CN1032324C - 将低温热量变换成电能的方法和设备 - Google Patents

将低温热量变换成电能的方法和设备 Download PDF

Info

Publication number
CN1032324C
CN1032324C CN91105805A CN91105805A CN1032324C CN 1032324 C CN1032324 C CN 1032324C CN 91105805 A CN91105805 A CN 91105805A CN 91105805 A CN91105805 A CN 91105805A CN 1032324 C CN1032324 C CN 1032324C
Authority
CN
China
Prior art keywords
stream
liquid
liquid refrigerant
thermal source
poor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN91105805A
Other languages
English (en)
Other versions
CN1059014A (zh
Inventor
阿历山大·I·卡林纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1059014A publication Critical patent/CN1059014A/zh
Application granted granted Critical
Publication of CN1032324C publication Critical patent/CN1032324C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

实施热力循环的一种方法和设备,该方法包括下列各步骤:令一气态工质流膨胀,将其能量转变为有用的形式并产生废流;将废流与贫流混合成预冷凝流;将预冷凝流冷凝成液态工质流;用泵提高其压力;用废流和贫流传来的热量部分地蒸发液态工质流;从液态工质流形成汽流和第一液流;并将它分离成第二液流和贫流;将第二液流与汽流混合起来,以产生汽-液混合状态的富集流;和以热交换器接收所说富集流,用外热源传来的热量加热富集流,产生气态工质流。

