der Plaquerupturvulnerabilitätsindex kann berechnet werden, z. B. basierend auf hämodynamischer Belastung, Belastungsfrequenz, Belastungsrichtung und/oder Stärke und anderen Eigenschaften der Plaque. Zum Beispiel kann ein eine Plaque von Interesse umgebender Bereich vom dreidimensionalen Modell 1210 der Plaque, wie dem Plaquemodell 1214, isoliert werden. Die Stärke der Plaque kann basierend auf den im Plaquemodell 1214 bereitgestellten Materialeigenschaften bestimmt werden. Eine Hämodynamik- und Gewebebelastung auf die Plaque von Interesse kann unter simulierten Basislinien- und Betätigungs-(oder Anstrengungs-)Bedingungen berechnet werden, indem die vorab in Schritt 1224 berechneten hämodynamischen Belastungen und bewegungsbedingten Spannungen verwendet werden. Die Vulnerabilität der Plaque kann basierend auf dem Verhältnis von Plaquebelastung zu Plaquestärke bewertet werden. Schritt 1230 kann dem oben beschriebenen Schritt 950 aus 35 ähneln. Zum Beispiel kann der Plaquerupturvulnerabilitätsindex für eine Plaque in einer extrakraniellen Arterie für eine Schlaganfallbewertung berechnet werden.
  • Ein zerebraler Volumenrisikoindex (CVRI) kann ebenfalls berechnet werden (Schritt 1232). Der CVRI kann als ein prozentualer Anteil des gesamten durch eine Plaqueruptur oder eine Embolisierung und einen Verschluss (Verschließen oder Versperren) eines Gefäßes an einer jeweiligen Position im Arterienbaum betroffenen Gehirnvolumens definiert sein. Der CVRI kann basierend auf dem Abschnitt des Gehirns, der durch die Gefäße stromabwärts von der jeweiligen Plaque versorgt wird, berechnet werden, was die Größe der Plaque im Verhältnis zu der Größe der stromabwärts gelegenen Gefäße und die Wahrscheinlichkeit, dass die Plaque in verschiedene Gefäße fließen kann, basierend auf der dreidimensionalen hämodynamischen Lösung, in Betracht ziehen kann. Der CVRI kann in erkrankten Zuständen oder vor oder nach einer Intervention bewertet werden. Der Schritt 1232 kann dem oben beschriebenen Schritt 952 aus 35 ähneln.
  • Das Gehirngewebe kann modelliert und in Segmente unterteilt werden, die durch jedes Gefäß in der hämodynamischen Simulation versorgt werden (z. B. wie in Verbindung mit Schritt 1110 und 1112 aus 40 beschrieben). Das geometrische Modell kann modifiziert werden, um eine nächste Generation an Ästen im zerebralen Baum zu enthalten (z. B. wie in Verbindung mit Schritt 1118 aus 40 beschrieben) und das Gehirngewebe kann weiter segmentiert werden (z. B. wie in Verbindung mit Schritt 1122 aus 40 beschrieben). Physiologische Verhältnisse, wie oben beschrieben, können verwendet werden, um die Größe eines Gefäßes mit einer proportionalen Menge an versorgtem Gehirngewebe ins Verhältnis zu setzen.
  • Potenzielle Pfade, denen eine rupturierte Plaque folgen könnte, können mit der Größe der stromabwärts gelegenen Gefäße verglichen werden, um zu bestimmen, wo die Plaque eventuell den Fluss behindern kann. Diese Informationen können mit dem Vulnerabilitätsindex kombiniert werden, um eine Wahrscheinlichkeitskarte des Volumens des Gehirngewebes bereitzustellen, das potenziell durch eine rupturierte Plaque beeinträchtigt werden kann. Der CVRI kann jedem potenziell betroffenen Segment zugewiesen werden.
  • Ein Zerebralperfusionsrisikoindex (CPRI) kann ebenfalls berechnet werden (Schritt 1234). Der CPRI kann als ein prozentualer Anteil des gesamten durch eine Plaqueruptur und einen Verschluss eines Gefäßes an einer jeweiligen Position im Arterienbaum betroffenen Hirnblutflusses definiert sein. Der CPRI zeigt einen potenziellen Perfusionsverlust zu den Gehirngewebesegmenten an, statt des betroffenen Volumens, wie durch den CVRI angezeigt. Zum Beispiel kann die Auswirkung einer Ruptur oder Embolisierung einer Halsschlagaderplaque abhängig von der Geometrie des Arterienrings des Gehirns des Patienten (in 37 dargestellt) variieren und kann aufgrund dieser Unterschiede in der Anatomie verschiedene CVRI- und CPRI-Werte ergeben. Die Perfusionsrate zu jedem Segment des Gehirngewebes kann berechnet werden und der Perfusionsverlust kann basierend auf dem Vulnerabilitätsindex, der hämodynamischen Lösung und den Größen der Plaque und der Gefäße berechnet werden. Der CPRI kann in erkrankten Zuständen oder vor oder nach einer Intervention bewertet werden. Der Schritt 1235 kann dem oben beschriebenen Schritt 954 aus 35 ähneln.
  • Dadurch können biomechanische Kräfte, die auf die atherosklerotische Halsschlagaderplaque wirken und durch pulsierenden Druck, pulsierenden Blutfluss und/oder optional Halsbewegung bedingt sind, bewertet werden. Die Gesamtbelastung, die auf die Plaque wirkt und durch pulsierenden Druck, pulsierenden Blutfluss und/oder optional Halsbewegung entsteht, kann quantifiziert werden. Die Lösung kann mehrere Quellen patientenspezifischer hämodynamischer Belastung in Betracht ziehen, die auf die Plaque oder auf die Schnittstelle zwischen der Plaque und der Gefäßwand wirkt. Außerdem kann die Plaquestärke basierend auf medizinischen Bildgebungsdaten geschätzt werden und Anzeiger der Plaquevulnerabilität, des Zerebralvolumenrisikos und des Zerebralperfusionsrisikos können quantifiziert werden.
  • Durch das Bestimmen anatomischer und physiologischer Daten für extrakranielle und intrakranielle Arterien wie unten beschrieben können Veränderung im Blutfluss auf Arterien- oder Organebene für einen spezifischen Patienten an verschiedenen physischen Positionen vorhergesagt werden. Ferner können andere Informationen bereitgestellt werden, wie ein Risiko einer transitorischen ischämischen Attacke, eines ischämischen Schlaganfalls oder einer Aneurysmaruptur, Kräfte, die auf atherosklerotische Plaque oder Aneurysmen wirken, eine vorhergesagte Auswirkung medizinischer intervenierender oder chirurgischer Therapien auf intrakraniellen oder extrakraniellen Blutfluss, Druck, Wandbelastung oder Gehirnperfusion. Blutfluss, Druck und Wandbelastungen in den intrakraniellen oder extrakraniellen Arterien und die gesamte und regionale Gehirnperfusion können quantifiziert werden und die funktionelle Signifikanz der Erkrankung kann bestimmt werden.
  • Zusätzlich zum Quantifizieren des Blutflusses in dem aus Bildgebungsdaten konstruierten dreidimensionalen geometrischen Modell (z. B. wie oben in Schritt 1212 beschrieben), kann das Modell modifiziert werden, um die Auswirkung von Progression oder Regression der Erkrankung oder medizinischer, perkutaner oder chirurgischer Interventionen zu simulieren. In einer beispielhaften Ausführungsform kann das Fortschreiten von Atherosklerose durch Iterieren der Lösung im Laufe der Zeit nachgeahmt werden, z. B. durch Lösen für Schubspannung oder Partikelverweildauer und Anpassen des geometrischen Modells, um atherosklerotische Plaqueentwicklung basierend auf hämodynamischen Faktoren und/oder patientenspezifischen biomechanischen Messungen zu entwickeln. Ferner kann die Auswirkung von Veränderungen von Blutfluss, Herzfrequenz, Blutdruck und anderen physiologischen Variablen auf den extrakraniellen und/oder intrakraniellen Arterienblutfluss oder die Zerebralperfusion durch Veränderungen in den Grenzbedingungen nachgeahmt werden und verwendet werden, um die kumulativen Auswirkungen dieser Variablen im Laufe der Zeit zu berechnen.
  • Beliebige oben in einer beliebigen Ausführungsform beschriebene Aspekte können mit anderen hierin beschriebenen Ausführungsformen verwendet werden. Jede(s) hierin beschriebene(s) Gerät und Vorrichtung kann in jeder beliebigen geeigneten medizinischen Prozedur verwendet werden, kann durch jede(s) beliebige geeignete Körperlumen und Körperhöhle geführt werden und kann zur Abbildung jedes beliebigen geeigneten Körperabschnitts verwendet werden.
  • Für Fachleute ist ersichtlich, dass verschiedene Modifikationen und Variationen an den offenbarten Systemen und Prozessen vorgenommen werden können, ohne vom Umfang der Offenbarung abzuweichen. Andere Ausführungsformen sind für Fachleute durch Betrachten der Beschreibung und Umsetzung der hierin offenbarten Offenbarung ersichtlich. Die Beschreibung und Beispiele sind ausschließlich als beispielhaft anzusehen, wobei der eigentliche Umfang und Geist der Offenbarung durch die nachfolgenden Ansprüche definiert ist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6236878 [0163]

Claims (10)

  1. System zur Bestimmung patientenspezifischer, zeitvariabler kardiovaskulärer Informationen, wobei das System Folgendes umfasst: wenigstens ein Computersystem, das konfiguriert ist, um: zeitvariable, patientenspezifische Daten hinsichtlich einer Geometrie wenigstens eines Teils einer anatomischen Struktur des Patienten zu unterschiedlichen Zeitpunkten zu empfangen; basierend auf den zeitvariablen, patientenspezifischen Daten ein dreidimensionales Modell zu erzeugen, das wenigstens einen Teil der anatomischen Struktur des Patienten repräsentiert, wobei das dreidimensionale Modell zeitvariable Informationen hinsichtlich wenigstens einer von Blutgefäßposition, Deformation, Ausrichtung oder Größe beinhaltet; und Informationen hinsichtlich einer Veränderung in einer Blutflusseigenschaft im Laufe der Zeit in der anatomischen Struktur des Patienten basierend auf dem dreidimensionalen Modell und einem physikbasierten Modell hinsichtlich der anatomischen Struktur des Patienten zu bestimmen.
  2. System nach Anspruch 1, wobei die patientenspezifischen Daten mehrere Bilder beinhalten, die zu verschiedenen Zeitpunkten im Verlauf eines Herzzyklus aufgenommen wurden, und wobei das wenigstens eine Computersystem ferner konfiguriert ist, um das dreidimensionale Modell basierend auf den mehreren Bildern zu erzeugen.
  3. System nach Anspruch 2, wobei die mehreren Bilder, die zu verschiedenen Zeitpunkten im Verlauf des Herzzyklus aufgenommen wurden, wenigstens ein Bild beinhalten, das während einer systolischen Phase aufgenommen wurde, und wenigstens ein Bild, das während einer diastolischen Phase aufgenommen wurde.
  4. System nach Anspruch 1, wobei: die anatomische Struktur des Patienten wenigstens einen Teil einer Mehrzahl an verbundenen Arterien im Patienten beinhaltet; und die patientenspezifischen Daten Informationen hinsichtlich Veränderungen in der Gefäßform der Mehrzahl an Arterien beinhalten.
  5. System nach Anspruch 1, wobei die Blutflusseigenschaft wenigstens eins beinhaltet von Blutdruck, Blutgeschwindigkeit oder Blutflussrate.
  6. System nach Anspruch 1, wobei das wenigstens eine Computersystem ferner konfiguriert ist, um: Informationen hinsichtlich der Veränderung der Blutflusseigenschaft im Laufe der Zeit an einer Mehrzahl von Positionen entlang drei Dimensionen in der anatomischen Struktur des Patienten zu bestimmen.
  7. System nach Anspruch 1, wobei die anatomische Struktur eine Mehrzahl an Koronararterien beinhaltet, die von der Aorta des Patienten ausgehen.
  8. System nach Anspruch 1, wobei: die anatomische Struktur eine Mehrzahl an Arterien beinhaltet; und das dreidimensionale Modell wenigstens eins von Verdrehung, Verbiegung, einer Veränderung der Längsabmessung oder einer Veränderung der Umfangsabmessung einer der Arterien im Laufe der Zeit simuliert.
  9. System nach Anspruch 8, wobei das wenigstens eine Computersystem ferner konfiguriert ist, um Deformationsinformationen hinsichtlich des wenigstens einen von Verdrehung, Verbiegung, Veränderung der Längsabmessung oder Veränderung der Umfangsabmessung der wenigstens einen Arterie im Laufe der Zeit zu bestimmen.
  10. System nach Anspruch 9, wobei das wenigstens eine Computersystem ferner konfiguriert ist, um wenigstens eins von einer Belastung oder Beanspruchung der wenigstens einen Arterie basierend auf den Deformationsinformationen zu bestimmen.
DE202011110673.3U 2010-08-12 2011-07-29 System zum patientenspezifischen modellieren von blutfluss Expired - Lifetime DE202011110673U1 (de)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US401915P 2002-08-07
US40146210P 2010-08-12 2010-08-12
US401462P 2010-08-12
US40191510P 2010-08-20 2010-08-20
US40230810P 2010-08-26 2010-08-26
US402308P 2010-08-26
US40234510P 2010-08-27 2010-08-27
US402345P 2010-08-27
US40442910P 2010-10-01 2010-10-01
US404429P 2010-10-01
US201113013561 2011-01-25
US13/013,561 US8315812B2 (en) 2010-08-12 2011-01-25 Method and system for patient-specific modeling of blood flow

Publications (1)

Publication Number Publication Date
DE202011110673U1 true DE202011110673U1 (de) 2015-09-02

Family

ID=45565333

Family Applications (17)

Application Number Title Priority Date Filing Date
DE202011110677.6U Expired - Lifetime DE202011110677U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110772.1U Expired - Lifetime DE202011110772U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011110678.4U Expired - Lifetime DE202011110678U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110774.8U Expired - Lifetime DE202011110774U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen patientenspezifischer kardiovaskulärer Informationen
DE202011110679.2U Expired - Lifetime DE202011110679U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110676.8U Expired - Lifetime DE202011110676U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110620.2U Expired - Lifetime DE202011110620U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011111118.4U Expired - Lifetime DE202011111118U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen einer hämodynamischen Druckgröße
DE202011110621.0U Expired - Lifetime DE202011110621U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110680.6U Expired - Lifetime DE202011110680U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110771.3U Expired - Lifetime DE202011110771U1 (de) 2010-08-12 2011-07-29 System zum Bewerten einer Koronararterie eines Patienten
DE202011110674.1U Expired - Lifetime DE202011110674U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110672.5U Expired - Lifetime DE202011110672U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110673.3U Expired - Lifetime DE202011110673U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen modellieren von blutfluss
DE202011111113.3U Expired - Lifetime DE202011111113U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011111119.2U Expired - Lifetime DE202011111119U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011110783.7U Expired - Lifetime DE202011110783U1 (de) 2010-08-12 2011-07-29 System zum Bereitstellen einer nicht-invasiv erhaltenen fraktionellen Flussreserve und eines computerisierten Modells eines Teils einer Anatomie eines Patienten

Family Applications Before (13)

Application Number Title Priority Date Filing Date
DE202011110677.6U Expired - Lifetime DE202011110677U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110772.1U Expired - Lifetime DE202011110772U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011110678.4U Expired - Lifetime DE202011110678U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110774.8U Expired - Lifetime DE202011110774U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen patientenspezifischer kardiovaskulärer Informationen
DE202011110679.2U Expired - Lifetime DE202011110679U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110676.8U Expired - Lifetime DE202011110676U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110620.2U Expired - Lifetime DE202011110620U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011111118.4U Expired - Lifetime DE202011111118U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen einer hämodynamischen Druckgröße
DE202011110621.0U Expired - Lifetime DE202011110621U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110680.6U Expired - Lifetime DE202011110680U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110771.3U Expired - Lifetime DE202011110771U1 (de) 2010-08-12 2011-07-29 System zum Bewerten einer Koronararterie eines Patienten
DE202011110674.1U Expired - Lifetime DE202011110674U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss
DE202011110672.5U Expired - Lifetime DE202011110672U1 (de) 2010-08-12 2011-07-29 System zum patientenspezifischen Modellieren von Blutfluss

Family Applications After (3)

Application Number Title Priority Date Filing Date
DE202011111113.3U Expired - Lifetime DE202011111113U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011111119.2U Expired - Lifetime DE202011111119U1 (de) 2010-08-12 2011-07-29 System zum Bestimmen kardiovaskulärer Informationen für einen Patienten
DE202011110783.7U Expired - Lifetime DE202011110783U1 (de) 2010-08-12 2011-07-29 System zum Bereitstellen einer nicht-invasiv erhaltenen fraktionellen Flussreserve und eines computerisierten Modells eines Teils einer Anatomie eines Patienten

Country Status (9)

Country Link
US (74) US8315812B2 (de)
EP (8) EP4086919A1 (de)
JP (19) JP5850583B2 (de)
KR (14) KR102414383B1 (de)
CN (6) CN107174219B (de)
AU (8) AU2011289715B2 (de)
CA (3) CA3027987C (de)
DE (17) DE202011110677U1 (de)
WO (1) WO2012021307A2 (de)