Description

将低温热量变换成电能的方法和设备
本发明总的说来涉及将热能交换成机械能再变换成电能的技术领域。更具体地说,本发明涉及将低温热源的低温热变换成电能的方法和设备。
将低温热源的热能变换成电能的方法是能量生产的一个重要领域。目前有这样一种需要。美国专利US4548043描述了一种产生能量的方法,其中过热的带电复合工作流体通过一涡轮机直至它达到一废流的低温程度。废流的复合工作流体与一冷凝流相混合,混合流被冷凝以产生一初始复合流。然后用泵使该初始复合流增加压力,将之加热并送至一重力分离器。第一富化蒸汽部分与第一剥离流体部分相混合以产生一富化工作流体部分。第二富化蒸汽部分则与一第二剥离流体部分相混合以产生一贫工作流体部分。这贫和富的工作流体部分在被混合以形成复合工作流体之前分别被完全冷凝并用泵增加其压力。而带电的复合工作流体则被汽化及过加热。
本发明目的在于提供一种能提高这种低温热变换成电能的效率的方法和设备,使其超过标准兰金循环的效率。
本发明提供一种实施热力循环的方法,该方法包括下列步骤:
令一气态工质流膨胀,将其能量转变为有用的形式并产生废流;
将废流与贫流混合形成预冷凝流;
将预冷凝流冷凝,产生液态工质流;
用泵提高该液态工质流的压力;
用废流和贫流传来的热量部分地蒸发液态工质流;
从液态工质流形成汽流和第一液流;
将第一液流分离成第二液流和贫流;
将第二液流与汽流混合起来,以产生处于汽—液混合状态的富集流;和
以热交换器接收所说处于汽—液混合状态的富集流,用外热源传来的热量加热富集流,产生气态工质流。
本发明还提供一种实施热力循环的设备,该设备包括:
膨胀装置,用以使一种气态工质流膨胀,将其能量转变成有用形式并产生废流;
一第一料流混合器,用以将废流与贫流混合成预冷凝流
一冷凝器,用以冷凝预冷凝流,产生液态工质流;
一台泵,用以提高液态工质流的压力;
一重力分离器,用以从液态工质流形成汽流和第一液流;
一第一料流分离器,用以将第一液流分离成第二液流和贫流;
一第二料流混合器,用以将第二液流与汽流混合生成富集流,该集流处于汽—液混合状态;
一第一热交换器,用以接收所说处于汽—液混合状态的富集流,并用从外热源传来的热量加热富集流,以产生气态工质流;
一第二热交换器,用以用贫流传来的热量加热液态工质流;和
一第三热交换器,用以用废流传来的热量加热液态工质流。
虽然通常可用普通的外热源来与本发明的方法和设备配用,但本发明特别适宜变换来自低温地热海水或来自太阳池的低温热量。从下面对诸最佳实施例的说明可以看出,本发明的方法和设备能提高采用低温热源的能量循环中低温热变热成电能的效率。
图1是本发明方法和设备的一个实施例的原理图。
本发明是实施热力循环的一种新方法和设备。在本发明的方法中,气态工质流是经过膨胀的。此膨胀过程将工质流的能量转换成有用的形式并产生废流。最佳膨胀装置包括普通常用的涡轮机或涡轮机系。废流经冷凝产生液态工质流。冷凝器最好是现有技术中普通使用的那种。
从液态工质流形成富集流和贫流。富集流中的低沸点组分百分比含量最好高于液态工质流的。贫流的低沸点组分百分比含量最好低于液态工质流的。从液态工质流制造贫流和富集流可采用任何能从单种料流制造两种或多种具有不同组分的料流的普通设备。制备这些料流的装置最好是普通常用的重力分离器,例如普通的闪蒸箱。
富集流最好处于蒸汽状态或汽—液混合状态。贫流最好处于饱和状态或过冷液体状态。
富集流经加热形成气态工质流。该传热过程可经由普通的热交换器进行。加热源可采用任何传统形式的加热源,包括同流换热式热源或外热源。可用于本发明的外热源最好是那些温度低于大约400°F的外热源。特别理想的是那些温度低于250°F的外热源,例如低温地热海水或太阳池外热源。
本发明的方法最好加上这样一个步骤:废流在冷凝形成液态工质流之前先与贫流在第一料流混合器中混合。这种含贫流和废流的料流可以叫做预冷凝流。
本发明的方法最好加上这样一个步骤:用泵提高液态工质流的压力,并用废流和贫流传来的热量使液态工质流部分蒸发。为达到此目的可采用普通的泵和热交换器。
在本发明液态工质流被部分蒸发的实施例中,可以在闪蒸箱将部分蒸发了的液态工质流分离成汽流和液流来形成富集流和贫流—蒸汽产生富集流,富集流经加热形成气态工质流,和产生贫流的液体。不然也可以在闪蒸箱把这种部分蒸发了的液态工质流分离成汽流和第一液流。第一液流又可在第一料流分离器分离成第二液流和贫流。然后将第二液流在第二料流混合器与汽流混合生成富集流。在本发明的这个实施例中,富集流应处于汽—液混合料的状态,这个混合料经加热形成气态工质流。
图1的原理图示出了可用于本发明的方法中较理想设备的一个实施例。具体地说,图1示出了系统100,该系统包括涡轮机101,热交换器104、105和102,冷凝器106,重力分离器103,泵108,料流分离器109和111,料流混合器110、112和114,以及外热源113。