Families Citing this family (591)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7900964A (nl) * 1979-02-07 1980-08-11 Byk Mallinckrodt Cil Bv Nieuwe radioactief gemerkte aminen, werkwijze ter bereiding van de nieuwe verbindingen, alsmede diagnostische preparaten op basis van de nieuwe verbindingen.
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US8687917B2 (en) * 2005-05-02 2014-04-01 Agency For Science, Technology And Research Method and apparatus for registration of an atlas to an image
US10154819B2 (en) * 2006-04-20 2018-12-18 Jack S. Emery Systems and methods for impedance analysis of conductive medium
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
ES2832713T3 (es) 2007-11-26 2021-06-11 Bard Inc C R Sistema integrado para la colocación intravascular de un catéter
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
WO2010038994A2 (ko) * 2008-10-02 2010-04-08 현석산 뇌혈관 분석 장치
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9349176B2 (en) * 2009-07-15 2016-05-24 Mayo Foundation For Medical Education And Research Computer-aided detection (CAD) of intracranial aneurysms
US20110150309A1 (en) * 2009-11-27 2011-06-23 University Health Network Method and system for managing imaging data, and associated devices and compounds
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
GB201008281D0 (en) 2010-05-19 2010-06-30 Nikonovas Arkadijus Indirect analysis and manipulation of objects
EP2912999B1 (de) 2010-05-28 2022-06-29 C. R. Bard, Inc. Vorrichtung zur Verwendung mit einem Nadeleinsatz-Führungssystem
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
DE102010039407B3 (de) * 2010-08-17 2012-02-02 Siemens Aktiengesellschaft Verfahren zum Bereitstellen eines Hilfsmittels zur Verwendung bei der therapeutischen Behandlung eines körperlichen Objekts
US9119540B2 (en) 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
EP2619729B1 (de) 2010-09-20 2018-07-04 Koninklijke Philips N.V. Quantifizierung einer eigenschaft eines lumens einer rohrförmigen struktur
US20120084064A1 (en) * 2010-09-29 2012-04-05 Nutech Ventures, Inc. Model-based systems and methods for analyzing and predicting outcomes of vascular interventions and reconstructions
DE102010043849B3 (de) * 2010-11-12 2012-02-16 Siemens Aktiengesellschaft Vorrichtung und Computertomograph zur Bestimmung und Darstellung der Durchblutung des Herzmuskels
GB201100136D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of characterising a narrowing in a filled tube
GB201100137D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of assessing a narrowing in a fluid tube
WO2012107050A1 (en) * 2011-02-08 2012-08-16 Region Nordjylland, Aalborg Sygehus A system for determining flow properties of a blood vessel
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
WO2012174495A2 (en) 2011-06-17 2012-12-20 Carnegie Mellon University Physics based image processing and evaluation process of perfusion images from radiology imaging
TWI445520B (zh) * 2011-07-08 2014-07-21 私立中原大學 Methods of comparison of non - invasive cardiovascular status
US9179890B2 (en) * 2011-07-14 2015-11-10 Siemens Aktiengesellschaft Model-based positioning for intracardiac echocardiography volume stitching
US9339348B2 (en) 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel
RU2014110702A (ru) * 2011-08-20 2015-09-27 Волкано Корпорэйшн Устройства, системы и способы визуального отображения сосуда и оценки вариантов лечения
CN103930036B (zh) * 2011-08-26 2016-03-09 Ebm株式会社 用于血流性状诊断的系统
KR101805624B1 (ko) * 2011-08-29 2017-12-08 삼성전자주식회사 장기 모델 영상 생성 방법 및 장치
US9974508B2 (en) * 2011-09-01 2018-05-22 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
EP2573961B1 (de) * 2011-09-12 2016-04-13 ADVA Optical Networking SE Verfahren zur optischen Frequenzkopplung und Vorrichtung zur optischen Datenübertragung
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
EP3584799B1 (de) 2011-10-13 2022-11-09 Masimo Corporation Hub zur medizinischen überwachung
US10162932B2 (en) * 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
WO2013082505A1 (en) * 2011-12-01 2013-06-06 The Trustees Of The University Of Pennsylvania A non-blood contacting mechanical device that improves heart function after injury
US9152740B1 (en) 2012-01-18 2015-10-06 Msc.Software Corporation Interactive simulation and solver for mechanical, fluid, and electro-mechanical systems
US8965084B2 (en) * 2012-01-19 2015-02-24 Siemens Aktiengesellschaft Blood flow computation in vessels with implanted devices
US10311978B2 (en) 2012-01-30 2019-06-04 Siemens Healthcare Gmbh Method and system for patient specific planning of cardiac therapies on preoperative clinical data and medical images
US9129053B2 (en) 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US9384546B2 (en) * 2012-02-22 2016-07-05 Siemens Aktiengesellschaft Method and system for pericardium based model fusion of pre-operative and intra-operative image data for cardiac interventions
US10034614B2 (en) * 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
CN103300820A (zh) * 2012-03-13 2013-09-18 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和系统
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
BR112014022734B1 (pt) * 2012-03-15 2022-05-10 Siemens Aktiengesellschaft Método para determinação de forma não invasiva de parâmetros de circulação coronariana, sistema de controle e meio não transitório legível por computador
US9135699B2 (en) * 2012-03-15 2015-09-15 Siemens Aktiengesellschaft Method and system for hemodynamic assessment of aortic coarctation from medical image data
AU2013245862A1 (en) 2012-04-11 2014-10-30 University Of Florida Research Foundation, Inc. System and method for analyzing random patterns
EP2840960A4 (de) * 2012-04-24 2016-05-25 Univ Melbourne Identifizierung von gefässbereichen
US9811613B2 (en) 2012-05-01 2017-11-07 University Of Washington Through Its Center For Commercialization Fenestration template for endovascular repair of aortic aneurysms
JP5946127B2 (ja) * 2012-05-11 2016-07-05 富士通株式会社 シミュレーション方法、シミュレーション装置、およびシミュレーションプログラム
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
EP2849631B1 (de) * 2012-05-14 2020-01-01 Koninklijke Philips N.V. Bestimmung eines fraktionelle-flussreserve (frr)-wertes für eine stenose eines gefässes
US11331149B2 (en) 2012-05-16 2022-05-17 Feops Nv Method and system for determining a risk of hemodynamic compromise after cardiac intervention
EP3358482A1 (de) 2017-02-03 2018-08-08 FEops NV Verfahren und system zur bestimmung des risikos einer hämodynamischen beeinträchtigung nach einem herzeingriff
WO2013171039A1 (en) * 2012-05-16 2013-11-21 Feops Bvba Pre -operative simulation of trans - catheter valve implantation
JP5988088B2 (ja) 2012-06-08 2016-09-07 富士通株式会社 描画プログラム、描画方法、および、描画装置
JP6134789B2 (ja) 2012-06-26 2017-05-24 シンク−アールエックス,リミティド 管腔器官における流れに関連する画像処理
US9247918B2 (en) 2012-07-09 2016-02-02 Siemens Aktiengesellschaft Computation of hemodynamic quantities from angiographic data
US9277970B2 (en) 2012-07-19 2016-03-08 Siemens Aktiengesellschaft System and method for patient specific planning and guidance of ablative procedures for cardiac arrhythmias
KR101939778B1 (ko) * 2012-07-27 2019-01-18 삼성전자주식회사 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치
EP3298959B2 (de) 2012-08-03 2022-09-28 Philips Image Guided Therapy Corporation Vorrichtungen und systeme zur beurteilung eines gefässes
JP6381875B2 (ja) * 2012-08-16 2018-08-29 キヤノンメディカルシステムズ株式会社 画像処理装置、医用画像診断装置及び血圧モニタ
JP6116833B2 (ja) * 2012-09-03 2017-04-19 東芝メディカルシステムズ株式会社 医用画像処理装置
US9486176B2 (en) * 2012-09-05 2016-11-08 Mayank Goyal Systems and methods for diagnosing strokes
GB2519907B (en) * 2012-09-05 2017-12-27 Goyal Mayank Systems and methods for diagnosing strokes
US10433740B2 (en) 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
US10398386B2 (en) 2012-09-12 2019-09-03 Heartflow, Inc. Systems and methods for estimating blood flow characteristics from vessel geometry and physiology
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9262581B2 (en) * 2012-09-24 2016-02-16 Heartflow, Inc. Method and system for facilitating physiological computations
US10297341B2 (en) * 2012-09-24 2019-05-21 Siemens Healthcare Gmbh Viscoelastic modeling of blood vessels
WO2014051705A1 (en) * 2012-09-25 2014-04-03 The Johns Hopkins University A method for estimating flow rates, pressure gradients, coronary flow reserve, and fractional flow reserve from patient specific computed tomography angiogram-based contrast distribution data
US9675301B2 (en) * 2012-10-19 2017-06-13 Heartflow, Inc. Systems and methods for numerically evaluating vasculature
JP6301102B2 (ja) 2012-10-22 2018-03-28 学校法人藤田学園 医用画像診断装置、医用画像処理装置及び医用画像処理プログラム
US9814433B2 (en) 2012-10-24 2017-11-14 Cathworks Ltd. Creating a vascular tree model
EP3723041A1 (de) * 2012-10-24 2020-10-14 CathWorks Ltd. Automatisiertes messsystem und verfahren zur bewertung einer koronararterienerkrankung
US10210956B2 (en) 2012-10-24 2019-02-19 Cathworks Ltd. Diagnostically useful results in real time
US10595807B2 (en) 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
US9858387B2 (en) 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
JP6302922B2 (ja) * 2012-11-06 2018-03-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠血流予備量比(ffr)指標
US9414752B2 (en) * 2012-11-09 2016-08-16 Elwha Llc Embolism deflector
JP2014100249A (ja) 2012-11-19 2014-06-05 Toshiba Corp 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
WO2014084286A1 (ja) * 2012-11-29 2014-06-05 株式会社東芝 医用情報処理装置、医用画像診断装置及び医用情報処理方法
JP6017284B2 (ja) * 2012-11-30 2016-10-26 東芝メディカルシステムズ株式会社 医用画像診断装置
JP6139116B2 (ja) * 2012-11-30 2017-05-31 東芝メディカルシステムズ株式会社 医用画像処理装置
JP6553147B2 (ja) * 2012-11-30 2019-07-31 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
JP5972768B2 (ja) * 2012-11-30 2016-08-17 東芝メディカルシステムズ株式会社 医用画像処理装置
JP6491378B2 (ja) * 2012-11-30 2019-03-27 キヤノンメディカルシステムズ株式会社 表示方法、医用画像診断装置、及びプログラム
WO2014084382A1 (ja) 2012-11-30 2014-06-05 株式会社 東芝 医用画像処理装置
WO2014084398A1 (ja) 2012-11-30 2014-06-05 株式会社 東芝 医用画像診断装置
US9986966B2 (en) * 2012-12-04 2018-06-05 Oxford University Innovation Limited Computation method of relative cardiovascular pressure
JP6091870B2 (ja) * 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
JP5953438B2 (ja) 2012-12-11 2016-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠状動脈を通る血流量を決定する方法
US20150317429A1 (en) * 2012-12-18 2015-11-05 Philips Deutschland Gmbh Method and apparatus for simulating blood flow under patient-specific boundary conditions derived from an estimated cardiac ejection output
EP2938399B1 (de) * 2012-12-28 2020-04-15 Cyberheart, Inc. Blutgewebeoberflächenbasierte planung von radiochirurgischen nierenbehandlungen
WO2014127320A1 (en) * 2013-02-15 2014-08-21 The Johns Hopkins University Computational flow dynamics based method for estimating thromboembolic risk in patients with myocardial infarction
US20140236547A1 (en) * 2013-02-15 2014-08-21 Siemens Aktiengesellschaft Patient-specific automated tuning of boundary conditions for distal vessel tree
US9042613B2 (en) 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
US9424395B2 (en) * 2013-03-04 2016-08-23 Heartflow, Inc. Method and system for sensitivity analysis in modeling blood flow characteristics
EP2973126A2 (de) * 2013-03-14 2016-01-20 Cardio Art Technologies Ltd. System und verfahren für personalisierte hämodynamikmodellierung und -überwachung
US10390713B2 (en) * 2013-03-15 2019-08-27 Ghassan S. Kassab Methods for the non-invasive determination of heart and pulmonary pressures
US8824752B1 (en) 2013-03-15 2014-09-02 Heartflow, Inc. Methods and systems for assessing image quality in modeling of patient anatomic or blood flow characteristics
US9324157B2 (en) * 2013-03-26 2016-04-26 Kabushiki Kaisha Toshiba Medical image data processing apparatus and method
KR101530352B1 (ko) * 2013-04-02 2015-06-22 재단법인 아산사회복지재단 물질특성에 기반한 전산유체역학 모델링 및 분석 방법
WO2014163334A1 (ko) * 2013-04-02 2014-10-09 재단법인 아산사회복지재단 물질특성에 기반한 전산유체역학 모델링 및 분석 방법
RU2699331C2 (ru) 2013-04-12 2019-09-04 Конинклейке Филипс Н.В. Чувствительный к форме ультразвуковой зонд
US10052032B2 (en) 2013-04-18 2018-08-21 Koninklijke Philips N.V. Stenosis therapy planning
US20140324400A1 (en) * 2013-04-30 2014-10-30 Marquette University Gesture-Based Visualization System for Biomedical Imaging and Scientific Datasets
US9454643B2 (en) * 2013-05-02 2016-09-27 Smith & Nephew, Inc. Surface and image integration for model evaluation and landmark determination
US9135381B2 (en) * 2013-05-10 2015-09-15 Stenomics, Inc. Modeling and simulation system for optimizing prosthetic heart valve treatment
US9471989B2 (en) * 2013-06-03 2016-10-18 University Of Florida Research Foundation, Inc. Vascular anatomy modeling derived from 3-dimensional medical image processing
US10130325B2 (en) * 2013-06-10 2018-11-20 General Electric Company System and method of correcting banding artifacts in cardiac CT
US20190095589A1 (en) * 2013-06-28 2019-03-28 Board Of Regents Of The University Of Texas System System and method for selecting, modeling and analyzing mitral valve surgical techniques
US10226189B2 (en) * 2013-07-19 2019-03-12 Volcano Corporation Devices, systems, and methods for assessment of vessels
US11224349B2 (en) * 2013-07-19 2022-01-18 Image Guide Therapy Corporation Devices, systems, and methods for assessing a vessel with automated drift correction
KR102297136B1 (ko) * 2013-07-30 2021-09-03 하트플로우, 인크. 최적화된 진단적 성과를 위한 경계 조건에서 혈류를 모형화하기 위한 방법과 시스템
CN110946651A (zh) 2013-08-13 2020-04-03 波士顿科学国际有限公司 解剖项的计算机可视化
US9043190B2 (en) 2013-08-16 2015-05-26 Heartflow, Inc. Systems and methods for identifying personalized vascular implants from patient-specific anatomic data
JP2015039448A (ja) * 2013-08-20 2015-03-02 国立大学法人埼玉大学 血管出術後の血流配分を予測する方法及び予測プログラム
EP3036715B1 (de) 2013-08-21 2018-12-19 Koninklijke Philips N.V. Segmentierungsvorrichtung zur interaktiven segmentierung von blutgefässen im angiographischen bilddaten
US9805463B2 (en) * 2013-08-27 2017-10-31 Heartflow, Inc. Systems and methods for predicting location, onset, and/or change of coronary lesions
DK3038685T3 (da) 2013-08-30 2021-01-04 Adherium Nz Ltd Overvågningsmonitor til en medikamentinhalator
US9629563B2 (en) 2013-09-04 2017-04-25 Siemens Healthcare Gmbh Method and system for functional assessment of renal artery stenosis from medical images
CN105517492B (zh) 2013-09-06 2019-10-18 皇家飞利浦有限公司 用于处理心脏数据的处理设备
US9304982B2 (en) 2013-09-25 2016-04-05 Heartflow, Inc. Systems and methods for validating and correcting automated medical image annotations
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US9700219B2 (en) 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
ES2819552T3 (es) * 2013-10-18 2021-04-16 Philips Image Guided Therapy Corp Sistema para evaluar una estenosis en un vaso sanguíneo con mediciones de presión proximal y distal optimizadas
US10595806B2 (en) * 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
US9092743B2 (en) 2013-10-23 2015-07-28 Stenomics, Inc. Machine learning system for assessing heart valves and surrounding cardiovascular tracts
EP3954298A3 (de) * 2013-10-24 2022-03-16 Cathworks Ltd. Bestimmung vaskulärer eigenschaften mit korrespondenzmodellierung eines gefässbaums
US10993628B2 (en) * 2013-10-25 2021-05-04 Philips Image Guided Therapy Corporation Devices, systems, and methods for vessel assessment
KR101753576B1 (ko) 2013-11-05 2017-07-04 강원대학교산학협력단 생리학적 압력-유량 관계를 이용한 관상동맥 유량과 압력을 구하는 방법
EP3066597A1 (de) 2013-11-08 2016-09-14 Piskin, Senol Betriebsszenarienfluss sowie mechanisches modellierungs- und analysesystem für kardiovaskuläre reparaturoperationen für neugeborene und föten
US10130269B2 (en) 2013-11-14 2018-11-20 Medtronic Vascular, Inc Dual lumen catheter for providing a vascular pressure measurement
US9877660B2 (en) 2013-11-14 2018-01-30 Medtronic Vascular Galway Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent
JP6362853B2 (ja) * 2013-11-20 2018-07-25 キヤノンメディカルシステムズ株式会社 血管解析装置、および血管解析装置の作動方法
JP6362851B2 (ja) * 2013-11-20 2018-07-25 キヤノンメディカルシステムズ株式会社 血管解析装置、血管解析プログラム、及び血管解析装置の作動方法
WO2015081025A1 (en) 2013-11-29 2015-06-04 The Johns Hopkins University Cranial reference mount
WO2015082576A1 (en) * 2013-12-04 2015-06-11 Koninklijke Philips N.V. Local ffr estimation and visualisation for improved functional stenosis analysis
JP6260989B2 (ja) 2013-12-05 2018-01-17 富士通株式会社 形状データ生成装置、形状データ生成方法、および形状データ生成プログラム
US8977339B1 (en) * 2013-12-05 2015-03-10 Intrinsic Medical Imaging Llc Method for assessing stenosis severity through stenosis mapping
US9220418B2 (en) * 2013-12-18 2015-12-29 Heartflow, Inc. Systems and methods for predicting coronary plaque vulnerability from patient-specific anatomic image data
US9152761B2 (en) 2014-01-10 2015-10-06 Heartflow, Inc. Systems and methods for identifying medical image acquisition parameters
EP3094256A4 (de) * 2014-01-15 2017-12-20 The Regents Of The University Of California Physisch verformbares lungenphantom mit subjektspezifischer elastizität