冷凝器106可以是任何类型的已知热耗损设备。例如,冷凝器106可取热交换器的形式,如水冷系统或其它类型的冷凝设备。
驱动本发明的循环可采用各种形式的热源。在图1所示的实施例中,外热源113表示从点1经由热交换器102流至点9的低温地热流体流。
本发明实施例在系统100中所示的工质流最好是含有低沸点组分和高沸点组分的多组分工质流。这类较理想的工质流可以是氨一水混合料、两种或多种烃类、两种或多种氟利昂、烃和氟利昂的混合料等等。一般说来,工质流可以是任何数目热力学性能和溶解度都良好的化合物组成的混合料。在特别值得推荐的实施例中,采用了水与氨的混合料。
如图1所示,工质流在系统100中循环。该工质流包括从热交换器102流向涡轮机101的气态工质流。该工质流还包括从涡轮机101流向第一料流混合器114的废流、从第一料流混合器114流向冷凝器106的预冷凝流、从冷凝器106流向重力分离器103的液态工质流和从第二料流混合器112流向热交换器102的富集流。气态工质流、废流和富集流中所含的低沸点组分百分比最好比预冷凝流和液态工质流中所包含的高。
在系统100中流通的除工质流外还有从第一料流分离器111流向第一料流混合器114的贫流、从重力分离器103流向第一料流分离器111的第一液流、从第一料流分离器111流向第二料流混合器112的第二液流和从重力分离器103流向第二料流混合器112的汽流。贫流、第一液流和第二液流中各自的低沸点组分百分比含量最好低于液态工质流中的。汽流所含低沸点组分百分比最好要比液态工质流中的高。
在本发明图1所示的实施例中,液态工质流是经过彻底冷凝的,其温度最好接近环境温度,其参数如点14处所示,该液态工质流用泵108提高其压力之后,获得如点21所示参数。然后该液态工质流在料流分离器109经过分离之后产生分流,其参数分别如点61和62处所示。这些分流分别传送到同流换热式热交换器104和105。液态工质流的各分流流经热交换器104和105时经过加热,温度达到沸点,其参数分别如点7和4处所示,然后再经过部分蒸发。液态工质流经部分蒸发的分流从热交换器104和105出来之后,其参数分别如点63和64处所示。这些分流接着在料流混合器110中重新混合,重新组成其参数如点5处所示的液态工质流。
点5处的液态工质流最好处于双相状态,即处于部分蒸发状态。该液态工质流传送到重力分离器103(例如闪蒸箱)中,在那里液体从蒸汽中分离出来。
具有如点6处所示参数的汽流从重力分离器103的顶部出来,具有如点10处相同参数的第一液流则从重力分离器103的底部出来。第一液流在第一料流分离器111被分离成分别具有如点11和13处相同参数的贫流和第二液流。第二液流,其参数如点13处所示,在第二料流混合器112与汽流混合,产生具有如点69处相同参数的富集流(在本发明的本实施例中“富集”是指富集流在低沸点组分方面比液态工质流丰富)。该富集流最好处在汽一液混合状态。
富集流送入热交换器102中,在那里为外热源113所加热。图1中所示的外热源113是个地热海水流。这类热源一般温度低于大约400°F,还可能低于大约250°F。此外外热源113也可由一些其它类型的低温料流组成,例如流自太阳池的低温料流。在图1所示的实施例中,地热海水进入热交换器102中,这时具有如点1处参数,再从热交换器102中出来,这时其参数如点9处的一样。如表一所示,点1处的地热海水其温度可能达230°F。
进入热交换器102的富集流经过进一步加热和蒸发之后,作为气态工质流从热交换器102中出来。从热交换器102出来的气态工质流可以是部分蒸发,也可以是完全蒸发处于过热状态。
图1实施例中的气态工质流从热交换器102出来时其参数与点30处的一样。然后气态工质流进入涡轮机101中,在涡轮机101中膨胀作功。废流从涡轮机101中出来时其参数与点36处的一样。该废流送入热交换器105中冷却。废流通过热交换器105中时最好处于部分冷凝状态,以获取与点38处一样的参数。废流通过热交换器105时传递热量,用以加热而且最好部分蒸发液态工质流从点62流至点64的支流。
参数与点11处的一样的贫流通过热交换器104,在交换器104中冷却。贫流通过热交换器104时提供热量,供预热而且最好部分蒸发从点61流至点63的液态工质流的支流之用。贫流从热交换器104出来时其参数与点20处的一样。在图1所示的实施例中,贫流通过减压装置107,该装置可以是一个节流阀。从减压装置107出来之后,贫流获得如点19处相同的参数。
在第一料流混合器114处,贫流与废流混合,产生具有如点29处相同参数的预冷凝流。该预冷凝流送入冷凝器106中,在冷凝器106中为自点23流至点24的冷却剂流彻底冷凝。经此冷凝产生了参数与点14处的一样的液态工质流,于是就完成了整个循环。