US9913585B2 (en) 2014-01-15 2018-03-13 Medtronic Vascular, Inc. Catheter for providing vascular pressure measurements
US10290230B2 (en) 2014-01-27 2019-05-14 Arizona Board Of Regents On Behalf Of Arizona State University Device specific finite element models for simulating endovascular treatment
EP3097556A1 (de) * 2014-01-27 2016-11-30 The Arizona Board of Regents for and on behalf of Arizona State University Medizinproduktspezifische finite elementmodelle zur simulation von endovaskulärer behandlung
US10332255B2 (en) * 2014-02-04 2019-06-25 Zhongle Wu Method for assessing stenosis severity in a lesion tree through stenosis mapping
US20150228115A1 (en) * 2014-02-10 2015-08-13 Kabushiki Kaisha Toshiba Medical-image processing apparatus and medical-image diagnostic apparatus
US10496729B2 (en) 2014-02-25 2019-12-03 Siemens Healthcare Gmbh Method and system for image-based estimation of multi-physics parameters and their uncertainty for patient-specific simulation of organ function
EP3111850A4 (de) * 2014-02-28 2017-12-27 Hitachi, Ltd. Ultraschallbildaufnahmevorrichtung und -verfahren
US9501622B2 (en) 2014-03-05 2016-11-22 Heartflow, Inc. Methods and systems for predicting sensitivity of blood flow calculations to changes in anatomical geometry
JP6262027B2 (ja) 2014-03-10 2018-01-17 東芝メディカルシステムズ株式会社 医用画像処理装置
EP3116382B1 (de) * 2014-03-11 2022-05-04 The Johns Hopkins University Verfahren zur bestimmung von strömungsmengen und druckgradienten in arteriellen netzwerken von patientenspezifischen auf computertomografie-angiogramm basierenden kontrastverteilungsinformationen
JP2015171486A (ja) * 2014-03-12 2015-10-01 国立大学法人大阪大学 血流解析システムおよび血流解析プログラム
JPWO2015136853A1 (ja) * 2014-03-14 2017-04-06 テルモ株式会社 画像処理装置、画像処理方法及びプログラム
CN104933756B (zh) * 2014-03-21 2018-03-30 北京冠生云医疗技术有限公司 三维冠状动脉分析模型的构建方法和系统
US9390232B2 (en) 2014-03-24 2016-07-12 Heartflow, Inc. Systems and methods for modeling changes in patient-specific blood vessel geometry and boundary conditions
US9087147B1 (en) 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
CN106163388B (zh) * 2014-03-31 2020-02-14 皇家飞利浦有限公司 用于处理生命体的心脏数据的处理装置和方法
US10354349B2 (en) 2014-04-01 2019-07-16 Heartflow, Inc. Systems and methods for using geometry sensitivity information for guiding workflow
US9773219B2 (en) 2014-04-01 2017-09-26 Heartflow, Inc. Systems and methods for using geometry sensitivity information for guiding workflow
ES2841414T3 (es) 2014-04-15 2021-07-08 4Dmedical Ltd Método de obtención de imágenes
US9058692B1 (en) 2014-04-16 2015-06-16 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
US9514530B2 (en) 2014-04-16 2016-12-06 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
WO2015164086A1 (en) 2014-04-22 2015-10-29 Siemens Aktiengesellschaft Method and system for hemodynamic computation in coronary arteries
US9449145B2 (en) * 2014-04-22 2016-09-20 Heartflow, Inc. Systems and methods for virtual contrast agent simulation and computational fluid dynamics (CFD) to compute functional significance of stenoses
CN105095615B (zh) * 2014-04-23 2019-05-21 北京冠生云医疗技术有限公司 对血管中血流数据进行处理的方法和系统
US8958623B1 (en) 2014-04-29 2015-02-17 Heartflow, Inc. Systems and methods for correction of artificial deformation in anatomic modeling
KR101515400B1 (ko) * 2014-05-02 2015-05-04 연세대학교 산학협력단 Gpu 기반의 격자 볼츠만 기법을 활용한 환자 맞춤형 혈류 영상 진단 방법 및 장치
EP3140757B1 (de) * 2014-05-05 2020-06-24 Siemens Healthcare GmbH Verfahren und system zur nichtinvasiven funktionellen beurteilung von koronararterienstenose anhand von strömungsberechnungen bei modellen basierend auf erkrankten patienten und hypothetisch normalen anatomischen modellen
US9595089B2 (en) 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
JP2015217113A (ja) * 2014-05-16 2015-12-07 株式会社東芝 血管解析装置、医用画像診断装置、血管解析方法及び血管解析プログラム
JP6667999B2 (ja) * 2014-05-16 2020-03-18 キヤノンメディカルシステムズ株式会社 画像処理装置、画像処理方法、及びプログラム
US10206587B2 (en) * 2014-05-16 2019-02-19 Toshiba Medical Systems Corporation Image processing apparatus, image processing method, and storage medium
JP6425916B2 (ja) * 2014-05-16 2018-11-21 キヤノンメディカルシステムズ株式会社 処理装置、画像処理方法、プログラム、および、造形装置
JP6576690B2 (ja) * 2014-05-29 2019-09-18 キヤノンメディカルシステムズ株式会社 医用画像処理装置
US20150348260A1 (en) * 2014-05-29 2015-12-03 Siemens Aktiengesellschaft System and Method for Mapping Patient Data from One Physiological State to Another Physiological State
US9754082B2 (en) 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
JP6407569B2 (ja) * 2014-06-02 2018-10-17 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
DE102014210591B4 (de) 2014-06-04 2022-09-22 Siemens Healthcare Gmbh Fluiddynamische Analyse eines Gefäßbaums mittels Angiographie
US9747525B2 (en) * 2014-06-16 2017-08-29 Siemens Healthcare Gmbh Method and system for improved hemodynamic computation in coronary arteries
US11330989B2 (en) 2014-06-16 2022-05-17 Medtronic Vascular, Inc. Microcatheter sensor design for mounting sensor to minimize induced strain
US10973418B2 (en) 2014-06-16 2021-04-13 Medtronic Vascular, Inc. Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
US10201284B2 (en) 2014-06-16 2019-02-12 Medtronic Vascular Inc. Pressure measuring catheter having reduced error from bending stresses
US9589379B2 (en) 2014-06-24 2017-03-07 Siemens Healthcare Gmbh System and method for visualization of cardiac changes under various pacing conditions
CN106462971B (zh) * 2014-06-25 2021-01-26 皇家飞利浦有限公司 用于配准不同成像模态的成像设备
US10130266B2 (en) * 2014-06-30 2018-11-20 Siemens Healthcare Gmbh Method and system for prediction of post-stenting hemodynamic metrics for treatment planning of arterial stenosis
JP6553099B2 (ja) * 2014-06-30 2019-07-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血流予備量比値を算出するための機器
JP6570812B2 (ja) * 2014-07-08 2019-09-04 株式会社根本杏林堂 血管状態解析装置およびそれを備えたシステム
US10849511B2 (en) 2014-07-14 2020-12-01 Philips Image Guided Therapy Corporation Devices, systems, and methods for assessment of vessels
JP6380949B2 (ja) * 2014-07-17 2018-08-29 富士通株式会社 可視化装置、可視化方法、および可視化プログラム
WO2016008837A1 (en) 2014-07-18 2016-01-21 Koninklijke Philips N.V. Stenosis assessment
US9888968B2 (en) 2014-07-22 2018-02-13 Siemens Healthcare Gmbh Method and system for automated therapy planning for arterial stenosis
US9195801B1 (en) * 2014-08-05 2015-11-24 Heartflow, Inc. Systems and methods for treatment planning based on plaque progression and regression curves
US11213220B2 (en) 2014-08-11 2022-01-04 Cubisme, Inc. Method for determining in vivo tissue biomarker characteristics using multiparameter MRI matrix creation and big data analytics
US11311200B1 (en) 2014-08-27 2022-04-26 Lightlab Imaging, Inc. Systems and methods to measure physiological flow in coronary arteries
ES2730752T3 (es) 2014-08-27 2019-11-12 St Jude Medical Systems Ab Sistema para evaluar un sistema cardíaco determinando la ratio Pd/Pa (presión distal/presión arterial) mínima
JP6377856B2 (ja) * 2014-08-29 2018-08-22 ケーエヌユー−インダストリー コーポレーション ファウンデーション 患者別の心血管情報を決定する方法
US9386933B2 (en) * 2014-08-29 2016-07-12 Heartflow, Inc. Systems and methods for determination of blood flow characteristics and pathologies through modeling of myocardial blood supply
US9390224B2 (en) 2014-08-29 2016-07-12 Heartflow, Inc. Systems and methods for automatically determining myocardial bridging and patient impact
CN106793962A (zh) * 2014-09-05 2017-05-31 雷克兰德创投发展有限公司 用于使用视频图像来连续估计人体血压的方法和装置
US9668700B2 (en) 2014-09-09 2017-06-06 Heartflow, Inc. Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease
US10373719B2 (en) * 2014-09-10 2019-08-06 Intuitive Surgical Operations, Inc. Systems and methods for pre-operative modeling
CN104657576B (zh) * 2014-09-28 2017-09-22 东软熙康健康科技有限公司 一种血糖变化的呈现方法和设备
JP6382050B2 (ja) * 2014-09-29 2018-08-29 キヤノンメディカルシステムズ株式会社 医用画像診断装置、画像処理装置、画像処理方法及び画像処理プログラム
JP6561348B2 (ja) * 2014-10-08 2019-08-21 イービーエム株式会社 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム
US10271910B2 (en) * 2014-10-16 2019-04-30 Corindus, Inc. Robotic catheter system with FFR integration
WO2016059498A1 (en) * 2014-10-17 2016-04-21 Koninklijke Philips N.V. System for real-time organ segmentation and tool navigation during tool insertion in interventional therapy and method of opeperation thereof
US10482215B2 (en) 2014-10-22 2019-11-19 Indiana University Research And Technology Corporation Unified computational method and system for patient-specific hemodynamics
KR101579900B1 (ko) * 2014-10-29 2015-12-24 연세대학교 산학협력단 심근의 생존능 정량적 분석 방법 및 장치
US9292659B1 (en) 2014-10-29 2016-03-22 Heartflow, Inc. Systems and methods for vessel reactivity to guide diagnosis or treatment of cardiovascular disease
US10080872B2 (en) 2014-11-04 2018-09-25 Abbott Cardiovascular Systems Inc. System and method for FFR guidewire recovery
US9336354B1 (en) 2014-11-04 2016-05-10 Heartflow, Inc. Systems and methods for simulation of hemodialysis access and optimization
US9594876B2 (en) 2014-11-04 2017-03-14 Heartflow, Inc. Systems and methods for simulation of occluded arteries and optimization of occlusion-based treatments
US10409235B2 (en) 2014-11-12 2019-09-10 Siemens Healthcare Gmbh Semantic medical image to 3D print of anatomic structure
CN107427268B (zh) * 2014-11-14 2023-07-28 西门子保健有限责任公司 用于基于纯几何机器学习的血流储备分数的方法和系统
US9349178B1 (en) 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
WO2016086049A1 (en) 2014-11-24 2016-06-02 The Johns Hopkins University A cutting machine for resizing raw implants during surgery
KR102361733B1 (ko) 2014-11-28 2022-02-11 삼성전자주식회사 3d cta영상으로부터 관상동맥의 구조를 모델링하는 방법 및 장치
WO2016087396A1 (en) * 2014-12-02 2016-06-09 Koninklijke Philips N.V. Fractional flow reserve determination
EP3229721B1 (de) 2014-12-08 2021-09-22 Koninklijke Philips N.V. Interaktive herztestdatensysteme
US10194812B2 (en) 2014-12-12 2019-02-05 Medtronic Vascular, Inc. System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system
DE102014226685A1 (de) * 2014-12-19 2016-06-23 Siemens Healthcare Gmbh Verfahren zum Identifizieren von Versorgungsgebieten,Verfahren zur graphischen Darstellung von Versorgungsgebieten, Computerprogramm und maschinenlesbares Medium sowie bildgebendes Gerät
US20160196384A1 (en) * 2015-01-06 2016-07-07 Siemens Aktiengesellschaft Personalized whole-body circulation in medical imaging
US20160203289A1 (en) 2015-01-14 2016-07-14 Heartflow, Inc. Systems and methods for embolism prediction using embolus source and destination probabilities
WO2016113646A1 (en) 2015-01-15 2016-07-21 Koninklijke Philips N.V. Ifr-ct
KR101863240B1 (ko) * 2015-01-28 2018-06-01 주식회사 인피니트헬스케어 스텐트 추천 시스템 및 방법
KR20160093251A (ko) * 2015-01-29 2016-08-08 주식회사 인피니트헬스케어 의료 영상 디스플레이 시스템 및 방법
US20160224753A1 (en) * 2015-02-02 2016-08-04 Heartflow, Inc. Systems and methods for diagnosis, risk assessment, and/or virtual treatment assessment of visceral ischemia
US10987010B2 (en) * 2015-02-02 2021-04-27 Heartflow, Inc. Systems and methods for vascular diagnosis using blood flow magnitude and/or direction
US10299862B2 (en) * 2015-02-05 2019-05-28 Siemens Healthcare Gmbh Three-dimensional quantitative heart hemodynamics in medical imaging
US10638940B2 (en) * 2015-02-06 2020-05-05 The Trustees Of The University Of Pennsylvania Assessment of hemodynamic function in arrhythmia patients
US10478130B2 (en) 2015-02-13 2019-11-19 Siemens Healthcare Gmbh Plaque vulnerability assessment in medical imaging
JP6513413B2 (ja) 2015-02-13 2019-05-15 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び磁気共鳴イメージング装置
JP6449675B2 (ja) * 2015-02-23 2019-01-09 ▲高▼田 玄紀 部分冠動脈血流予備能を予測する指標を算出する核医学検査方法
EP3062248A1 (de) * 2015-02-27 2016-08-31 Pie Medical Imaging BV Verfahren und Vorrichtung zur quantitativen Durchflussanalyse
US10002419B2 (en) 2015-03-05 2018-06-19 Siemens Healthcare Gmbh Direct computation of image-derived biomarkers
KR101541267B1 (ko) 2015-04-02 2015-08-03 한양대학교 산학협력단 들로네 삼각분할을 이용한 혈관의 모델링 방법 및 장치와, 이를 이용한 심근 영역의 분할 방법
KR102419454B1 (ko) 2015-04-02 2022-07-12 하트플로우, 인크. 생체열 전달의 개인화된 추정치들을 제공하기 위한 시스템들 및 방법들
US10405925B2 (en) 2015-04-02 2019-09-10 Heartflow, Inc. Systems and methods for determining and visualizing a functional relationship between a vascular network and perfused tissue
US10595728B2 (en) * 2015-04-02 2020-03-24 Heartflow, Inc. Systems and methods for predicting tissue viability deficits from physiological, anatomical, and patient characteristics
US10420610B2 (en) 2015-04-10 2019-09-24 Heartflow, Inc. System and method for vascular tree generation using patient-specific structural and functional data, and joint prior information
JP6676655B2 (ja) * 2015-04-13 2020-04-08 ケース ウエスタン リザーブ ユニバーシティ 二重エネルギーx線冠動脈カルシウムのグレード付け
US10007762B2 (en) 2015-04-17 2018-06-26 Heartflow, Inc. Systems and methods for assessment of tissue function based on vascular disease
US10716513B2 (en) * 2015-04-17 2020-07-21 Heartflow, Inc. Systems and methods for cardiovascular blood flow and musculoskeletal modeling for predicting device failure or clinical events
US9839483B2 (en) 2015-04-21 2017-12-12 Heartflow, Inc. Systems and methods for risk assessment and treatment planning of arterio-venous malformation
CA2983464A1 (en) 2015-04-23 2016-10-27 Aortica Corporation Devices and methods for anatomic mapping for prosthetic implants
DE102015207596A1 (de) * 2015-04-24 2016-10-27 Siemens Healthcare Gmbh Verfahren sowie Rechen- und Druckeinheit zum Erstellen einer Gefäßstütze
WO2016182508A1 (en) * 2015-05-12 2016-11-17 Singapore Health Services Pte Ltd Medical image processing methods and systems
US9922433B2 (en) 2015-05-29 2018-03-20 Moira F. Schieke Method and system for identifying biomarkers using a probability map
JP6621851B2 (ja) * 2015-06-04 2019-12-18 ライニール コルネリス ヤンセン,ヨーゼフ 心臓センサ出力を処理する方法及びコンピュータ・システム
US10945653B2 (en) 2015-06-12 2021-03-16 Koninklijke Philips N.V. Surface electromyography system, recorder and method
JP6946200B2 (ja) * 2015-06-25 2021-10-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対話型脈管内処置訓練に関係するデバイス、システム、及び方法
CA2990367C (en) 2015-06-25 2019-12-24 Timothy Burton Methods and systems using mathematical analysis and machine learning to diagnose disease
KR20180044264A (ko) 2015-07-01 2018-05-02 에버리스트 게노믹스, 인크. 내피 기능을 평가하는 시스템 및 방법
EP3319552B1 (de) 2015-07-08 2021-08-25 Aortica Corporation Vorrichtungen und verfahren zur anatomischen kartierung von prothetischen implantaten
US9785748B2 (en) * 2015-07-14 2017-10-10 Heartflow, Inc. Systems and methods for estimating hemodynamic forces acting on plaque and monitoring patient risk
WO2017015062A1 (en) 2015-07-17 2017-01-26 Heartflow, Inc. Systems and methods for assessing the severity of plaque and/or stenotic lesions using contrast distribution predictions and measurements
US10872698B2 (en) 2015-07-27 2020-12-22 Siemens Healthcare Gmbh Method and system for enhancing medical image-based blood flow computations using physiological measurements
JP6631072B2 (ja) * 2015-07-31 2020-01-15 富士通株式会社 生体シミュレーションシステムおよび生体シミュレーション方法
US11031136B2 (en) 2015-08-05 2021-06-08 Koninklijke Philips N.V. Assistance device and method for an interventional hemodynamic measurement
US11094058B2 (en) 2015-08-14 2021-08-17 Elucid Bioimaging Inc. Systems and method for computer-aided phenotyping (CAP) using radiologic images
US11676359B2 (en) 2015-08-14 2023-06-13 Elucid Bioimaging Inc. Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology
US11071501B2 (en) 2015-08-14 2021-07-27 Elucid Bioiwaging Inc. Quantitative imaging for determining time to adverse event (TTE)
US11113812B2 (en) 2015-08-14 2021-09-07 Elucid Bioimaging Inc. Quantitative imaging for detecting vulnerable plaque
US10176408B2 (en) 2015-08-14 2019-01-08 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
US11087459B2 (en) 2015-08-14 2021-08-10 Elucid Bioimaging Inc. Quantitative imaging for fractional flow reserve (FFR)
CA2996196A1 (en) 2015-08-31 2017-03-09 Masimo Corporation Wireless patient monitoring systems and methods
EP3345156B1 (de) * 2015-09-02 2019-08-28 Siemens Healthcare GmbH Cfd-simulationsgestützte 4d-dsa-rekonstruktion
US11058541B2 (en) 2015-09-04 2021-07-13 The Johns Hopkins University Low-profile intercranial device
JP6642953B2 (ja) * 2015-09-16 2020-02-12 ハートフロー, インコーポレイテッド 患者固有画像法及び薬物送達のモデル化のためのシステム及び方法
WO2017047822A1 (ja) * 2015-09-18 2017-03-23 イービーエム株式会社 血管病変発症・成長予測装置及び方法
JP6876897B2 (ja) * 2015-09-18 2021-05-26 イービーエム株式会社 血流解析装置、その方法、及びそのコンピュータソフトウェアプログラム
CN108471963B (zh) * 2015-09-29 2022-03-01 帝国改革有限公司 用于基于期望的结果的冠状动脉介入评估、规划和处置的设备、系统以及方法
RU2717885C1 (ru) * 2015-09-29 2020-03-26 Конинклейке Филипс Н.В. Оценка потока, сопротивления или давления на основании измерений давления или потока и ангиографии
US10517678B2 (en) * 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
JP6818492B2 (ja) 2015-10-05 2021-01-20 キヤノンメディカルシステムズ株式会社 画像処理装置、画像処理方法、及びプログラム
EP3359041B1 (de) 2015-10-07 2021-03-03 Koninklijke Philips N.V. Mobile ffr-simulation
CN106562779B (zh) * 2015-10-12 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 图形化显示心室射血分数变化的装置、方法和监护系统
BR112018007473A2 (pt) * 2015-10-14 2018-10-23 Surgical Theater LLC navegação cirúrgica de realidade aumentada
WO2017076620A1 (en) 2015-11-05 2017-05-11 Koninklijke Philips N.V. Collateral flow modelling for non-invasive fractional flow reserve (ffr)