具有含49.5重量%的氨的水—氨富集流的一个系统其对应于图1所设各点的合适参数如表一所示。表2列出了采用图1所示实施例中表一各参数的本发明系统的理论特性。从该表列出的数据可以看出,本发明提出的系统理论上应有10.34%的效率,这在相同的边界条件下应超过标准兰金循环之效率约1.67倍。采用图1所示实施例的热源,在各参数如表一所列的情况下,预期可使功率输出从3.3兆瓦增加到5.5兆瓦。
                  表一点    压力        X      度°F    热量      G(磅/平方英寸)              (英热量单位/磅)1    -          海水    230.00     -      9.65542   37.90       0.2651  138.56    30.93   7.47283   9.97        0.4950  138.56    467.66  1.00004   40.10       0.2922  134.56    20.82   2.97285   38.10       0.2922  142.00    58.54   8.47286   38.10       0.9408  142.00    634.62  .34037   40.10       0.2922  134.56    20.82   5.50009    -          BRINE   170.62     -      9.655410  38.10       0.2651  142.00    34.44   8.132511  38.10       0.2651  142.00    34.44   7.472813  38.10       0.2651  142.00    34.44    .659714  8.72        0.2922  62.00    -54.06   8.472819  9.22        0.2651  76.79    -24.12   7.472820  37.70       0.2651  85.03    -24.12   7.472821  42.10       0.2922  62.00    -53.99   8.472823     -       水      55.00     -       17.458824     -       水      84.96     -       17.458829     9.22   0.2922   78.76     7.68     8.472830    33.10   0.4950  217.50    823.45    1.000036    10.72   0.4950  165.00    761.36    1.000038     9.22   0.4950   94.37    245.29    1.000061    42.10   0.2922   62.00    -53.99    5.500062    42.10   0.2922   62.00    -53.99    2.972863    38.10   0.2922  133.58     25.53    5.500064    38.10   0.2922  158.00    119.61    2.972869    38.10   0.4950  142.00    238.67    1.0000
               表二
涡轮机的总热函降=62.08英热量单位/磅
涡轮机作功=60.53英热量单位/磅
供热量=84.78英热量单位/磅
热损耗=523.04英热量单位/磅
泵功率消耗=.09英热量单位/磅
净功率输出=60.44英热量单位/磅
净热效率=10.34%
工质重量流量=310705.84
净输出               5502.59KWe
第二定律极限         20.90%
第二定律效率         49.45%
海水消耗率           545.20磅/KWe
单位功率输出         1.83瓦—小时/磅
虽然本发明是就一些最佳实施例进行说明的(这些实施例应用了单一较理想的外热源),但本技术领域的专业人士不难理解,对这些实施例是可以进行一系列变更的。例如,可以采用不同的外热源,可以增加或减少热交换器的数目,可以改变泵、涡轮机、冷凝装置、分离器等的数目,还可以改变流经整个循环通路的料流的数量和组成。因此,本发明书所附的权利要求书旨在包括所有属于本发明精神实质和范围的这类变更和改型。