US10438355B2 (en) * 2015-11-10 2019-10-08 General Electric Company System and method for estimating arterial pulse wave velocity
EP3374895A1 (de) * 2015-11-10 2018-09-19 HeartFlow, Inc. Systeme und verfahren zur anatomischen modellierung unter verwendung von informationen aus einem verfahren
US10499990B2 (en) * 2015-11-23 2019-12-10 Heartflow, Inc. Systems and methods for assessing organ and/or tissue transplantation by simulating one or more transplant characteristics
WO2017091746A1 (en) * 2015-11-24 2017-06-01 The Regents Of The University Of California Mapping and quantifying blood stasis and thrombus risk in the heart
US10002428B2 (en) 2015-12-01 2018-06-19 Ottawa Hospital Research Institute Method and system for identifying bleeding
CN108369824B (zh) * 2015-12-03 2022-04-12 哈特弗罗公司 用于将医学图像与患者相关联的系统和方法
CN108475428B (zh) * 2015-12-22 2022-04-29 皇家飞利浦有限公司 心脏模型引导的冠状动脉分割的系统及方法
KR101954272B1 (ko) 2016-01-28 2019-03-05 연세대학교 산학협력단 유체-구조 상호작용을 고려한 협착 병변 영역의 혈류역학 시뮬레이션 방법
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
US10278662B2 (en) 2016-02-05 2019-05-07 Toshiba Medical Systems Corporation Image processing apparatus and medical image diagnostic apparatus
US10748312B2 (en) 2016-02-12 2020-08-18 Microsoft Technology Licensing, Llc Tagging utilizations for selectively preserving chart elements during visualization optimizations
US10347017B2 (en) * 2016-02-12 2019-07-09 Microsoft Technology Licensing, Llc Interactive controls that are collapsible and expandable and sequences for chart visualization optimizations
KR101967226B1 (ko) 2016-02-22 2019-08-13 연세대학교 산학협력단 관상동맥 분지관의 체적을 이용한 혈류 역학 모델링 방법
US10162939B2 (en) 2016-02-26 2018-12-25 Heartflow, Inc. Systems and methods for identifying and modeling unresolved vessels in image-based patient-specific hemodynamic models
US11278256B2 (en) 2016-03-04 2022-03-22 4DMedical Limited Method and system for imaging
US10694955B2 (en) 2016-03-04 2020-06-30 Koninklijke Philips N.V. Apparatus for vessel characterization
US9786069B2 (en) * 2016-03-07 2017-10-10 Siemens Healthcare Gmbh Refined reconstruction of time-varying data
DE102016203860A1 (de) 2016-03-09 2017-09-14 Siemens Healthcare Gmbh Vorrichtung und Verfahren zum Ermitteln zumindest eines individuellen fluiddynamischen Kennwerts einer Stenose in einem mehrere serielle Stenosen aufweisenden Gefäßsegment
KR102447741B1 (ko) 2016-03-16 2022-09-29 하트플로우, 인크. 관상 동맥 내의 건강한 내강 지름을 추정하고 협착증 정량화하기 위한 시스템 및 방법
US9824492B2 (en) 2016-03-24 2017-11-21 Vital Images, Inc. Hollow object model visualization in medical images
US10971271B2 (en) 2016-04-12 2021-04-06 Siemens Healthcare Gmbh Method and system for personalized blood flow modeling based on wearable sensor networks
JP6611660B2 (ja) * 2016-04-13 2019-11-27 富士フイルム株式会社 画像位置合わせ装置および方法並びにプログラム
JP6835395B2 (ja) 2016-04-15 2021-02-24 オムロン株式会社 生体情報分析装置、生体情報分析システム、プログラム、及び、生体情報分析方法
US10674986B2 (en) 2016-05-13 2020-06-09 General Electric Company Methods for personalizing blood flow models
WO2017199245A1 (en) 2016-05-16 2017-11-23 Cathworks Ltd. System for vascular assessment
EP3461253B1 (de) 2016-05-16 2023-08-09 Cathworks Ltd. Auswahl von blutgefässpfaden aus bildern
NL2016792B1 (en) * 2016-05-18 2017-11-30 Endovascular Diagnostics B V Method for determining a parameter which is indicative for the position and apposition of a tubular member, such as a stent graft, inserted in a lumen of an anatomical vessel or duct of a patient
CN106073894B (zh) * 2016-05-31 2017-08-08 博动医学影像科技(上海)有限公司 基于植入虚拟支架的血管压力降数值及血流储备分数的评估方法和系统
JP6060302B1 (ja) * 2016-06-10 2017-01-11 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置
JP6841848B2 (ja) 2016-06-13 2021-03-10 アオーティカ コーポレイション 人工装具インプラントにおいて開窓をマーキング及び/又は補強するためのシステム、デバイス及び方法
CA3028985C (en) 2016-06-24 2022-02-01 Analytics For Life Inc. Non-invasive method and system for measuring myocardial ischemia, stenosis identification, localization and fractional flow reserve estimation
EP3264365A1 (de) * 2016-06-28 2018-01-03 Siemens Healthcare GmbH Verfahren und vorrichtung zur registrierung eines ersten bilddatensatzes und eines zweiten bilddatensatzes eines zielbereichs eines patienten
EP3475859A1 (de) 2016-06-28 2019-05-01 HeartFlow, Inc. Systeme und verfahren zur anonymisierung von gesundheitsdaten und zur übertragung von gesundheitsdaten zur analyse über geografische regionen hinweg
WO2018001099A1 (zh) * 2016-06-30 2018-01-04 上海联影医疗科技有限公司 一种血管提取方法与系统
CN107203741B (zh) * 2017-05-03 2021-05-18 上海联影医疗科技股份有限公司 血管提取方法、装置及其系统
US10776963B2 (en) 2016-07-01 2020-09-15 Cubismi, Inc. System and method for forming a super-resolution biomarker map image
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11020563B2 (en) 2016-07-14 2021-06-01 C. R. Bard, Inc. Automated catheter-to-vessel size comparison tool and related methods
WO2018018033A1 (en) * 2016-07-22 2018-01-25 Cornell University Rapid prototyping and in vitro modeling of patient-specific coronary artery bypass grafts
EP3493766B1 (de) 2016-08-02 2024-03-06 Bolton Medical, Inc. Anordnung zur kopplung eines prothetischen implantats an einem fenestrierten körper
US11272850B2 (en) 2016-08-09 2022-03-15 Medtronic Vascular, Inc. Catheter and method for calculating fractional flow reserve
WO2018031663A1 (en) 2016-08-10 2018-02-15 Heartflow, Inc. Systems and methods for modeling nutrient transport and/or predicting weight change
US10025902B2 (en) * 2016-08-12 2018-07-17 Verily Life Sciences Llc Enhanced pathology diagnosis
DE102016215976A1 (de) 2016-08-25 2018-03-01 Siemens Healthcare Gmbh Ermittelung einer klinischen Kenngröße mit einer Kombination unterschiedlicher Aufnahmemodalitäten
US10835318B2 (en) * 2016-08-25 2020-11-17 DePuy Synthes Products, Inc. Orthopedic fixation control and manipulation
KR102000614B1 (ko) 2016-08-25 2019-07-16 연세대학교 산학협력단 심근 체적의 분할을 이용한 혈류 역학 시뮬레이션 방법
WO2018050806A1 (en) * 2016-09-16 2018-03-22 Koninklijke Philips N.V. Apparatus and method for determining a fractional flow reserve
CA3037492A1 (en) * 2016-09-20 2018-03-29 Heartflow, Inc. Systems and methods for estimation of blood flow characteristics using reduced order model and/or machine learning
CN110024041B (zh) * 2016-09-20 2023-10-31 哈特弗罗公司 用于利用用户特定解剖和生理传感器数据来监测和更新血流计算的系统和方法
EP3516562A4 (de) * 2016-09-21 2019-12-11 Analytics For Life Inc. Verfahren und system zur visualisierung von gefährdetem herzgewebe
USD843382S1 (en) 2016-09-21 2019-03-19 Analytics For Life Display with graphical user interface
CN109844869A (zh) * 2016-09-23 2019-06-04 皇家飞利浦有限公司 用于评估对象的心脏的流出道梗阻的系统和方法
JP6125705B2 (ja) * 2016-09-23 2017-05-10 東芝メディカルシステムズ株式会社 医用画像診断装置及び医用画像診断装置の作動方法
DE102017217599A1 (de) 2016-10-04 2018-04-05 Toshiba Medical Systems Corporation Medizinische Informationsverarbeitungsvorrichtung, Röntgen-CT-Vorrichtung und medizinisches Informationsverarbeitungsverfahren
US10896530B2 (en) 2016-10-04 2021-01-19 Canon Medical Systems Corporation Medical information processing apparatus and medical information processing method
DE102016219709B3 (de) * 2016-10-11 2018-03-01 Siemens Healthcare Gmbh Verfahren zur Ermittlung eines Perfusionsdatensatzes, sowie Röntgenvorrichtung, Computerprogramm und elektronisch lesbarer Datenträger
EP3525661A1 (de) 2016-10-13 2019-08-21 Masimo Corporation Systeme und verfahren zur erkennung fallender patienten
US10362949B2 (en) 2016-10-17 2019-07-30 International Business Machines Corporation Automatic extraction of disease-specific features from doppler images
JP6975235B2 (ja) * 2016-11-22 2021-12-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生物物理的シミュレーション用の血管樹標準化及び/又はプルーニングされた部分用の拡張シミュレーション
DE102017221276A1 (de) 2016-11-28 2018-05-30 Toshiba Medical Systems Corporation Medizinische Bildverarbeitungsvorrichtung, Röntgen-CT Vorrichtung und medizinisches Bildverarbeitungsverfahren
CN110268478B (zh) * 2016-12-15 2023-07-28 斯特凡Tto有限公司 提供用于心血管疾病的决策支持和诊断的受试者特异性计算模型的方法和过程
CN108209862B (zh) * 2016-12-21 2021-04-30 中国电信股份有限公司 诊断结果展示方法和装置
US10789706B2 (en) * 2016-12-23 2020-09-29 Heartflow, Inc. Systems and methods for medical acquisition processing and machine learning for anatomical assessment
DE102016226195B3 (de) * 2016-12-23 2018-02-01 Siemens Healthcare Gmbh Berechnen eines vierdimensionalen DSA-Datensatzes mit variabler räumlicher Auflösung
KR20180082114A (ko) * 2017-01-10 2018-07-18 삼성메디슨 주식회사 대상체의 초음파 영상을 디스플레이하는 방법 및 장치
EP3375364A4 (de) 2017-01-23 2019-01-23 Shanghai United Imaging Healthcare Co., Ltd. Verfahren und systeme zur analyse von durchblutungsstörungen
EP3573531B1 (de) 2017-01-24 2021-07-28 Spectrum Dynamics Medical Limited Systeme zur berechnung von funktionalen indexparameterwerten für blutgefässe
EP3585253A1 (de) 2017-02-24 2020-01-01 HeartFlow, Inc. Systeme und verfahren zur identifizierung anatomisch relevanter blutflusseigenschaften bei einem patienten
US20200069197A1 (en) * 2017-02-28 2020-03-05 4Dx Limited Method of scanning and assessing lung and vascular health
KR101944854B1 (ko) 2017-03-02 2019-02-01 연세대학교 산학협력단 선택적 컴퓨터 단층촬영을 이용한 혈류 모델링 방법 및 그 장치
US11330994B2 (en) 2017-03-08 2022-05-17 Medtronic Vascular, Inc. Reduced profile FFR catheter
US10176575B2 (en) 2017-03-24 2019-01-08 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
EP3378398A1 (de) * 2017-03-24 2018-09-26 Koninklijke Philips N.V. Bildsynthese für myokardiale ct-perfusion
EP3382583A1 (de) * 2017-03-29 2018-10-03 Koninklijke Philips N.V. Hämodynamischen simulation von bewegungsinduzierten vaskulären verformungen
WO2018177692A1 (en) * 2017-03-31 2018-10-04 Koninklijke Philips N.V. Interaction monitoring of non-invasive imaging based ffr
CN110494923B (zh) * 2017-03-31 2023-12-08 皇家飞利浦有限公司 对经导管主动脉瓣植入术(tavi)引起的对冠状动脉流量和压力的影响的模拟
CN107977709B (zh) * 2017-04-01 2021-03-16 北京科亚方舟医疗科技股份有限公司 预测血管树血管路径上的血流特征的深度学习模型和系统
EP3384850A1 (de) 2017-04-05 2018-10-10 Koninklijke Philips N.V. Verfahren und vorrichtung zur bestimmung physiologischer funktioneller parameter
WO2018185040A1 (en) * 2017-04-06 2018-10-11 Koninklijke Philips N.V. Standardized coronary artery disease metric
JP7313284B2 (ja) 2017-04-06 2023-07-24 コーニンクレッカ フィリップス エヌ ヴェ 冠血流予備量比シミュレーションパラメータのカスタマイズ、キャリブレーション、及び/又はトレーニング
US11232853B2 (en) 2017-04-21 2022-01-25 Cubisme, Inc. System and method for creating, querying, and displaying a MIBA master file
US10646122B2 (en) 2017-04-28 2020-05-12 Medtronic Vascular, Inc. FFR catheter with covered distal pressure sensor and method of manufacture
US10349911B2 (en) 2017-05-18 2019-07-16 Dassault Systemes Simulia Corp. System and method to produce corrected contrast levels in a CT scan of vasculature
JP7152192B2 (ja) * 2017-06-13 2022-10-12 キヤノンメディカルシステムズ株式会社 画像処理装置、医用画像診断装置及び画像処理プログラム
EP3270308B9 (de) 2017-06-14 2022-05-18 Siemens Healthcare GmbH Verfahren zur bereitstellung eines sekundärparameters, entscheidungsunterstützungssystem, computerlesbares medium und computerprogrammprodukt
US10478074B1 (en) 2018-06-22 2019-11-19 Dextera AS Method for determining patient suitability for a surgical procedure
CN107411767B (zh) * 2017-06-28 2020-10-16 西北工业大学 基于冠状动脉ct血管造影的狭窄病灶血流阻力计算方法
US11633118B2 (en) 2017-06-30 2023-04-25 Koninklijke Philips N.V. Machine learning spectral FFR-CT
CN107330888A (zh) * 2017-07-11 2017-11-07 中国人民解放军第三军医大学 基于cta图像的动态心脏各腔室分割方法
CN109256205B (zh) * 2017-07-12 2022-07-05 西门子保健有限责任公司 用于利用本地和远程分析学进行的临床决策支持的方法和系统
US11589924B2 (en) 2017-08-01 2023-02-28 Siemens Healthcare Gmbh Non-invasive assessment and therapy guidance for coronary artery disease in diffuse and tandem lesions
EP3438989A1 (de) 2017-08-04 2019-02-06 Universität Zürich Verfahren und vorrichtung zur vorhersage des durchflusses einer flussigkeit durch einer analysierten leitung
US11219741B2 (en) 2017-08-09 2022-01-11 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
US11235124B2 (en) 2017-08-09 2022-02-01 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
KR102032611B1 (ko) * 2017-08-23 2019-10-15 주식회사 메디웨일 Ct 영상을 이용하여 심혈관 병변을 판단하는 방법 및 애플리케이션
ES2812649T3 (es) * 2017-08-23 2021-03-17 Ecole Polytechnique Fed Lausanne Epfl Método de reconstrucción de imágenes basado en modelo
US10951715B2 (en) 2017-08-29 2021-03-16 Heartflow, Inc. Systems and methods for generating an anonymous interactive display in an extended timeout period
CN111033635B (zh) 2017-08-30 2024-01-30 皇家飞利浦有限公司 基于模型和成像数据的冠状动脉健康状态预测
EP3457413A1 (de) * 2017-09-15 2019-03-20 Siemens Healthcare GmbH Verfahren zur klassifizierung eines risikos für thrombusbildung in einem organ, system zur klassifizierung eines risikos für thrombusbildung in einem organ, computerprogrammprodukt und computerlesbares medium
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
KR101986424B1 (ko) 2017-09-21 2019-06-05 강원대학교산학협력단 환자별 혈관 정보 결정 방법
ES2951074T3 (es) * 2017-09-23 2023-10-17 Amid S R L Método y dispositivo para sincronización eléctrica cardíaca
CN111148484B (zh) 2017-09-25 2022-12-30 波尔顿医疗公司 用于将假体植入物联接到开窗体的系统、装置和方法
US10335106B2 (en) * 2017-09-29 2019-07-02 Infinitt Healthcare Co., Ltd. Computing system and method for identifying and visualizing cerebral thrombosis based on medical images
EP3691531A4 (de) 2017-10-06 2021-05-26 Emory University Verfahren und systeme zur bestimmung hämodynamischer informationen für ein oder mehrere arteriensegmente
JP7426929B2 (ja) * 2017-10-18 2024-02-02 コーニンクレッカ フィリップス エヌ ヴェ 医療用画像セグメント化のためのランドマーク視覚化
CN107789058A (zh) * 2017-10-23 2018-03-13 南方医科大学南方医院 用于胃癌腔镜手术实时导航系统的基于条件随机场动静脉名称自动标识方法
CN107818220B (zh) * 2017-10-31 2019-03-08 钦州学院 基于生态系统动力学综合模型对海湾环境容量的估算方法
EP3488774A1 (de) 2017-11-23 2019-05-29 Koninklijke Philips N.V. Messführung für koronarflussschätzung von bernoulli's prinzip
CN108022237B (zh) * 2017-11-30 2021-07-13 上海联影医疗科技股份有限公司 血管提取方法、系统及存储介质
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
CN108021770A (zh) * 2017-12-04 2018-05-11 北京理工大学 基于ct扫描的叶片寿命评价方法
CN108038848B (zh) * 2017-12-07 2020-08-11 上海交通大学 基于医学影像序列斑块稳定性指标的快速计算方法及系统
JP6530043B2 (ja) * 2017-12-12 2019-06-12 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法および記録媒体
US11871995B2 (en) 2017-12-18 2024-01-16 Hemolens Diagnostics Sp. Z O.O. Patient-specific modeling of hemodynamic parameters in coronary arteries
WO2019126372A1 (en) 2017-12-20 2019-06-27 Heartflow, Inc. Systems and methods for performing computer-simulated evaluation of treatments on a target population
WO2019132048A1 (ko) * 2017-12-26 2019-07-04 부산대학교 산학협력단 안구 맥락막 혈류 시뮬레이션 방법
US11133109B2 (en) 2017-12-29 2021-09-28 Analytics For Life Inc. Method and system to assess disease using phase space volumetric objects
US11918333B2 (en) 2017-12-29 2024-03-05 Analytics For Life Inc. Method and system to assess disease using phase space tomography and machine learning
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
CN108078590B (zh) * 2018-01-03 2021-02-09 声泰特(成都)科技有限公司 基于超声频谱多普勒的血流动力学可视化方法与系统
JP7160659B2 (ja) * 2018-01-11 2022-10-25 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理システム及び医用情報処理方法
US11523788B2 (en) 2018-01-11 2022-12-13 Canon Medical Systems Corporation Medical information processing apparatus, medical information processing system, and medical information processing method
US10580526B2 (en) * 2018-01-12 2020-03-03 Shenzhen Keya Medical Technology Corporation System and method for calculating vessel flow parameters based on angiography
US10874305B2 (en) * 2018-01-15 2020-12-29 Microsoft Technology Licensing, Llc Sensor device
JP6483875B1 (ja) * 2018-01-25 2019-03-13 日本メジフィジックス株式会社 心筋画像表示方法、心筋画像表示処理プログラム及び心筋画像処理装置
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
JP6835014B2 (ja) * 2018-03-02 2021-02-24 株式会社豊田中央研究所 身体内部情報推定方法、コンピュータプログラム、それを記憶した記憶媒体、および、身体内部情報推定装置
CN110226923B (zh) * 2018-03-05 2021-12-14 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法
CN108399647B (zh) * 2018-03-05 2021-10-26 四川和生视界医药技术开发有限公司 视网膜血管边缘线的编辑方法以及编辑装置
KR102172195B1 (ko) 2018-03-07 2020-10-30 고려대학교 산학협력단 척추관 협착증 진단 방법 및 장치
WO2019173830A1 (en) * 2018-03-09 2019-09-12 Emory University Methods and systems for determining coronary hemodynamic characteristic(s) that is predictive of myocardial infarction
CN111902879A (zh) * 2018-03-15 2020-11-06 皇家飞利浦有限公司 使用医学图像数据估计生理参数的方法
CN108564568A (zh) * 2018-03-23 2018-09-21 沈阳东软医疗系统有限公司 冠脉的显示方法、装置、设备及存储介质
CN108511075B (zh) * 2018-03-29 2022-10-25 杭州脉流科技有限公司 一种非侵入式获取血流储备分数的方法和系统
WO2019195783A1 (en) 2018-04-05 2019-10-10 The Regents Of The University Of California Mapping and quantifying shear stress and hemolysis in patients having lvads
CN108564574B (zh) * 2018-04-11 2021-04-20 上海联影医疗科技股份有限公司 确定血流储备分数的方法、计算机设备及计算机可读存储介质
US10699407B2 (en) 2018-04-11 2020-06-30 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CN108615259B (zh) * 2018-04-27 2022-06-24 苏州数算软云科技有限公司 建立血液流动计算模型用以评价冠状动脉血流情况的方法
US11389130B2 (en) 2018-05-02 2022-07-19 Siemens Healthcare Gmbh System and methods for fast computation of computed tomography based fractional flow reserve
EP3564963A1 (de) * 2018-05-02 2019-11-06 Siemens Healthcare GmbH System und verfahren zur schnellen berechnung der auf computertomografie basierenden fraktionierten strömungsreserve