Claims (10)

1.实施热力循环的一种方法,该方法包括下列各步骤:
令一气态工质流膨胀,将其能量转变为有用的形式并产生废流;
将废流与贫流混合形成预冷凝流;
将预冷凝流冷凝,产生液态工质流;
用泵提高该液态工质流的压力;
用废流和贫流传来的热量部分地蒸发液态工质流;
从液态工质流形成汽流和第一液流;
将第一液流分离成第二液流和贫流;
将第二液流与汽流混合起来,以产生处于汽—液混合状态的富集流;和
以热交换器接收所说处于汽—液混合状态的富集流,用外热源传来的热量加热富集流,产生气态工质流。
2.如权利要求1的方法,其特征在于,它还包括这样一个步骤:用温度小于大约400°F的外热源传来的热量加热富集流。
3.如权利要求1的方法,其特征在于,它还包括这样一个步骤:用温度小于大约250°F的外热源传来的热量加热富集流。
4.如权利要求1的方法,其特征在于,所述外热源选自一组由低温地热海水和太阳池组成的热源。
5.权利要求1的方法,其特征在于,所述气态工质流、废流、贫流、预冷凝流、液态工质流、第一液流、第二液流、汽流和富集流各含有一低沸点组分和一高沸点组分。
6.实施热力循环的一种设备,它包括:
膨胀装置,用以使一种气态工质流膨胀,将其能量转变成有用形式并产生废流;
一第一料流混合器,用以将废流与贫流混合成预冷凝流;
一冷凝器,用以冷凝预冷凝流,产生液态工质流;
一台泵,用以提高液态工质流的压力;
一重力分离器,用以从液态工质流形成汽流和第一液流;
一第一料流分离器,用以将第一液流分离成第二液流和贫流;
一第二料流混合器,用以将第二液流与汽流混合生成富集流,该集流处于汽—液混合状态;
其特征在于,该设备还包括:
一第一热交换器,用以接收所说处于汽—液混合状态的富集流,并用从外热源传来的热量加热富集流,以产生气态工质流;
一第二热交换器,用以用贫流传来的热量加热液态工质流;和
一第三热交换器,用以用废流传来的热量加热液态工质流。
7.如权利要求6的设备,其特征在于,它还包括各包含低沸点组分和高沸点组分的气态工质流、废流、贫流、预冷凝流、液态工质流、第一液流、第二液流、汽流和富集流。
8.如权利要求6的设备,其特征在于,它还包括一外热源,其温度约小于400°F。
9.如权利要求8的设备,其特征在于,所述外热源的温度小于大约250°F。
10.如权利要求9的设备,其特征在于,所述外热源选自一组由低温地热海水和太阳池组成的热源。
CN91105805A 1990-08-15 1991-08-14 将低温热量变换成电能的方法和设备 Expired - Fee Related CN1032324C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/567,914 US5029444A (en) 1990-08-15 1990-08-15 Method and apparatus for converting low temperature heat to electric power
US567,914 1990-08-15