WO2019234587A1 (en) 2018-06-04 2019-12-12 Analytics For Life Method and system to assess pulmonary hypertension using phase space tomography and machine learning
CN108992057B (zh) * 2018-06-05 2021-08-10 杭州晟视科技有限公司 一种确定冠状动脉血流储备分数ffr的方法和装置
US11083377B2 (en) 2018-06-15 2021-08-10 Pie Medical Imaging B.V. Method and apparatus for quantitative hemodynamic flow analysis
CA3104074A1 (en) 2018-06-18 2019-12-26 Analytics For Life Inc. Methods and systems to quantify and remove asynchronous noise in biophysical signals
JP7271579B2 (ja) 2018-06-19 2023-05-11 ホウメディカ・オステオニクス・コーポレイション 整形外科手術における複合現実支援を用いた手術支援
CN109222980A (zh) * 2018-06-19 2019-01-18 北京红云智胜科技有限公司 基于深度学习的测量冠状动脉造影图像血管直径的方法
CN108784676B (zh) * 2018-06-20 2021-11-09 博动医学影像科技(上海)有限公司 基于年龄信息获取压力差的方法及装置
CN109044324B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 基于斑块位置修正血流特征值的方法及装置
CN109009061B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 基于血压修正获取血流特征值的计算方法及装置
CN109065170B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 获取血管压力差的方法及装置
US11395597B2 (en) * 2018-06-26 2022-07-26 General Electric Company System and method for evaluating blood flow in a vessel
US11369277B2 (en) * 2018-06-27 2022-06-28 Opsens Inc. Hybrid image-invasive-pressure hemodynamic function assessment
KR102078622B1 (ko) 2018-06-28 2020-04-07 연세대학교 산학협력단 협착 병변의 수학적 모델링을 이용한 심혈관 정보 결정 방법
KR102192164B1 (ko) * 2018-08-08 2020-12-16 주식회사 딥바이오 생체 이미지 진단 시스템, 생체 이미지 진단 방법, 및 이를 수행하기 위한 단말
US11185244B2 (en) 2018-08-13 2021-11-30 Medtronic Vascular, Inc. FFR catheter with suspended pressure sensor
GB201813170D0 (en) * 2018-08-13 2018-09-26 Univ Sheffield Volumetric blood flow
US11210779B2 (en) * 2018-09-07 2021-12-28 Siemens Healthcare Gmbh Detection and quantification for traumatic bleeding using dual energy computed tomography
CN109359333B (zh) * 2018-09-12 2021-09-24 大连理工大学 一种包含多尺度形貌特征的体模型构建方法
EP3849410A4 (de) 2018-09-14 2022-11-02 Neuroenhancement Lab, LLC System und verfahren zur verbesserung des schlafs
JP6675458B2 (ja) * 2018-09-18 2020-04-01 キヤノンメディカルシステムズ株式会社 血管解析装置、血管解析方法及び血管解析プログラム
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统
PL427234A1 (pl) * 2018-09-28 2020-04-06 Fundacja Rozwoju Kardiochirurgii Im. Profesora Zbigniewa Religi Sposób modelowania naczyń krwionośnych i przepływu krwi w tych modelach naczyń krwionośnych
CN109118489B (zh) * 2018-09-29 2020-12-11 数坤(北京)网络科技有限公司 一种冠状动脉位置检测方法及系统
KR102180135B1 (ko) * 2018-10-12 2020-11-17 계명대학교 산학협력단 심혈관 질환 종류에 따른 심전도 패턴 시뮬레이션 생체신호 구현 시스템 및 방법
EP3852622A1 (de) 2018-10-16 2021-07-28 Bard Access Systems, Inc. Sicherheitsausgerüstete verbindungssysteme und verfahren dafür zur herstellung von elektrischen verbindungen
EP3867927A1 (de) 2018-10-17 2021-08-25 HeartFlow, Inc. Systeme und verfahren zur beurteilung von herz-kreislauf-erkrankungen und behandlungswirksamkeit aus fettgewebe
CN109512450A (zh) * 2018-10-18 2019-03-26 深圳市孙逸仙心血管医院(深圳市心血管病研究所) 测量血管血流速度的方法
CN109493348B (zh) * 2018-10-26 2021-11-26 强联智创(北京)科技有限公司 一种颅内动脉瘤图像的形态学参数的测量方法及系统
CN112955974A (zh) * 2018-10-26 2021-06-11 皇家飞利浦有限公司 处置反应指数的确定
CN109616200A (zh) * 2018-11-06 2019-04-12 北京三普威盛科技有限公司 用于冠脉狭窄评估的方法,装置,存储介质及电子设备
WO2020098704A1 (zh) * 2018-11-13 2020-05-22 苏州润迈德医疗科技有限公司 基于造影图像获取血管评定参数的方法、装置及系统
US11819279B2 (en) 2018-11-30 2023-11-21 Koninklijke Philips N.V. Patient lumen system monitoring
CN109620199B (zh) * 2018-11-30 2021-03-16 博动医学影像科技(上海)有限公司 建立血管截面函数、血管压力差和血管应力的方法及装置
CN109615624B (zh) * 2018-12-05 2022-03-22 北京工业大学 一种基于超声图像的血流速度波形自动化识别方法
JP7246907B2 (ja) * 2018-12-12 2023-03-28 日本メジフィジックス株式会社 心筋核医学画像データのスコアリング
CN109620187B (zh) * 2018-12-14 2020-06-16 深圳先进技术研究院 一种中心动脉压推算方法及装置
EP3671649A1 (de) 2018-12-19 2020-06-24 Siemens Healthcare GmbH Verfahren und computersystem zur erzeugung einer kombinierten gewebe-gefäss-darstellung
CN113180734A (zh) * 2018-12-27 2021-07-30 深圳迈瑞生物医疗电子股份有限公司 一种超声血流成像方法及系统
AU2020205126A1 (en) * 2019-01-06 2021-07-29 Covanos, Inc. Noninvasive determination of resting state diastole hemodynamic information
US20220101520A1 (en) * 2019-01-06 2022-03-31 Covanos, Inc. Virtual Stress Test Based on Electronic Patient Data
SG11202107506QA (en) 2019-01-11 2021-08-30 Lifeflow Sp Z O O Patient-specific modeling of hemodynamic parameters in coronary arteries
US20220093267A1 (en) * 2019-01-22 2022-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Noninvasive real-time patient-specific assessment of stroke severity
US10813612B2 (en) 2019-01-25 2020-10-27 Cleerly, Inc. Systems and method of characterizing high risk plaques
CN109770930B (zh) * 2019-01-29 2021-03-09 浙江大学 一种冠状动脉微循环阻力的确定方法和装置
WO2020163539A1 (en) * 2019-02-05 2020-08-13 University Of Virginia Patent Foundation System and method for fully automatic lv segmentation of myocardial first-pass perfusion images
US20220107256A1 (en) 2019-02-06 2022-04-07 Universität Zürich Method and apparatus for predicting fluid flow through a subject conduit
AU2020221046A1 (en) 2019-02-11 2021-09-30 University Of Louisville Research Foundation, Inc. System and method for determining a blood flow characteristic
CN109993786B (zh) * 2019-03-08 2021-05-18 中国石油大学(北京) 迂曲度获取方法、装置、设备以及存储介质
US11439436B2 (en) 2019-03-18 2022-09-13 Synthes Gmbh Orthopedic fixation strut swapping
CN109805949B (zh) * 2019-03-19 2020-05-22 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
JP7265392B2 (ja) * 2019-03-25 2023-04-26 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置、医療用観察システム、画像処理方法およびプログラム
EP3716207B1 (de) * 2019-03-26 2023-11-29 Active Medical B.V. Verfahren und vorrichtung zur diagnostischen analyse der funktion und morphologie von mikrozirkulationsänderungen
US11304757B2 (en) 2019-03-28 2022-04-19 Synthes Gmbh Orthopedic fixation control and visualization
US10861157B2 (en) * 2019-04-04 2020-12-08 Medtronic Vascular, Inc. System and methods for determining modified fractional flow reserve values
CN109907732B (zh) * 2019-04-09 2022-12-02 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统
KR102240501B1 (ko) * 2019-04-18 2021-04-15 중앙대학교 산학협력단 요로 조영술 영상 데이터에 기반한 방광 내압 진단 방법
JP6751178B2 (ja) * 2019-05-14 2020-09-02 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法および記録媒体
KR20220009995A (ko) 2019-05-17 2022-01-25 하트플로우, 인크. 반응 표면 및 차수 감소 모델링을 사용한 혈류 추정 시스템 및 방법
CN110223760B (zh) * 2019-05-23 2022-01-18 苏州阿基米德网络科技有限公司 一种医疗影像信息采集与融合方法及系统
EP3751580B1 (de) * 2019-06-11 2024-04-03 Siemens Healthineers AG Hämodynamische analyse von gefässen unter verwendung eines wiederkehrenden neuronalen netzes
CN110264514B (zh) * 2019-06-27 2021-03-30 杭州智珺智能科技有限公司 一种基于随机寻优策略的人体胸围和腰围测量方法
US11328413B2 (en) 2019-07-18 2022-05-10 Ischemaview, Inc. Systems and methods for analytical detection of aneurysms
US11229367B2 (en) 2019-07-18 2022-01-25 Ischemaview, Inc. Systems and methods for analytical comparison and monitoring of aneurysms
CN110522465A (zh) 2019-07-22 2019-12-03 通用电气精准医疗有限责任公司 基于图像数据的血液动力学参数估计
JP2022543330A (ja) 2019-08-05 2022-10-12 エルシド バイオイメージング インコーポレイテッド 形態学的および血管周囲疾患の複合評価
CN110428417A (zh) * 2019-08-13 2019-11-08 无锡祥生医疗科技股份有限公司 颈动脉斑块的性质判别方法、存储介质及超声装置
CN110555261B (zh) * 2019-08-29 2021-06-18 清华大学 心脏运动的数字三生仿真方法及装置
DE102019214212B3 (de) * 2019-09-18 2021-03-11 Siemens Healthcare Gmbh Verfahren zur Unterstützung eines Auswerters bei der Auswertung eines Computertomographiedatensatzes, Recheneinrichtung, Computerprogramm und elektronisch lesbarer Datenträger
CN112535499A (zh) 2019-09-20 2021-03-23 巴德阿克塞斯系统股份有限公司 自动脉管检测工具和方法
US20220330902A1 (en) * 2019-09-27 2022-10-20 Vitaa Medical Solutions Inc. Method and system for determining regional rupture potential of blood vessel
CN110706770B (zh) * 2019-09-30 2020-08-04 上海杏脉信息科技有限公司 心脏数据处理设备及处理方法、计算机可读存储介质
WO2021072368A1 (en) * 2019-10-10 2021-04-15 Medstar Health, Inc. Noninvasive assessment of microvascular dysfunction
KR102130254B1 (ko) * 2019-10-15 2020-07-03 주식회사 실리콘사피엔스 대상자 고유의 혈관에 대한 혈류 시뮬레이션 방법 및 장치
US11176740B2 (en) 2019-11-07 2021-11-16 Level Ex, Inc. Methods and systems for rendering images
JP2023502429A (ja) 2019-11-22 2023-01-24 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン 機械学習を使用する冠状動脈疾患の解剖学的および機能的評価
EP4276751A3 (de) * 2019-11-28 2024-01-10 Siemens Healthcare GmbH Computerimplementiertes verfahren zur bewertung eines ct-datensatzes hinsichtlich perivaskulärem gewebe, bewertungsvorrichtung, computerprogramm und elektronisch lesbares speichermedium
US20220110530A2 (en) * 2019-12-09 2022-04-14 Nordsletten David Method and System for Estimating Pressure Difference in Turbulent Flow
CN111067495A (zh) * 2019-12-27 2020-04-28 西北工业大学 基于血流储备分数和造影图像的微循环阻力计算方法
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
US20210319558A1 (en) 2020-01-07 2021-10-14 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
EP4087486A4 (de) 2020-01-07 2024-02-14 Cleerly Inc Systeme, verfahren und vorrichtungen zur medizinischen bildanalyse, diagnose, risikostratifizierung, entscheidungsfindung und/oder krankheitsverfolgung
CN111227930B (zh) * 2020-01-08 2022-11-11 西安马克医疗科技有限公司 一种针对二尖瓣反流及钙化狭窄的3d模型构建及制备方法
CN111227931B (zh) * 2020-01-08 2022-11-11 西安马克医疗科技有限公司 一种针对主动脉瓣疾病的3d模型构建方法及制备方法
DE102020200750A1 (de) * 2020-01-22 2021-07-22 Siemens Healthcare Gmbh Bereitstellen eines Blutflussparametersatzes einer Gefäßmalformation
WO2021154159A1 (en) * 2020-01-31 2021-08-05 See-Mode Technologies Pte Ltd Methods and systems for risk assessment of ischemic cerebrovascular events
RU2727313C1 (ru) * 2020-02-11 2020-07-21 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Метод функциональной магнитно-резонансной томографии для определения перфузионного кровотока в области рубца после кесарева сечения
USD938963S1 (en) * 2020-02-21 2021-12-21 Universität Zürich Display screen or portion thereof with graphical user interface for visual clot display
CN111243413B (zh) * 2020-03-06 2021-07-02 吉林大学 一种颜面部解剖教学的建模方法及教学系统
KR102190431B1 (ko) * 2020-03-18 2020-12-11 연세대학교 산학협력단 혈관 질환을 판단하는 방법 및 그를 위한 장치
US11587679B2 (en) * 2020-03-26 2023-02-21 International Business Machines Corporation Generating computer models from implicitly relevant feature sets
US11334997B2 (en) 2020-04-03 2022-05-17 Synthes Gmbh Hinge detection for orthopedic fixation
CN111508077B (zh) * 2020-04-29 2021-01-15 中国人民解放军总医院 双三角模型智能评估心脏功能的方法、装置、设备及介质
DE102020112649A1 (de) * 2020-05-11 2021-11-11 Volume Graphics Gmbh Computerimplementiertes Verfahren zur Messung eines Objekts
CN111419204A (zh) * 2020-05-12 2020-07-17 中国人民解放军陆军第八十二集团军医院 一种改良的压力容积导管实验方法
CN111755104B (zh) * 2020-05-18 2022-11-01 清华大学 一种心脏状态监测方法、系统、电子设备及存储介质
CN111631700B (zh) * 2020-05-25 2021-08-10 华南理工大学 一种根据最佳血压目标值调节血压的系统
CN111739026B (zh) * 2020-05-28 2021-02-09 数坤(北京)网络科技有限公司 一种基于血管中心线的黏连割除方法及装置
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
CN111862046B (zh) * 2020-07-21 2023-11-17 江苏省人民医院(南京医科大学第一附属医院) 一种心脏冠脉剪影中导管位置判别系统和方法
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US20220044408A1 (en) * 2020-08-07 2022-02-10 Canon Medical Systems Corporation Medical image processing apparatus, system, and method
JP7041446B2 (ja) * 2020-08-12 2022-03-24 キヤノンメディカルシステムズ株式会社 医用画像処理方法、医用画像処理装置および医用画像処理システム
JP7443197B2 (ja) 2020-08-25 2024-03-05 キヤノンメディカルシステムズ株式会社 医用画像処理装置、システム及び方法
US11844567B2 (en) 2020-08-28 2023-12-19 Biosense Webster (Israel) Ltd. Fitting and directing an expandable catheter based on automatic pulmonary veins anatomical characterization
US11538153B2 (en) * 2020-08-31 2022-12-27 Huidan Yu Non-invasive functional assessment technique for determining hemodynamic severity of an arterial stenosis
WO2022051657A1 (en) 2020-09-03 2022-03-10 Bard Access Systems, Inc. Portable ultrasound systems and methods
KR20230065289A (ko) * 2020-09-09 2023-05-11 하메드 유세피로샨 개인 맞춤형 뇌 치료를 위한 시뮬레이션 방법 및 시스템
CN112075934B (zh) * 2020-09-09 2021-07-23 清华大学 用于识别颈动脉斑块的磁共振单序列多参数定量成像系统
CN114246614A (zh) 2020-09-25 2022-03-29 巴德阿克塞斯系统股份有限公司 超声成像系统和最小导管长度工具
CN112245006B (zh) * 2020-11-13 2022-03-04 范宁 一种基于三角模型的肝脏肿瘤手术方法及系统
CN112426143B (zh) * 2020-11-16 2021-07-23 清华大学 一种肾动脉及腹主动脉一站式无创磁共振血管壁成像系统
TWI790508B (zh) * 2020-11-30 2023-01-21 宏碁股份有限公司 血管偵測裝置及基於影像的血管偵測方法
JP2022090798A (ja) * 2020-12-08 2022-06-20 キヤノンメディカルシステムズ株式会社 解析装置、解析システム及び解析方法
TWI768624B (zh) * 2020-12-28 2022-06-21 財團法人國家衛生研究院 預測冠狀動脈的阻塞的電子裝置和方法
CN113940651B (zh) * 2020-12-28 2022-06-21 深圳北芯生命科技股份有限公司 基于血管充血状态的诊断模式确定方法及系统
CN112712507B (zh) * 2020-12-31 2023-12-19 杭州依图医疗技术有限公司 一种确定冠状动脉的钙化区域的方法及装置
US20220215534A1 (en) * 2021-01-04 2022-07-07 Shenzhen Keya Medical Technology Corporation Methods and systems for computer-assisted medical image analysis using sequential model
CN112842287B (zh) * 2021-01-05 2022-05-17 清华大学 测量血管硬化参数装置和方法
CN112950537A (zh) * 2021-01-26 2021-06-11 上海友脉科技有限责任公司 一种冠脉血流储备分数获取系统、方法及介质
CN112932434B (zh) * 2021-01-29 2023-12-05 苏州润迈德医疗科技有限公司 获取流量损失模型、损失比、供血能力的方法和系统
US11693078B2 (en) * 2021-02-08 2023-07-04 Purdue Research Foundation Hybrid spatial and circuit optimization for targeted performance of MRI coils
US20230165474A1 (en) * 2021-02-26 2023-06-01 Massachusetts Institute Of Technology Methods to Simulate Metrics of Vascular Function From Clinical Data
KR102631241B1 (ko) * 2021-03-04 2024-01-31 에이아이메딕(주) 기계 학습을 이용하여 2차원 x-선 혈관 조영술 이미지로부터 3차원 혈관 모델을 생성하는 방법
CN113100719A (zh) * 2021-04-08 2021-07-13 中国人民解放军陆军特色医学中心 一种基于机器学习的肾透析患者心血管事件预测系统
EP4075446A1 (de) 2021-04-18 2022-10-19 Kardiolytics Inc. Verfahren und system zur modellierung von blutgefässen und blutfluss unter hochintensiven körperlichen übungsbedingungen
WO2022228976A1 (en) * 2021-04-26 2022-11-03 Koninklijke Philips N.V. Ultrasound-guided prediction of local bolus velocities
EP4084011A1 (de) * 2021-04-30 2022-11-02 Siemens Healthcare GmbH Computerimplementiertes verfahren und auswertungssystem zur auswertung mindestens eines bilddatensatzes eines bilderzeugungsbereichs eines patienten, computerprogramm und elektronisch lesbares speichermedium
KR102564404B1 (ko) * 2021-05-13 2023-08-07 연세대학교 산학협력단 합성곱 신경망을 이용한 투석 접근로의 협착 예측 방법 및 장치
WO2022250975A1 (en) * 2021-05-27 2022-12-01 Board Of Regents Of The University Of Nebraska Patient-specific computational simulation of coronary artery bypass grafting
US11948677B2 (en) 2021-06-08 2024-04-02 GE Precision Healthcare LLC Hybrid unsupervised and supervised image segmentation model
CN113298804B (zh) * 2021-06-16 2022-03-15 浙江大学 一种基于红外图像的实时固体燃料料层厚度的测量方法
CN113409343B (zh) * 2021-06-16 2022-03-15 浙江大学 一种实时固体燃料料层厚度的测量方法
CN113288087B (zh) * 2021-06-25 2022-08-16 成都泰盟软件有限公司 一种基于生理信号的虚实联动实验系统
EP4113434A1 (de) * 2021-06-28 2023-01-04 Koninklijke Philips N.V. Erzeugung von plaque-informationen
CN113545846B (zh) * 2021-07-22 2023-04-25 强联智创(北京)科技有限公司 一种血流动力学仿真模拟方法、装置以及设备
CN113408152B (zh) * 2021-07-23 2023-07-25 上海友脉科技有限责任公司 冠脉旁路移植仿真系统、方法、介质及电子设备
WO2023018626A2 (en) * 2021-08-09 2023-02-16 Vektor Medical, Inc. Tissue state graphic display system
CN113838572B (zh) * 2021-09-10 2024-03-01 深圳睿心智能医疗科技有限公司 血管生理参数获取方法、装置、电子设备及存储介质
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
KR102451624B1 (ko) * 2021-10-05 2022-10-11 연세대학교 산학협력단 수면 무호흡증 인자를 고려한 심혈관 질환 위험도 분석 시스템 및 그 방법
WO2023065048A1 (en) * 2021-10-22 2023-04-27 Mcmaster University A doppler-based non-invasive computational diagnostic method for personalized cardiology
US20230142152A1 (en) * 2021-11-05 2023-05-11 GE Precision Healthcare LLC System and method for deep-learning based estimation of coronary artery pressure drop
CN113925471A (zh) * 2021-11-09 2022-01-14 刘明明 一种皮肤微循环功能测评及可视化方法
WO2023097314A1 (en) 2021-11-29 2023-06-01 Heartflow, Inc. Systems and methods for processing electronic images for physiology-compensated reconstruction
US20230165544A1 (en) 2021-11-29 2023-06-01 Heartflow, Inc. Systems and methods for processing electronic images using user inputs
WO2023161671A1 (en) * 2022-02-22 2023-08-31 Hemolens Diagnostics Sp. Z O.O. A method for assessment of a hemodynamic response to an adenosine receptor agonist stimulation, system for assessment of it and computer readable medium
US20230289963A1 (en) 2022-03-10 2023-09-14 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
WO2023175611A1 (en) * 2022-03-15 2023-09-21 Livemetric (Medical) S.A Devices and methods for evaluating the response to and/or the effectiveness of a cardiovascular medication administration program
JP2023135853A (ja) * 2022-03-16 2023-09-29 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
US20230394654A1 (en) 2022-06-07 2023-12-07 Pie Medical Imaging B.V. Method and system for assessing functionally significant vessel obstruction based on machine learning
CN115687309B (zh) * 2022-12-30 2023-04-18 浙江大学 非侵入式卷烟出入库全流程数据血缘构建方法、装置
US11773093B1 (en) 2023-01-19 2023-10-03 King Faisal University N-(pyrimido[2,3-b]indol-7-yl)acetamide compounds as antibacterial agents
CN115910379B (zh) * 2023-02-03 2023-06-02 慧影医疗科技(北京)股份有限公司 一种肾结石术后疗效评估方法、系统、设备及存储介质
CN115880323B (zh) * 2023-02-17 2023-06-02 长沙中联重科环境产业有限公司 一种热成像定位的区域密度人口的绿化环保方法及设备
CN116649925B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 颅内动脉狭窄功能学评估的方法和装置
CN116664564B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236878B1 (en) 1998-05-22 2001-05-22 Charles A. Taylor Method for predictive modeling for planning medical interventions and simulating physiological conditions

Family Cites Families (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944607B2 (ja) 1976-06-24 1984-10-31 三菱電機株式会社 薄膜光スイツチアレイ
IL77677A (en) * 1986-01-22 1990-04-29 Daniel Goor Method and apparatus for detecting mycardial ischemia
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
US5205289A (en) 1988-12-23 1993-04-27 Medical Instrumentation And Diagnostics Corporation Three-dimensional computer graphics simulation and computerized numerical optimization for dose delivery and treatment planning
US5151856A (en) 1989-08-30 1992-09-29 Technion R & D Found. Ltd. Method of displaying coronary function
US5119816A (en) 1990-09-07 1992-06-09 Sam Technology, Inc. EEG spatial placement and enhancement method
JP3083606B2 (ja) 1990-11-22 2000-09-04 株式会社東芝 医用診断支援システム
EP0559919B1 (de) 1991-10-02 1999-03-24 Fujitsu Limited Verfahren zur bestimmung der lokalen orientierung eines kontursegmentes und zur bestimmung von linien und ecken
US5343538A (en) 1992-10-02 1994-08-30 International Remote Imaging Systems, Inc. Method and an apparatus for identifying an object using quantile partitions
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5506785A (en) * 1993-02-11 1996-04-09 Dover Systems Corporation Method and apparatus for generating hollow and non-hollow solid representations of volumetric data
JPH07508449A (ja) 1993-04-20 1995-09-21 ゼネラル・エレクトリック・カンパニイ 外科手術の際に身体構造をよく見える様にするコンピュータ・グラフィック及びライブ・ビデオ・システム
US5881124A (en) 1994-03-31 1999-03-09 Arch Development Corporation Automated method and system for the detection of lesions in medical computed tomographic scans
US5920319A (en) 1994-10-27 1999-07-06 Wake Forest University Automatic analysis in virtual endoscopy
US6694163B1 (en) 1994-10-27 2004-02-17 Wake Forest University Health Sciences Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US5782762A (en) 1994-10-27 1998-07-21 Wake Forest University Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
WO1996038815A1 (en) 1995-05-31 1996-12-05 Molecular Biosystems, Inc. Automatic border delineation and dimensioning of regions using contrast enhanced imaging
US6151404A (en) 1995-06-01 2000-11-21 Medical Media Systems Anatomical visualization system
DE69636578T2 (de) 1995-06-09 2007-07-05 Interact Medical Technologies Corp. Anatomisches anzeigesystem
US5582173A (en) 1995-09-18 1996-12-10 Siemens Medical Systems, Inc. System and method for 3-D medical imaging using 2-D scan data
US5687208A (en) 1995-10-06 1997-11-11 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement with feedback
US5970182A (en) 1995-11-15 1999-10-19 Focus Imaging, S. A. Registration process for myocardial images
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5825908A (en) 1995-12-29 1998-10-20 Medical Media Systems Anatomical visualization and measurement system
US5729670A (en) 1996-01-16 1998-03-17 Ford Global Technologies, Inc. Method for producing a mesh of quadrilateral/hexahedral elements for a body to be analyzed using finite element analysis
US6047080A (en) 1996-06-19 2000-04-04 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US6026173A (en) 1997-07-05 2000-02-15 Svenson; Robert H. Electromagnetic imaging and therapeutic (EMIT) systems
IL120881A (en) 1996-07-30 2002-09-12 It M R Medic L Cm 1997 Ltd Method and device for continuous and non-invasive monitoring of peripheral arterial tone
US5947899A (en) 1996-08-23 1999-09-07 Physiome Sciences Computational system and method for modeling the heart
US5971767A (en) 1996-09-16 1999-10-26 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US6343936B1 (en) 1996-09-16 2002-02-05 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination, navigation and visualization
US7194117B2 (en) 1999-06-29 2007-03-20 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination of objects, such as internal organs
US5891030A (en) 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
US8682045B2 (en) 1997-02-25 2014-03-25 Wake Forest University Health Sciences Virtual endoscopy with improved image segmentation and lesion detection
US6035056A (en) 1997-03-27 2000-03-07 R2 Technology, Inc. Method and apparatus for automatic muscle segmentation in digital mammograms
IT1297396B1 (it) 1997-12-30 1999-09-01 Francesco Buzzigoli Metodo e dispositivo per la ricostruzione di immagini tridimensionali di vasi sanguigni, in particolare di arterie coronarie, o di altre
US6176838B1 (en) 1998-01-29 2001-01-23 Anzai Medical Kabushiki Kaisha Method and apparatus for measuring hepatic blood flow amount
US7191110B1 (en) 1998-02-03 2007-03-13 University Of Illinois, Board Of Trustees Patient specific circulation model
WO1999038433A1 (en) 1998-02-03 1999-08-05 The Board Of Trustees Of The University Of Illinois Cerebral circulation model and applications
WO1999042977A1 (en) 1998-02-23 1999-08-26 Algotec Systems Ltd. Automatic path planning system and method
US6117087A (en) 1998-04-01 2000-09-12 Massachusetts Institute Of Technology Method and apparatus for noninvasive assessment of a subject's cardiovascular system
JP2002513601A (ja) 1998-05-04 2002-05-14 フローレンス・メデイカル・リミテツド 流れの撹乱の解析による病変および治療の成果の識別および特徴付けのための装置および方法
US6045512A (en) 1998-06-09 2000-04-04 Baxter International Inc. System and method for continuous estimation and display of cardiac ejection fraction and end diastolic volume
US6119574A (en) 1998-07-02 2000-09-19 Battelle Memorial Institute Blast effects suppression system
AU5097599A (en) 1998-07-13 2000-02-01 Chandu Corporation Configurable bio-transport system simulator
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US6292761B1 (en) 1998-09-02 2001-09-18 William Franklin Hancock, Jr. Methods and apparatus for interpreting measured laboratory data
US6379041B1 (en) 1998-11-02 2002-04-30 Siemens Aktiengesellschaft X-ray apparatus for producing a 3D image from a set of 2D projections
US6352509B1 (en) 1998-11-16 2002-03-05 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic diagnosis apparatus
US6466205B2 (en) 1998-11-19 2002-10-15 Push Entertainment, Inc. System and method for creating 3D models from 2D sequential image data
EP1133257A4 (de) 1998-11-25 2007-12-26 Univ Wake Forest Virtuelle endoskopie mit verbesserter bildsegmentierung und läsionsdetektion
US6278460B1 (en) 1998-12-15 2001-08-21 Point Cloud, Inc. Creating a three-dimensional model from two-dimensional images
US6478735B1 (en) 1999-01-28 2002-11-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physiological feedback method and system
JP2003525067A (ja) * 1999-03-09 2003-08-26 フローレンス・メディカル・リミテッド Cfrおよび付加的な臨床的血流力学パラメータを圧力ベースで測定するための方法およびシステム
US6471656B1 (en) 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US6793496B2 (en) 1999-04-15 2004-09-21 General Electric Company Mathematical model and a method and apparatus for utilizing the model
DE19922279A1 (de) 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Verfahren zur Generierung patientenspezifischer Implantate
FR2793926B1 (fr) 1999-05-20 2001-07-20 Univ Rennes Procede de construction en trois dimensions d'un organe virtuel representatif d'un organe reel
US6605053B1 (en) 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
EP2028608A3 (de) 1999-09-20 2009-03-04 The Board Of Trustees Of The University Of Illinois Zirkulationsmodell und Anwendungen
US6711433B1 (en) 1999-09-30 2004-03-23 Siemens Corporate Research, Inc. Method for providing a virtual contrast agent for augmented angioscopy
US6336903B1 (en) 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US7333648B2 (en) 1999-11-19 2008-02-19 General Electric Company Feature quantification from multidimensional image data
DE19962666A1 (de) 1999-12-23 2001-07-05 Siemens Ag Verfahren zum Rekonstruieren von 3D-Bilddaten bezüglich eines interessierenden Volumens eines Untersuchungsobjekts
DE10000185A1 (de) 2000-01-05 2001-07-12 Philips Corp Intellectual Pty Verfahren zur Darstellung des zeitlichen Verlaufs des Blutflusses in einem Untersuchungsobjekt
US6672172B2 (en) * 2000-01-31 2004-01-06 Radi Medical Systems Ab Triggered flow measurement
US6606091B2 (en) 2000-02-07 2003-08-12 Siemens Corporate Research, Inc. System for interactive 3D object extraction from slice-based medical images
US6900721B1 (en) 2000-02-11 2005-05-31 Bio Medic Data Systems, Inc. Implantable inductively programmed temperature sensing transponder
AU2001235964A1 (en) 2000-05-09 2001-11-20 Paieon Inc. System and method for three-dimensional reconstruction of an artery
DE10026666A1 (de) * 2000-05-29 2001-12-20 Gunther Burgard Verwendung von Hyaluronidase zur Prophylaxe und Behandlung von Herz-Kreislauf-Erkrankungen
AU2001268217A1 (en) 2000-06-06 2001-12-17 The Research Foundation Of State University Of New York Computer aided visualization, fusion and treatment planning
US6408201B1 (en) 2000-06-09 2002-06-18 General Electric Company Method and apparatus for efficient stenosis identification in peripheral arterial vasculature using MR imaging
US6503202B1 (en) 2000-06-29 2003-01-07 Acuson Corp. Medical diagnostic ultrasound system and method for flow analysis
US6507753B1 (en) 2000-08-09 2003-01-14 Ge Marquette Medical Systems, Inc. Method and apparatus to detect acute cardiac syndromes in specified groups of patients using ECG
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US20020035458A1 (en) 2000-09-20 2002-03-21 Chang-Hun Kim Method and system for virtual surgery
US7840393B1 (en) 2000-10-04 2010-11-23 Trivascular, Inc. Virtual prototyping and testing for medical device development
US6558334B2 (en) 2000-10-19 2003-05-06 Florence Medical Ltd. Apparatus for diagnosing lesion severity, and method therefor
US6898453B2 (en) 2000-10-25 2005-05-24 The John P. Robarts Research Institute Method and apparatus for calculating blood flow parameters
US6754376B1 (en) 2000-11-22 2004-06-22 General Electric Company Method for automatic segmentation of medical images
US6666820B1 (en) 2000-11-28 2003-12-23 Michael D. Poole Mathematical therapeutic outcomes model for predicting clinical efficacy therapies
US6643533B2 (en) 2000-11-28 2003-11-04 Ge Medical Systems Global Technology Company, Llc Method and apparatus for displaying images of tubular structures
US6487432B2 (en) 2000-12-04 2002-11-26 Ge Medical Systems Global Technologies Company Llc Method and system for selecting and displaying medical image data
JP2004528828A (ja) 2001-02-07 2004-09-24 ザ ジェネラル ホスピタル コーポレーション 心疾患の診断および治療の方法
US7371067B2 (en) 2001-03-06 2008-05-13 The Johns Hopkins University School Of Medicine Simulation method for designing customized medical devices
US7526112B2 (en) 2001-04-30 2009-04-28 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7327862B2 (en) 2001-04-30 2008-02-05 Chase Medical, L.P. System and method for facilitating cardiac intervention
DE10122875C1 (de) 2001-05-11 2003-02-13 Siemens Ag Kombiniertes 3D-Angio-Volumenrekonstruktionsverfahren
JP4245353B2 (ja) 2001-05-23 2009-03-25 バイタル イメージズ,インコーポレイティド オブジェクトオーダーボリュームレンダリングのオクルージョンカリング
WO2002097735A1 (en) 2001-05-31 2002-12-05 Kent Ridge Digital Labs System and method of anatomical modeling
US7853312B2 (en) 2001-06-07 2010-12-14 Varian Medical Systems, Inc. Seed localization system for use in an ultrasound system and method of using the same
US6718004B2 (en) 2001-06-28 2004-04-06 General Electric Company Methods and apparatus for coronary-specific imaging reconstruction
US20030023266A1 (en) 2001-07-19 2003-01-30 Borillo Thomas E. Individually customized atrial appendage implant device
US6856830B2 (en) * 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
EP1438431A4 (de) 2001-10-01 2007-02-07 Gen Hospital Corp Verfahren zur diagnose und behandlung einer herzerkrankung
US7006955B2 (en) 2001-10-15 2006-02-28 General Electric Company System and method for statistical design of ultrasound probe and imaging system
US7372983B2 (en) 2001-10-16 2008-05-13 Koninklijke Philips Electronics N.V. Method for automatic branch labeling
US7054679B2 (en) 2001-10-31 2006-05-30 Robert Hirsh Non-invasive method and device to monitor cardiac parameters
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
DE10162272A1 (de) 2001-12-19 2003-07-10 Philips Intellectual Property Verfahren zur Unterstützung der Orientierung im Gefäßsystem
US7229412B2 (en) 2001-12-28 2007-06-12 Koninklijke Philips Electronics N.V. Viewing system having means for processing a sequence of ultrasound images for performing a quantitative estimation of flow in a body organ
DE10210650B4 (de) 2002-03-11 2005-04-28 Siemens Ag Verfahren zur dreidimensionalen Darstellung eines Untersuchungsbereichs eines Patienten in Form eines 3D-Rekonstruktionsbilds und medizinische Untersuchungs- und/oder Behandlungseinrichtung
AU2003209587A1 (en) 2002-03-23 2003-10-08 Philips Intellectual Property And Standards Gmbh Method for interactive segmentation of a structure contained in an object
US6996262B2 (en) 2002-05-20 2006-02-07 General Electric Company Method and apparatus of scoring an arterial obstruction
US20040034309A1 (en) 2002-07-12 2004-02-19 Auckland Uniservices Limited Method and system of defining a model of one or more organs
AU2003246989A1 (en) 2002-07-19 2004-02-09 Koninklijke Philips Electronics N.V. Simultaneous segmentation of multiple or composed objects by mesh adaptation
US7020510B2 (en) 2002-07-25 2006-03-28 Koninklijke Philips Electronics, N.V. Optimal view map V.0.01
US20040044282A1 (en) 2002-08-28 2004-03-04 Mixon Lonnie Mark Medical imaging systems and methods
TW558689B (en) 2002-08-30 2003-10-21 Univ Taipei Medical Three-dimensional surgery simulation system and method
US7794230B2 (en) 2002-09-10 2010-09-14 University Of Vermont And State Agricultural College Mathematical circulatory system model
US7182602B2 (en) 2002-09-10 2007-02-27 The University Of Vermont And State Agricultural College Whole-body mathematical model for simulating intracranial pressure dynamics
US8246673B2 (en) * 2002-09-19 2012-08-21 Exstent Limited External support for a blood vessel
WO2004029911A1 (en) 2002-09-26 2004-04-08 Robert Levine Medical instruction using a virtual patient
US6888914B2 (en) 2002-11-26 2005-05-03 General Electric Company Methods and apparatus for computing volumetric perfusion
US6628743B1 (en) 2002-11-26 2003-09-30 Ge Medical Systems Global Technology Company, Llc Method and apparatus for acquiring and analyzing cardiac data from a patient
WO2006020920A2 (en) 2003-01-29 2006-02-23 Medtronic, Inc. Catheter apparatus for treatment of heart arrhythmia
WO2004068406A2 (en) 2003-01-30 2004-08-12 Chase Medical, L.P. A method and system for image processing and contour assessment
US20050043609A1 (en) 2003-01-30 2005-02-24 Gregory Murphy System and method for facilitating cardiac intervention
JP2006516440A (ja) 2003-01-31 2006-07-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 三次元物体の再構築法
US7574026B2 (en) 2003-02-12 2009-08-11 Koninklijke Philips Electronics N.V. Method for the 3d modeling of a tubular structure
US6887207B2 (en) * 2003-02-26 2005-05-03 Medtronic, Inc. Methods and apparatus for estimation of ventricular afterload based on ventricular pressure measurements
JP4421203B2 (ja) 2003-03-20 2010-02-24 株式会社東芝 管腔状構造体の解析処理装置
US7539529B2 (en) 2003-04-22 2009-05-26 Koninklijke Philips Electronics N.V. Apparatus for angiographic X-ray photography
US7343196B2 (en) 2003-05-09 2008-03-11 Ge Medical Systems Global Technology Company Llc Cardiac CT system and method for planning and treatment of biventricular pacing using epicardial lead
JP4559215B2 (ja) 2003-05-14 2010-10-06 ボルケーノ・コーポレイション 侵襲性心臓血管診断測定の捕捉および表示のための多目的ホストシステム
US7780595B2 (en) 2003-05-15 2010-08-24 Clinical Decision Support, Llc Panel diagnostic method and system
JP2005015789A (ja) 2003-06-06 2005-01-20 Mitsubishi Plastics Ind Ltd 紫外線吸収組成物および被覆材料
CA2530595A1 (en) 2003-06-25 2005-01-06 Siemens Medical Solutions Usa, Inc. Automated regional myocardial assessment for cardiac imaging
JP2007524461A (ja) 2003-06-25 2007-08-30 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 乳房撮像の自動診断及び決定支援システム及び方法
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US20050010105A1 (en) 2003-07-01 2005-01-13 Sra Jasbir S. Method and system for Coronary arterial intervention
EP1646963A1 (de) 2003-07-08 2006-04-19 Philips Intellectual Property & Standards GmbH Rekonstruktion von stromfluss in einem gefässesystem
WO2005017830A1 (en) 2003-08-04 2005-02-24 Siemens Corporate Research, Inc. Virtual organ unfolding for visualization
US7505551B2 (en) 2003-08-20 2009-03-17 Koninklijke Philips Electronics N.V. Method and device for flow reconstruction
ATE500572T1 (de) 2003-08-21 2011-03-15 Koninkl Philips Electronics Nv Vorrichtung und verfahren zur erzeugung eines dreidimensionalen gefässmodelles
EP1662974A4 (de) 2003-08-21 2009-06-03 Ischem Corp Automatische verfahren und systeme für den nachweis und die analyse von gefässplaque
DE10340544B4 (de) 2003-09-01 2006-08-03 Siemens Ag Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung im Herzen
JP4537681B2 (ja) * 2003-09-24 2010-09-01 株式会社東芝 血流解析装置
JP5129480B2 (ja) 2003-09-25 2013-01-30 パイエオン インコーポレイテッド 管状臓器の3次元再構成を行うシステム及び血管撮像装置の作動方法
AU2004280966A1 (en) 2003-10-07 2005-04-21 Entelos, Inc. Simulating patient-specific outcomes
JP4446049B2 (ja) 2003-11-06 2010-04-07 株式会社三重ティーエルオー 心筋血流の定量化装置
EP1694208A2 (de) 2003-11-26 2006-08-30 Viatronix Incorporated Systeme und verfahren für die automatische segmentierung, visualisierung und analyse von medizinischen bildern
US20070014452A1 (en) 2003-12-01 2007-01-18 Mitta Suresh Method and system for image processing and assessment of a state of a heart
US20050143777A1 (en) 2003-12-19 2005-06-30 Sra Jasbir S. Method and system of treatment of heart failure using 4D imaging
US20080051660A1 (en) 2004-01-16 2008-02-28 The University Of Houston System Methods and apparatuses for medical imaging
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7333643B2 (en) 2004-01-30 2008-02-19 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7526115B2 (en) 2004-02-23 2009-04-28 Siemens Medical Solutions Usa, Inc. System and method for toboggan based object segmentation using divergent gradient field response in images
WO2005085846A1 (ja) 2004-03-03 2005-09-15 Daiichi Pure Chemicals Co., Ltd. 虚血性心疾患危険群診断薬
US8010175B2 (en) 2004-05-05 2011-08-30 Siemens Medical Solutions Usa, Inc. Patient-specific coronary territory mapping
WO2005107601A2 (en) 2004-05-06 2005-11-17 Focus Surgery, Inc. Method and apparatus for the selective treatment of tissue
EP1774454A2 (de) 2004-06-02 2007-04-18 M2S, Inc. Anatomische visualisierung und messsystem
EP1811896A4 (de) 2004-06-23 2009-08-19 M2S Inc Anatomisches visualisierungs- und messsystem
US7462153B2 (en) 2004-07-23 2008-12-09 Sonomedica, Inc. Method and system for modeling cardiovascular disease using a probability regession model
WO2006020792A2 (en) 2004-08-10 2006-02-23 The General Hospital Corporation Methods and apparatus for simulation of endovascular and endoluminal procedures
CN100560030C (zh) 2004-08-11 2009-11-18 皇家飞利浦电子股份有限公司 缺血性心脏病的超声诊断
CN100548224C (zh) * 2004-08-31 2009-10-14 华盛顿州大学 利用超声检测内部狭窄以识别由其引起的组织振动的设备
DE102004043676B4 (de) 2004-09-09 2014-01-09 Siemens Aktiengesellschaft Verfahren zur Visualisierung von Plaqueablagerungen aus 3D-Bilddatensätzen von Gefäßstrukturen
WO2006039358A2 (en) 2004-09-30 2006-04-13 The Regents Of The University Of California Method for assessment of the structure-function characteristics of structures in a human or animal body
US7725165B2 (en) 2004-12-07 2010-05-25 M2S, Inc. Method and apparatus for visualizing anatomical structures
EP1830701A1 (de) 2004-12-08 2007-09-12 Paieon Inc. Verfahren und gerät für bestimmungen von blutgefässparametern
IL165636A0 (en) 2004-12-08 2006-01-15 Paieon Inc Method and apparatus for finding the coronary velocity and flow and related parameters
WO2006062958A2 (en) 2004-12-10 2006-06-15 Worcester Polytechnic Institute Image-based computational mechanical analysis and indexing for cardiovascular diseases
CN101080747A (zh) 2004-12-17 2007-11-28 皇家飞利浦电子股份有限公司 来自单纯形网格的高质量的精确的曲面三角剖分
EP2712553A3 (de) * 2005-01-11 2014-09-17 Volcano Corporation Co-Registrierung von Gefäßabbildungen
WO2006079042A2 (en) 2005-01-21 2006-07-27 The Board Of Governors For Higher Education Integrate finite element and circulatory model for predicting hemodynamic effects of left ventricular impairment, resynchronization and remodeling
MX2007009354A (es) 2005-02-03 2008-01-14 Epix Pharm Inc Metodos de perfusion en estado estable.
US7738626B2 (en) 2005-02-04 2010-06-15 Koninklijke Philips Electronics N.V. System for the determination of vessel geometry and flow characteristics
FR2882172B1 (fr) * 2005-02-16 2007-11-02 Innothera Soc Par Actions Simp Dispositif d'aide a la selection d'une orthese de contention par simulation de ses effets sur l'hemodynamique du retour veineux