Publications (2)

Publication Number Publication Date
CN1059014A CN1059014A (zh) 1992-02-26
CN1032324C true CN1032324C (zh) 1996-07-17

Family

ID=24269152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91105805A Expired - Fee Related CN1032324C (zh) 1990-08-15 1991-08-14 将低温热量变换成电能的方法和设备

Country Status (12)

Country Link
US (1) US5029444A (zh)
EP (1) EP0472020B1 (zh)
JP (1) JP2716606B2 (zh)
CN (1) CN1032324C (zh)
AT (1) ATE126566T1 (zh)
DE (1) DE69112155T2 (zh)
DK (1) DK0472020T3 (zh)
ES (1) ES2078396T3 (zh)
GR (1) GR3017789T3 (zh)
IS (1) IS1714B (zh)
MX (1) MX9100666A (zh)
NZ (1) NZ239143A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347417C (zh) * 1998-02-05 2007-11-07 艾克泽吉公司 用于实现热循环的方法和装置

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095708A (en) * 1991-03-28 1992-03-17 Kalina Alexander Ifaevich Method and apparatus for converting thermal energy into electric power
JPH0794815B2 (ja) * 1993-09-22 1995-10-11 佐賀大学長 温度差発電装置
US5440882A (en) * 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US5392606A (en) * 1994-02-22 1995-02-28 Martin Marietta Energy Systems, Inc. Self-contained small utility system
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
JP2972546B2 (ja) * 1995-04-27 1999-11-08 株式会社日立製作所 電気絶縁線輪の製法
US5649426A (en) * 1995-04-27 1997-07-22 Exergy, Inc. Method and apparatus for implementing a thermodynamic cycle
US5588298A (en) * 1995-10-20 1996-12-31 Exergy, Inc. Supplying heat to an externally fired power system
US5822990A (en) 1996-02-09 1998-10-20 Exergy, Inc. Converting heat into useful energy using separate closed loops
US5950433A (en) * 1996-10-09 1999-09-14 Exergy, Inc. Method and system of converting thermal energy into a useful form
US6694740B2 (en) 1997-04-02 2004-02-24 Electric Power Research Institute, Inc. Method and system for a thermodynamic process for producing usable energy
US5842345A (en) * 1997-09-29 1998-12-01 Air Products And Chemicals, Inc. Heat recovery and power generation from industrial process streams
US6173563B1 (en) 1998-07-13 2001-01-16 General Electric Company Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
US6213059B1 (en) 1999-01-13 2001-04-10 Abb Combustion Engineering Inc. Technique for cooling furnace walls in a multi-component working fluid power generation system
US6263675B1 (en) 1999-01-13 2001-07-24 Abb Alstom Power Inc. Technique for controlling DCSS condensate levels in a Kalina cycle power generation system
US6158221A (en) * 1999-01-13 2000-12-12 Abb Alstom Power Inc. Waste heat recovery technique
US6105368A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Blowdown recovery system in a Kalina cycle power generation system
US6116028A (en) * 1999-01-13 2000-09-12 Abb Alstom Power Inc. Technique for maintaining proper vapor temperature at the super heater/reheater inlet in a Kalina cycle power generation system
US6155053A (en) * 1999-01-13 2000-12-05 Abb Alstom Power Inc. Technique for balancing regenerative requirements due to pressure changes in a Kalina cycle power generation system
US6155052A (en) * 1999-01-13 2000-12-05 Abb Alstom Power Inc. Technique for controlling superheated vapor requirements due to varying conditions in a Kalina cycle power generation system cross-reference to related applications
US6253552B1 (en) 1999-01-13 2001-07-03 Abb Combustion Engineering Fluidized bed for kalina cycle power generation system
US6125632A (en) * 1999-01-13 2000-10-03 Abb Alstom Power Inc. Technique for controlling regenerative system condensation level due to changing conditions in a Kalina cycle power generation system
US6195998B1 (en) 1999-01-13 2001-03-06 Abb Alstom Power Inc. Regenerative subsystem control in a kalina cycle power generation system
US6105369A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Hybrid dual cycle vapor generation
US6035642A (en) * 1999-01-13 2000-03-14 Combustion Engineering, Inc. Refurbishing conventional power plants for Kalina cycle operation
US6202418B1 (en) 1999-01-13 2001-03-20 Abb Combustion Engineering Material selection and conditioning to avoid brittleness caused by nitriding
US6158220A (en) * 1999-01-13 2000-12-12 ABB ALSTROM POWER Inc. Distillation and condensation subsystem (DCSS) control in kalina cycle power generation system
US6167705B1 (en) 1999-01-13 2001-01-02 Abb Alstom Power Inc. Vapor temperature control in a kalina cycle power generation system
US6195997B1 (en) * 1999-04-15 2001-03-06 Lewis Monroe Power Inc. Energy conversion system
US6170263B1 (en) 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
DE69938039T2 (de) 1999-07-23 2009-01-22 Exergy, Inc., Hayward Methode und Anlage zur Umwandlung von Wärme in nützliche Energie
LT4813B (lt) 1999-08-04 2001-07-25 Exergy,Inc Šilumos pavertimo naudinga energija būdas ir įrenginys
US6347520B1 (en) 2001-02-06 2002-02-19 General Electric Company Method for Kalina combined cycle power plant with district heating capability
CA2393386A1 (en) 2002-07-22 2004-01-22 Douglas Wilbert Paul Smith Method of converting energy
US6829895B2 (en) 2002-09-12 2004-12-14 Kalex, Llc Geothermal system
US6820421B2 (en) * 2002-09-23 2004-11-23 Kalex, Llc Low temperature geothermal system
US6735948B1 (en) 2002-12-16 2004-05-18 Icalox, Inc. Dual pressure geothermal system
US6769256B1 (en) 2003-02-03 2004-08-03 Kalex, Inc. Power cycle and system for utilizing moderate and low temperature heat sources
RS52092B (en) * 2003-02-03 2012-06-30 Kalex Llc. PROCEDURE AND DEVICE FOR THE APPLICATION OF THE THERMODYNAMIC CYCLE FOR THE USE OF HEAT ENERGY OF MEDIUM-TEMPERATURE AND LOW-TEMPERATURE HEAT SOURCES