JP4964422B2 (ja) 2005-02-22 2012-06-27 株式会社カネカ 脱血用カテーテル
WO2006090707A1 (ja) 2005-02-22 2006-08-31 Kaneka Corporation カテーテル
US20060239524A1 (en) * 2005-03-31 2006-10-26 Vladimir Desh Dedicated display for processing and analyzing multi-modality cardiac data
CN101184428B (zh) 2005-04-01 2013-09-25 视声公司 利用超声波使血管结构三维可视化的方法
DE102005018327A1 (de) 2005-04-20 2006-10-26 Siemens Ag Betriebsverfahren für einen Rechner, Betriebsverfahren für eine bildgebende medizintechnische Anlage und hiermit korrespondierende Gegenstände
US20060253024A1 (en) 2005-04-26 2006-11-09 Altmann Andres C Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
US20060241445A1 (en) 2005-04-26 2006-10-26 Altmann Andres C Three-dimensional cardial imaging using ultrasound contour reconstruction
DE102005022345A1 (de) 2005-05-13 2006-11-16 Siemens Ag Verfahren zur Erzeugung und Darstellung von Untersuchungsbildern und zugehöriger Ultraschallkatheter
US7893934B2 (en) 2005-05-26 2011-02-22 The Board Of Regents Of The University Of Oklahoma Three-dimensional finite element modeling of human ear for sound transmission
WO2007020555A2 (en) 2005-08-17 2007-02-22 Koninklijke Philips Electronics N.V. Method and apparatus for automatic 4d coronary modeling and motion vector field estimation
US20070049817A1 (en) * 2005-08-30 2007-03-01 Assaf Preiss Segmentation and registration of multimodal images using physiological data
EP1927082A2 (de) 2005-09-07 2008-06-04 Koninklijke Philips Electronics N.V. Ultraschallsystem für zuverlässige 3d-untersuchung der rechten herzkammer und verfahren dafür
US7775988B2 (en) 2005-09-30 2010-08-17 Radi Medical Systems Ab Method for determining the blood flow in a coronary artery
US20100278405A1 (en) 2005-11-11 2010-11-04 Kakadiaris Ioannis A Scoring Method for Imaging-Based Detection of Vulnerable Patients
EP1952357A1 (de) 2005-11-14 2008-08-06 Koninklijke Philips Electronics N.V. Silhouettenmischungsdarstellung anatomischer strukturen
JP2007135894A (ja) 2005-11-18 2007-06-07 R Tech:Kk ヒト血流データをもとにした血流解析装置及びシミュレーション方法
US20070163353A1 (en) 2005-12-07 2007-07-19 Drexel University Detection of blood pressure and blood pressure waveform
US7650179B2 (en) * 2005-12-09 2010-01-19 Siemens Aktiengesellschaft Computerized workflow method for stent planning and stenting procedure
CN101374462A (zh) * 2005-12-09 2009-02-25 皇家飞利浦电子股份有限公司 基于模型的流动分析和可视化
JP4721893B2 (ja) 2005-12-15 2011-07-13 パナソニック株式会社 超音波診断装置
JP5093727B2 (ja) 2006-01-05 2012-12-12 国立大学法人金沢大学 連続x線画像スクリーニング検査装置、プログラム及び記録媒体
US7879318B2 (en) 2006-01-23 2011-02-01 Mcw Research Foundation, Inc. Method of reducing the effects of ischemia by administration of a thrombopoietin receptor ligand
JP5223340B2 (ja) 2006-01-27 2013-06-26 日立金属株式会社 セラミックハニカムフィルタの製造方法
WO2007092054A2 (en) 2006-02-06 2007-08-16 Specht Donald F Method and apparatus to visualize the coronary arteries using ultrasound
US20070232883A1 (en) 2006-02-15 2007-10-04 Ilegbusi Olusegun J Systems and methods for determining plaque vulnerability to rupture
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
US20070231779A1 (en) 2006-02-15 2007-10-04 University Of Central Florida Research Foundation, Inc. Systems and Methods for Simulation of Organ Dynamics
US20070208277A1 (en) 2006-03-06 2007-09-06 Rioux Robert F Vessel volume determination for embolization
DE602007012886D1 (de) 2006-04-12 2011-04-14 Nassir Navab Virtuelle penetrierende spiegelvorrichtung zur visualisierung von virtuellen objekten in angiografischen anwendungen
US20070293936A1 (en) 2006-04-28 2007-12-20 Dobak John D Iii Systems and methods for creating customized endovascular stents and stent grafts
EP2026697B1 (de) * 2006-05-22 2016-10-19 Philips Intellectual Property & Standards GmbH Bewegungskompensierter koronarfluss aus projektionsdarstellung
JP2009540767A (ja) 2006-06-13 2009-11-19 クゥアルコム・インコーポレイテッド 無線通信システムのためのリバースリンク・パイロット送信
US20080133040A1 (en) 2006-06-16 2008-06-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for specifying a blood vessel sleeve
JP5078291B2 (ja) 2006-06-30 2012-11-21 オリンパスメディカルシステムズ株式会社 医療情報管理システム
EP1881458B1 (de) * 2006-07-21 2011-06-08 Dassault Systèmes Computerimplementiertes Verfahren zur Bildung einer parametrischen Oberfläche
BRPI0715126B8 (pt) 2006-08-04 2021-07-27 Medizinische Hochschule Hannover métodos para avaliação do risco de intervenções cardíacas e usos à base de gdf-15
US8364249B2 (en) 2006-08-11 2013-01-29 3M Innovative Properties Company Automatic generation of heart sounds and murmurs using a lumped-parameter recirculating pressure-flow model for the left heart
WO2008085193A2 (en) 2006-08-14 2008-07-17 University Of Maryland Quantitative real-time 4d strees test analysis
US7986821B2 (en) 2006-08-15 2011-07-26 General Electric Company Processes and apparatus for imaging protocols and analysis
US20080058642A1 (en) 2006-09-05 2008-03-06 Board Of Regents Of The University Of Texas System Method for detecting coronary endothelial dysfunction and early atherosclerosis
ATE548968T1 (de) 2006-09-06 2012-03-15 Agency Science Tech & Res Nachweis und lokalisierung eines gefässverschlusses aus angiografischen daten
US8014561B2 (en) 2006-09-07 2011-09-06 University Of Louisville Research Foundation, Inc. Virtual fly over of complex tubular anatomical structures
EP2075754A1 (de) 2006-09-15 2009-07-01 Keio University Simulator für die bildung von plättchenthrombose
DE102006045423B4 (de) 2006-09-26 2016-07-14 Siemens Healthcare Gmbh 07.09.07Verfahren zur Nachbearbeitung eines dreidimensionalen Bilddatensatzes einer Gefäßstruktur
DE102006046045B4 (de) 2006-09-28 2014-05-28 Siemens Aktiengesellschaft Verfahren zur zweidimensionalen oder dreidimensionalen Bilddarstellung eines interessierenden Zielbereichs in einem Hohlorgan und medizinisches Untersuchungs- und Behandlungssystem
CN101172042B (zh) * 2006-11-01 2011-04-06 上海匡复医疗设备发展有限公司 一种脑血管循环动力学分析方法及仪器
US8007437B2 (en) 2006-11-08 2011-08-30 Siemens Aktiengesellschaft Method and apparatus for interactive 4-dimensional (4D) virtual endoscopy
US7792593B2 (en) 2006-11-17 2010-09-07 Siemens Aktiengesellschaft Method and system for patient-specific production of a cardiac electrode
US7912270B2 (en) 2006-11-21 2011-03-22 General Electric Company Method and system for creating and using an impact atlas
US7957574B2 (en) 2006-11-22 2011-06-07 General Electric Company Methods and apparatus for generating a risk metric for soft plaque in vessels
US8503741B2 (en) 2006-11-30 2013-08-06 Siemens Aktiengesellschaft Workflow of a service provider based CFD business model for the risk assessment of aneurysm and respective clinical interface
US20080317310A1 (en) 2006-12-08 2008-12-25 Mitta Suresh Method and system for image processing and assessment of blockages of heart blood vessels
US20080146252A1 (en) 2006-12-13 2008-06-19 Ashu Razdan Tandem transmission of data over signaling and paging
CN101568941A (zh) * 2006-12-26 2009-10-28 皇家飞利浦电子股份有限公司 医学成像系统
US8543338B2 (en) 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
US8903472B2 (en) 2007-01-23 2014-12-02 Dtherapeutics, Llc Applications of scaling laws of tree structures
US9591994B2 (en) 2007-01-23 2017-03-14 Dtherapeutics, Llc Systems and methods to obtain a myocardial mass index indicative of an at-risk myocardial region
WO2008091583A2 (en) 2007-01-23 2008-07-31 Dtherapeutics, Llc Image-based extraction for vascular trees
US20110282586A1 (en) 2007-01-23 2011-11-17 Kassab Ghassan S Systems and methods to determine optimal diameters of vessel segments in bifurcation
US8060186B2 (en) 2007-02-15 2011-11-15 Siemens Aktiengesellschaft System and method for intraoperative guidance of stent placement during endovascular interventions
US20080208068A1 (en) 2007-02-26 2008-08-28 Timothy Robertson Dynamic positional information constrained heart model
US8781193B2 (en) 2007-03-08 2014-07-15 Sync-Rx, Ltd. Automatic quantitative vessel analysis
EP2129284A4 (de) 2007-03-08 2012-11-28 Sync Rx Ltd Bildgebung und werkzeuge zur verwendung mit beweglichen organen
US20220031270A1 (en) * 2007-03-08 2022-02-03 Sync-Rx, Ltd Identification an dpresentation of device-tovessel relative motion
JP5449651B2 (ja) 2007-03-09 2014-03-19 株式会社東芝 X線ct装置および心筋パーフュージョン情報生成システム
US7773719B2 (en) 2007-03-26 2010-08-10 Siemens Medical Solutions Usa, Inc. Model-based heart reconstruction and navigation
CN201015590Y (zh) * 2007-03-28 2008-02-06 李楚雅 血流储备分数实时连续测量系统
US9275190B2 (en) 2007-04-23 2016-03-01 Siemens Aktiengesellschaft Method and system for generating a four-chamber heart model
JP4902735B2 (ja) 2007-04-24 2012-03-21 オリンパスメディカルシステムズ株式会社 医療用画像処理装置及び医療用画像処理方法
US20080269611A1 (en) 2007-04-24 2008-10-30 Gianni Pedrizzetti Flow characteristic imaging in medical diagnostic ultrasound
US7957570B2 (en) 2007-05-03 2011-06-07 General Electric Company System and method to generate an illustration of a cardiac region of interest
US8282564B2 (en) * 2007-05-16 2012-10-09 Massachusetts Institute Of Technology Systems and methods for model-based estimation of cardiac output and total peripheral resistance
US8718944B2 (en) 2007-05-22 2014-05-06 Worcester Polytechnic Institute Patient-specific image-based computational modeling and techniques for human heart surgery optimization
US8411919B2 (en) 2008-07-07 2013-04-02 Siemens Aktiengesellschaft Fluid dynamics approach to image segmentation
WO2008155738A2 (en) 2007-06-21 2008-12-24 Koninklijke Philips Electronics N.V. Adjusting acquisition protocols for dynamic medical imaging using dynamic models
US10295638B2 (en) 2007-06-28 2019-05-21 Toshiba Medical Systems Corporation Image processing apparatus, image diagnostic apparatus and image processing method
US20090012382A1 (en) 2007-07-02 2009-01-08 General Electric Company Method and system for detection of obstructions in vasculature
CN102172330B (zh) 2007-07-10 2013-03-27 株式会社东芝 X射线摄影装置以及图像处理显示装置
US20100189337A1 (en) 2007-07-11 2010-07-29 Koninklijke Philips Electronics N.V. Method for acquiring 3-dimensional images of coronary vessels, particularly of coronary veins
JP2009028065A (ja) 2007-07-24 2009-02-12 Toshiba Corp X線ct装置
US8123670B2 (en) 2007-08-09 2012-02-28 Leo Antonovich Bokeriya Method for forming a blood flow in surgically reconstituted segments of the blood circulatory system and devices for carrying out said method
US7942820B2 (en) 2007-08-26 2011-05-17 Philip Chidi Njemanze Method and system for evaluation of the hemodynamic model in depression for diagnosis and treatment
EP2036497A1 (de) 2007-09-17 2009-03-18 Amid s.r.l. Verfahren zur Erzeugung quantitativer Bilder des Durchflusspotentials eines beobachteten Bereichs
US20100298719A1 (en) 2007-10-31 2010-11-25 Samuel Alberg Kock Method for calculating pressures in a fluid stream through a tube section, especially a blood vessel with atherosclerotic plaque
KR100933664B1 (ko) 2007-12-28 2009-12-23 재단법인서울대학교산학협력재단 대화형 치료계획 지원 시스템 및 그 방법
JP5148315B2 (ja) 2008-02-25 2013-02-20 株式会社東芝 医用画像処理装置、及び医用画像処理プログラム
US8926511B2 (en) 2008-02-29 2015-01-06 Biosense Webster, Inc. Location system with virtual touch screen
US8128570B2 (en) 2008-05-08 2012-03-06 The General Electric Company Personalized fluid assessment
US9427173B2 (en) 2008-05-09 2016-08-30 General Electric Company Determining mechanical force on aneurysms from a fluid dynamic model driven by vessel blood flow information
JP2009277783A (ja) 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
US8010381B2 (en) 2008-05-20 2011-08-30 General Electric Company System and method for disease diagnosis from patient structural deviation data
JP5366612B2 (ja) 2008-05-20 2013-12-11 株式会社東芝 画像処理装置、画像処理方法および画像処理プログラム
US8041095B2 (en) 2008-06-11 2011-10-18 Siemens Aktiengesellschaft Method and apparatus for pretreatment planning of endovascular coil placement
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
WO2010020933A2 (en) 2008-08-20 2010-02-25 Koninklijke Philips Electronics N.V. Processing cardiac data for personalized aha diagram
EP2350889A2 (de) * 2008-08-25 2011-08-03 ETH Zurich Verfahren und system zum erhalten von hochauflösenden strömungsfelddaten aus spärlichen messdaten
WO2010027652A1 (en) 2008-08-26 2010-03-11 Cardiac Pacemakers, Inc. Cardiac output estimation using pulmonary artery pressure
US20100053209A1 (en) 2008-08-29 2010-03-04 Siemens Medical Solutions Usa, Inc. System for Processing Medical Image data to Provide Vascular Function Information
US8582854B2 (en) 2008-09-15 2013-11-12 Siemens Aktiengesellschaft Method and system for automatic coronary artery detection
US9405996B2 (en) 2008-09-18 2016-08-02 Siemens Aktiengesellschaft Method and system for generating a personalized anatomical heart model
AU2009292925A1 (en) 2008-09-22 2010-03-25 Dtherapeutics, Llc Devices, systems, and methods for determining fractional flow reserve
US8170307B2 (en) 2008-09-23 2012-05-01 The Methodist Hospital Automated wall motion quantification in aortic dissections
US8391950B2 (en) 2008-09-30 2013-03-05 Siemens Medical Solutions Usa, Inc. System for multi-dimensional anatomical functional imaging
US7940886B2 (en) 2008-10-03 2011-05-10 Siemens Medical Solutions Usa, Inc. 3D medical anatomical image system using 2D images
JP2010115317A (ja) 2008-11-12 2010-05-27 Toshiba Corp 画像処理装置
US20100125197A1 (en) * 2008-11-18 2010-05-20 Fishel Robert S Method and apparatus for addressing vascular stenotic lesions
US20100130878A1 (en) 2008-11-24 2010-05-27 General Electric Company Systems, apparatus and processes for automated blood flow assessment of vasculature
WO2010061335A1 (en) 2008-11-28 2010-06-03 Koninklijke Philips Electronics N.V. Processing myocardial perfusion data
WO2010071896A2 (en) 2008-12-19 2010-06-24 Piedmont Healthcare, Inc. System and method for lesion-specific coronary artery calcium quantification
US8447552B2 (en) 2009-01-05 2013-05-21 Siemens Aktiengesellschaft Conditioned medical testing
WO2010086810A1 (en) 2009-01-29 2010-08-05 Koninklijke Philips Electronics N.V. Transmural perfusion gradient image analysis
WO2010099016A1 (en) * 2009-02-25 2010-09-02 Worcester Polytechnic Institute Automatic vascular model generation based on fluid-structure interactions (fsi)
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
CN102387747A (zh) * 2009-04-10 2012-03-21 株式会社日立医疗器械 超声波诊断装置以及血流动态的分布像的构成方法
JP4926199B2 (ja) 2009-04-16 2012-05-09 富士フイルム株式会社 診断支援装置、診断支援プログラムおよび診断支援方法
US8428319B2 (en) 2009-04-24 2013-04-23 Siemens Aktiengesellschaft Automatic measurement of morphometric and motion parameters of the coronary tree from a rotational X-ray sequence
US8527251B2 (en) 2009-05-01 2013-09-03 Siemens Aktiengesellschaft Method and system for multi-component heart and aorta modeling for decision support in cardiac disease
ATE522242T1 (de) * 2009-05-29 2011-09-15 Fluidda Respi Verfahren zur festlegung von behandlungen mittels patientenspezifischer lungenmodelle und computerverfahren
JP2011040055A (ja) 2009-07-13 2011-02-24 Advancesoft Corp シミュレーション装置、及びプログラム
WO2011014562A1 (en) * 2009-07-28 2011-02-03 North Carolina State University Methods and devices for targeted injection of microspheres
GB0913930D0 (en) 2009-08-07 2009-09-16 Ucl Business Plc Apparatus and method for registering two medical images
CA2770565A1 (en) 2009-08-10 2011-02-17 P2-Science Aps Utp for the diagnosis of stenoses and other conditions of restricted blood flow
US8224640B2 (en) 2009-09-08 2012-07-17 Siemens Aktiengesellschaft Method and system for computational modeling of the aorta and heart
EP3363350B1 (de) 2009-09-23 2019-12-11 Lightlab Imaging, Inc. Lumenmorphologie und systeme, vorrichtungen und verfahren zur sammlung von messdaten des vaskulären widerstands
US8463729B2 (en) 2009-12-01 2013-06-11 International Business Machines Corporation LP relaxation modification and cut selection in a MIP solver
US20110275936A1 (en) 2010-05-07 2011-11-10 Cho Daniel J Method for determining shear stress and viscosity distribution in a blood vessel
US20140142398A1 (en) 2010-06-13 2014-05-22 Angiometrix Corporation Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
US8682626B2 (en) 2010-07-21 2014-03-25 Siemens Aktiengesellschaft Method and system for comprehensive patient-specific modeling of the heart
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8157742B2 (en) 2010-08-12 2012-04-17 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US9119540B2 (en) 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
US20120084064A1 (en) 2010-09-29 2012-04-05 Nutech Ventures, Inc. Model-based systems and methods for analyzing and predicting outcomes of vascular interventions and reconstructions
DE102010043849B3 (de) 2010-11-12 2012-02-16 Siemens Aktiengesellschaft Vorrichtung und Computertomograph zur Bestimmung und Darstellung der Durchblutung des Herzmuskels
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
JP6141264B2 (ja) * 2011-05-27 2017-06-07 ライトラボ・イメージング・インコーポレーテッド 光コヒーレンス断層撮影法及び圧力に基づくシステム及び方法
US9974508B2 (en) 2011-09-01 2018-05-22 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
US8696584B2 (en) 2011-10-05 2014-04-15 3Dt Holdings, Llc Devices, systems and methods for determining fractional flow reserve in the presence of a catheter
US10162932B2 (en) 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
US9129053B2 (en) 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
US10034614B2 (en) 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
US8548778B1 (en) * 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
WO2013180851A1 (en) 2012-05-29 2013-12-05 The Johns Hopkins University A method for estimating pressure gradients and fractional flow reserve from computed tomography angiography: transluminal attenuation flow encoding
KR101939778B1 (ko) 2012-07-27 2019-01-18 삼성전자주식회사 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치
EP3298959B2 (de) 2012-08-03 2022-09-28 Philips Image Guided Therapy Corporation Vorrichtungen und systeme zur beurteilung eines gefässes
US10433740B2 (en) 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
US9675301B2 (en) * 2012-10-19 2017-06-13 Heartflow, Inc. Systems and methods for numerically evaluating vasculature
US9858387B2 (en) 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
EP3723041A1 (de) 2012-10-24 2020-10-14 CathWorks Ltd. Automatisiertes messsystem und verfahren zur bewertung einer koronararterienerkrankung
US10595807B2 (en) 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
WO2014084398A1 (ja) 2012-11-30 2014-06-05 株式会社 東芝 医用画像診断装置
JP6091870B2 (ja) 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
JP5953438B2 (ja) 2012-12-11 2016-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠状動脈を通る血流量を決定する方法
US9042613B2 (en) * 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
US10052031B2 (en) 2013-03-04 2018-08-21 Siemens Healthcare Gmbh Determining functional severity of stenosis
US9629563B2 (en) 2013-09-04 2017-04-25 Siemens Healthcare Gmbh Method and system for functional assessment of renal artery stenosis from medical images
CN105517492B (zh) * 2013-09-06 2019-10-18 皇家飞利浦有限公司 用于处理心脏数据的处理设备
US10595806B2 (en) 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
US9087147B1 (en) * 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
CN106163388B (zh) 2014-03-31 2020-02-14 皇家飞利浦有限公司 用于处理生命体的心脏数据的处理装置和方法
JP6553099B2 (ja) 2014-06-30 2019-07-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血流予備量比値を算出するための機器
WO2016008837A1 (en) * 2014-07-18 2016-01-21 Koninklijke Philips N.V. Stenosis assessment
US9888968B2 (en) 2014-07-22 2018-02-13 Siemens Healthcare Gmbh Method and system for automated therapy planning for arterial stenosis
US9349178B1 (en) * 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
US10194812B2 (en) * 2014-12-12 2019-02-05 Medtronic Vascular, Inc. System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system
DE102014226685A1 (de) 2014-12-19 2016-06-23 Siemens Healthcare Gmbh Verfahren zum Identifizieren von Versorgungsgebieten,Verfahren zur graphischen Darstellung von Versorgungsgebieten, Computerprogramm und maschinenlesbares Medium sowie bildgebendes Gerät
US10390718B2 (en) * 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10748451B2 (en) * 2016-12-15 2020-08-18 Duke University Methods and systems for generating fluid simulation models
WO2019173830A1 (en) * 2018-03-09 2019-09-12 Emory University Methods and systems for determining coronary hemodynamic characteristic(s) that is predictive of myocardial infarction
JP6582337B1 (ja) * 2018-11-13 2019-10-02 Gva Tech株式会社 法律文書データ修正方法、法律文書データ修正システム及び法律文書データ修正プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236878B1 (en) 1998-05-22 2001-05-22 Charles A. Taylor Method for predictive modeling for planning medical interventions and simulating physiological conditions

Also Published As

Publication number Publication date
JP2023112190A (ja) 2023-08-10
US20150201849A1 (en) 2015-07-23
JP7304390B2 (ja) 2023-07-06
US8606530B2 (en) 2013-12-10
DE202011110672U1 (de) 2015-07-02
EP4086919A1 (de) 2022-11-09
US8734357B2 (en) 2014-05-27
US20140249792A1 (en) 2014-09-04
US20130064438A1 (en) 2013-03-14
JP2020142096A (ja) 2020-09-10
US10321958B2 (en) 2019-06-18
DE202011110679U1 (de) 2015-07-02
US20120150516A1 (en) 2012-06-14
US20160371455A1 (en) 2016-12-22
KR102518799B1 (ko) 2023-04-11
JP6440755B2 (ja) 2018-12-19
AU2017221811A1 (en) 2017-09-21
CA2807586C (en) 2019-04-23
DE202011111113U1 (de) 2019-12-10
JP6222882B2 (ja) 2017-11-01
US20150339459A1 (en) 2015-11-26
JP6700363B2 (ja) 2020-05-27
US10154883B2 (en) 2018-12-18
US20160073991A1 (en) 2016-03-17
US20120041735A1 (en) 2012-02-16
US8523779B2 (en) 2013-09-03
US20140155770A1 (en) 2014-06-05
JP2015044036A (ja) 2015-03-12
US11793575B2 (en) 2023-10-24
JP2016137261A (ja) 2016-08-04
US20120059246A1 (en) 2012-03-08
US11135012B2 (en) 2021-10-05
EP2538361A3 (de) 2013-04-17
US20130054214A1 (en) 2013-02-28
US20140348412A1 (en) 2014-11-27
US20120041324A1 (en) 2012-02-16
KR101732329B1 (ko) 2017-05-02
CN103270513B (zh) 2017-06-09
KR101952560B1 (ko) 2019-02-26
US20120053921A1 (en) 2012-03-01
DE202011111119U1 (de) 2020-01-02
EP2538362A2 (de) 2012-12-26
EP2845537B1 (de) 2017-11-01
CN106994003B (zh) 2020-07-14
US11154361B2 (en) 2021-10-26
AU2015275289B2 (en) 2017-04-13
US20160110866A1 (en) 2016-04-21
JP2015057103A (ja) 2015-03-26
US20150073722A1 (en) 2015-03-12
KR20140071495A (ko) 2014-06-11
US20150161326A1 (en) 2015-06-11
US9861284B2 (en) 2018-01-09
DE202011110771U1 (de) 2016-06-24
KR101712248B1 (ko) 2017-03-03
US20160133015A1 (en) 2016-05-12
EP3185156A1 (de) 2017-06-28
US10080614B2 (en) 2018-09-25
KR102142242B1 (ko) 2020-08-06
US20150379230A1 (en) 2015-12-31
JP2017140391A (ja) 2017-08-17
CN106994003A (zh) 2017-08-01
KR20150070446A (ko) 2015-06-24
KR101611805B1 (ko) 2016-04-11
CN107174219A (zh) 2017-09-19
EP2538361A2 (de) 2012-12-26
JP5769352B2 (ja) 2015-08-26
KR102414383B1 (ko) 2022-07-01
JP2016104328A (ja) 2016-06-09
AU2015275298B2 (en) 2017-04-06
KR20130138739A (ko) 2013-12-19
US10531923B2 (en) 2020-01-14
EP3185156B1 (de) 2022-11-16
EP2499589A1 (de) 2012-09-19
DE202011110774U1 (de) 2016-06-24
US11090118B2 (en) 2021-08-17
US20160117819A1 (en) 2016-04-28
US20130211728A1 (en) 2013-08-15
US20160140313A1 (en) 2016-05-19
US10441361B2 (en) 2019-10-15
DE202011110677U1 (de) 2015-07-02
US10376317B2 (en) 2019-08-13
US20120041320A1 (en) 2012-02-16
US20150150530A1 (en) 2015-06-04
US20120041321A1 (en) 2012-02-16
KR102351887B1 (ko) 2022-01-18
US8315812B2 (en) 2012-11-20
EP2845537A2 (de) 2015-03-11
KR20200096670A (ko) 2020-08-12
US10092360B2 (en) 2018-10-09
US8311747B2 (en) 2012-11-13
JP2017080492A (ja) 2017-05-18
EP2499589B1 (de) 2016-11-09
US20140207432A1 (en) 2014-07-24
US8812246B2 (en) 2014-08-19
US20210267690A1 (en) 2021-09-02
KR20200043500A (ko) 2020-04-27
US8315813B2 (en) 2012-11-20
US11033332B2 (en) 2021-06-15
CA3064262A1 (en) 2012-02-16
US20120041322A1 (en) 2012-02-16
US10702339B2 (en) 2020-07-07
EP2975545B1 (de) 2023-01-25
US20140355859A1 (en) 2014-12-04
JP5944607B1 (ja) 2016-07-05
US11583340B2 (en) 2023-02-21
US9801689B2 (en) 2017-10-31
JP6329282B2 (ja) 2018-05-23
US20140243663A1 (en) 2014-08-28
US9149197B2 (en) 2015-10-06
JP6959391B2 (ja) 2021-11-02
US20160128661A1 (en) 2016-05-12
JP5986331B2 (ja) 2016-09-06
US9152757B2 (en) 2015-10-06
US9235679B2 (en) 2016-01-12
US10682180B2 (en) 2020-06-16
AU2017279633B2 (en) 2018-07-05
CA3027987A1 (en) 2012-02-16
WO2012021307A2 (en) 2012-02-16
US20160232667A1 (en) 2016-08-11
US20160296287A1 (en) 2016-10-13
US20150161348A1 (en) 2015-06-11
CA2807586A1 (en) 2012-02-16
US20140247970A1 (en) 2014-09-04
US20160364861A1 (en) 2016-12-15
US10080613B2 (en) 2018-09-25
US8630812B2 (en) 2014-01-14
US8315814B2 (en) 2012-11-20
DE202011110783U1 (de) 2016-08-22
CN107184186B (zh) 2019-06-18
US20180071027A1 (en) 2018-03-15
CA3027987C (en) 2020-02-25
US20150088015A1 (en) 2015-03-26
AU2018267637A1 (en) 2018-12-13
KR101732328B1 (ko) 2017-05-02
US11298187B2 (en) 2022-04-12
EP2975545A1 (de) 2016-01-20
JP2015044038A (ja) 2015-03-12
JP2022008936A (ja) 2022-01-14
US20160110517A1 (en) 2016-04-21
CN107007352A (zh) 2017-08-04
US8249815B2 (en) 2012-08-21
US20160364860A1 (en) 2016-12-15
DE202011111118U1 (de) 2020-01-01
US8812245B2 (en) 2014-08-19
KR101879560B1 (ko) 2018-07-17
US20210244475A1 (en) 2021-08-12
EP2538362B1 (de) 2016-11-16
KR20220011782A (ko) 2022-01-28
US9743835B2 (en) 2017-08-29
CA3064262C (en) 2023-10-24
US8594950B2 (en) 2013-11-26
US10478252B2 (en) 2019-11-19
EP2538362A3 (de) 2013-04-17
AU2017203113A1 (en) 2017-06-01
CN107174219B (zh) 2019-01-25
US20140236492A1 (en) 2014-08-21
US20160117816A1 (en) 2016-04-28
US20160113528A1 (en) 2016-04-28
JP5784208B2 (ja) 2015-09-24
US20160364859A1 (en) 2016-12-15
US20220241019A1 (en) 2022-08-04
US9226672B2 (en) 2016-01-05
US20160110867A1 (en) 2016-04-21
US20160117815A1 (en) 2016-04-28
US8496594B2 (en) 2013-07-30
US9271657B2 (en) 2016-03-01
DE202011110621U1 (de) 2015-09-24
US9585723B2 (en) 2017-03-07
US9697330B2 (en) 2017-07-04
US20120041739A1 (en) 2012-02-16
AU2011289715B2 (en) 2016-02-04
AU2011289715A1 (en) 2013-03-07
AU2017221811B2 (en) 2017-12-07
DE202011110678U1 (de) 2015-07-02
US10166077B2 (en) 2019-01-01
JP2016135265A (ja) 2016-07-28
EP2849107A1 (de) 2015-03-18
US8311750B2 (en) 2012-11-13
US20150088478A1 (en) 2015-03-26
AU2018226375B2 (en) 2018-11-29
DE202011110620U1 (de) 2015-10-26
JP2017140390A (ja) 2017-08-17
US20130066618A1 (en) 2013-03-14
US8734356B2 (en) 2014-05-27
US20130151163A1 (en) 2013-06-13
KR20190018559A (ko) 2019-02-22
US9888971B2 (en) 2018-02-13
KR20160087392A (ko) 2016-07-21
JP2015044037A (ja) 2015-03-12
JP2014079649A (ja) 2014-05-08
CN107122621A (zh) 2017-09-01
KR101524955B1 (ko) 2015-06-01
DE202011110772U1 (de) 2016-06-24
AU2015275298A1 (en) 2016-01-28
CN107184186A (zh) 2017-09-22
KR20160085919A (ko) 2016-07-18
US20160246939A1 (en) 2016-08-25
CN107122621B (zh) 2019-03-08
US10149723B2 (en) 2018-12-11
US8386188B2 (en) 2013-02-26
JP5947990B2 (ja) 2016-07-06
KR20170045390A (ko) 2017-04-26
US10702340B2 (en) 2020-07-07
US20140249791A1 (en) 2014-09-04
JP5847278B2 (ja) 2016-01-20
DE202011110680U1 (de) 2015-07-02
AU2018226375A1 (en) 2018-09-27
AU2015275289A1 (en) 2016-01-28
US20150363941A1 (en) 2015-12-17
US20120041319A1 (en) 2012-02-16
US9449147B2 (en) 2016-09-20
JP2017119151A (ja) 2017-07-06
JP2019022712A (ja) 2019-02-14
US9268902B2 (en) 2016-02-23
US20180161104A1 (en) 2018-06-14
US20120041323A1 (en) 2012-02-16
JP6192864B2 (ja) 2017-09-06
US10179030B2 (en) 2019-01-15
US10159529B2 (en) 2018-12-25
US20210282860A1 (en) 2021-09-16
US20120041318A1 (en) 2012-02-16
US20200188029A1 (en) 2020-06-18
US11116575B2 (en) 2021-09-14
US20190000554A1 (en) 2019-01-03
KR20220095252A (ko) 2022-07-06
US20150332015A1 (en) 2015-11-19
KR101783178B1 (ko) 2017-09-28
US9081882B2 (en) 2015-07-14
DE202011110674U1 (de) 2015-07-02
US20120053919A1 (en) 2012-03-01
JP6221000B2 (ja) 2017-10-25
DE202011110676U1 (de) 2015-07-02
US20160113726A1 (en) 2016-04-28
JP5850583B2 (ja) 2016-02-03
US20170053092A1 (en) 2017-02-23
US9078564B2 (en) 2015-07-14
AU2018267637B2 (en) 2019-04-11
KR101732330B1 (ko) 2017-05-24
US11083524B2 (en) 2021-08-10
US20160007945A1 (en) 2016-01-14
JP2016104327A (ja) 2016-06-09
US9706925B2 (en) 2017-07-18
US9839484B2 (en) 2017-12-12
US10052158B2 (en) 2018-08-21
US20180368916A1 (en) 2018-12-27
US8321150B2 (en) 2012-11-27
US20170202621A1 (en) 2017-07-20
US10492866B2 (en) 2019-12-03
US20140148693A1 (en) 2014-05-29
KR20180082640A (ko) 2018-07-18
US20140222406A1 (en) 2014-08-07
US10327847B2 (en) 2019-06-25
CN103270513A (zh) 2013-08-28
US9855105B2 (en) 2018-01-02
JP5944606B2 (ja) 2016-07-05
US20170340392A1 (en) 2017-11-30
JP2017119152A (ja) 2017-07-06
US20230218347A1 (en) 2023-07-13
KR20170107105A (ko) 2017-09-22
US9167974B2 (en) 2015-10-27
JP5850588B2 (ja) 2016-02-03
EP2845537A3 (de) 2015-06-24
JP2013534154A (ja) 2013-09-02
AU2017203113B2 (en) 2017-08-03
KR20160087393A (ko) 2016-07-21
US8311748B2 (en) 2012-11-13
KR102103126B1 (ko) 2020-04-21
US20140107935A1 (en) 2014-04-17
AU2017279633A1 (en) 2018-01-18
CN107007352B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
DE202011110673U1 (de) System zum patientenspezifischen modellieren von blutfluss
US20230139102A1 (en) Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease
DE202014010680U1 (de) System zum Bewerten kardiovaskulärer Behandlungsoptionen für einen Patienten
DE202014010690U1 (de) System zum Bewerten der Qualität medizinischer Bilder wenigstens eines Teils der Anatomie eines Patienten

Legal Events

Date Code Title Description
R150 Utility model maintained after payment of first maintenance fee after three years
R207 Utility model specification
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: A61B0019000000

Ipc: A61B0034100000

R151 Utility model maintained after payment of second maintenance fee after six years
R152 Utility model maintained after payment of third maintenance fee after eight years
R071 Expiry of right