US7305829B2 (en) * 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US6964168B1 (en) 2003-07-09 2005-11-15 Tas Ltd. Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same
DE10335143B4 (de) * 2003-07-31 2010-04-08 Siemens Ag Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
DE10335134A1 (de) * 2003-07-31 2005-02-17 Siemens Ag Verfahren und Vorrichtung zur Ausführung eines thermodynamischen Kreisprozesses
US7264654B2 (en) * 2003-09-23 2007-09-04 Kalex, Llc Process and system for the condensation of multi-component working fluids
US7065967B2 (en) * 2003-09-29 2006-06-27 Kalex Llc Process and apparatus for boiling and vaporizing multi-component fluids
CA2543470A1 (en) * 2003-10-21 2005-05-12 Petroleum Analyzer Company, Lp An improved combustion apparatus and methods for making and using same
US8117844B2 (en) * 2004-05-07 2012-02-21 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
GR20050100002A (el) * 2005-01-07 2006-09-21 Δημος Μαγκλαρας Παραγωγη ηλεκτρικης ενεργειας με ηλιακους συλλεκτες ζεστου νερου και πεπιεσμενο ατμο αμμωνιας που κινει ατμοηλεκτρογεννητρια
US7287381B1 (en) * 2005-10-05 2007-10-30 Modular Energy Solutions, Ltd. Power recovery and energy conversion systems and methods of using same
US7827791B2 (en) * 2005-10-05 2010-11-09 Tas, Ltd. Advanced power recovery and energy conversion systems and methods of using same
US8464531B2 (en) * 2007-05-18 2013-06-18 Igor Isaakovich Samkhan Method and device for converting thermal energy into electricity, high potential heat and cold
DE102008045450B4 (de) * 2008-02-01 2010-08-26 Siemens Aktiengesellschaft Verfahren zum Betreiben eines thermodynamischen Kreislaufes sowie thermodynamischer Kreislauf
US8087248B2 (en) * 2008-10-06 2012-01-03 Kalex, Llc Method and apparatus for the utilization of waste heat from gaseous heat sources carrying substantial quantities of dust
US8695344B2 (en) * 2008-10-27 2014-04-15 Kalex, Llc Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
US8176738B2 (en) 2008-11-20 2012-05-15 Kalex Llc Method and system for converting waste heat from cement plant into a usable form of energy
US8459031B2 (en) * 2009-09-18 2013-06-11 Kalex, Llc Direct contact heat exchanger and methods for making and using same
US8397504B2 (en) * 2010-02-08 2013-03-19 Global Alternative Fuels, Llc Method and apparatus to recover and convert waste heat to mechanical energy
US8800280B2 (en) 2010-04-15 2014-08-12 Gershon Machine Ltd. Generator
US8474263B2 (en) 2010-04-21 2013-07-02 Kalex, Llc Heat conversion system simultaneously utilizing two separate heat source stream and method for making and using same
US8544284B2 (en) 2010-06-25 2013-10-01 Petrochina North China Petrochemical Company Method and apparatus for waste heat recovery and absorption gases used as working fluid therein
US20120006024A1 (en) * 2010-07-09 2012-01-12 Energent Corporation Multi-component two-phase power cycle
US9540963B2 (en) 2011-04-14 2017-01-10 Gershon Machine Ltd. Generator
CN102338047A (zh) * 2011-09-13 2012-02-01 上海盛合新能源科技有限公司 一种地热发电设备
US8833077B2 (en) 2012-05-18 2014-09-16 Kalex, Llc Systems and methods for low temperature heat sources with relatively high temperature cooling media
US9638175B2 (en) * 2012-10-18 2017-05-02 Alexander I. Kalina Power systems utilizing two or more heat source streams and methods for making and using same
WO2014087642A1 (ja) 2012-12-06 2014-06-12 パナソニック株式会社 ランキンサイクル装置、熱電併給システム及びランキンサイクル装置の運転方法
CN103306917A (zh) * 2013-05-29 2013-09-18 上海盛合新能源科技有限公司 地热能太阳能联合氨水热电转换系统
CN103306918A (zh) * 2013-05-29 2013-09-18 上海盛合新能源科技有限公司 采用光热二次蒸发的地热发电系统
CN103292306A (zh) * 2013-06-30 2013-09-11 苏州市牛勿耳关电器科技有限公司 一种智能城市供热系统
WO2015165477A1 (en) 2014-04-28 2015-11-05 El-Monayer Ahmed El-Sayed Mohamed Abd El-Fatah High efficiency power plants
JP6659696B2 (ja) * 2014-09-08 2020-03-04 アプライド・バイオミメティック・エイ/エス 発電方法
US9359919B1 (en) * 2015-03-23 2016-06-07 James E. Berry Recuperated Rankine boost cycle
GB201711240D0 (en) 2017-07-12 2017-08-23 Saltkraft Aps Power generation process
GB201711238D0 (en) 2017-07-12 2017-08-23 Saltkraft Aps Power generation process
BE1026296B9 (nl) * 2018-05-23 2020-02-24 Bart Gios Absorptiesysteem met gesloten cyclus en werkwijze voor het afkoelen en genereren van stroom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1546326A (fr) * 1966-12-02 1968-11-15 Générateur d'énergie perfectionné, particulièrement pour créer une énergie enutilisant un réfrigérant
US4346561A (en) * 1979-11-08 1982-08-31 Kalina Alexander Ifaevich Generation of energy by means of a working fluid, and regeneration of a working fluid
DE3173962D1 (en) * 1981-05-15 1986-04-10 Kalina Alexander Ifaevich Generation of energy by means of a working fluid, and regeneration of a working fluid
US4489563A (en) * 1982-08-06 1984-12-25 Kalina Alexander Ifaevich Generation of energy
US4548043A (en) * 1984-10-26 1985-10-22 Kalina Alexander Ifaevich Method of generating energy
US4586340A (en) * 1985-01-22 1986-05-06 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration
US4604867A (en) * 1985-02-26 1986-08-12 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with intercooling
US4763480A (en) * 1986-10-17 1988-08-16 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with recuperative preheating
US4732005A (en) * 1987-02-17 1988-03-22 Kalina Alexander Ifaevich Direct fired power cycle
JPS6490974A (en) * 1987-10-01 1989-04-10 Shinagawa Fuel Co Ltd Cooling vessel
US4899545A (en) * 1989-01-11 1990-02-13 Kalina Alexander Ifaevich Method and apparatus for thermodynamic cycle
JP2503150Y2 (ja) * 1990-05-10 1996-06-26 中部電力株式会社 非共沸混合流体サイクルプラントの蒸気凝縮装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347417C (zh) * 1998-02-05 2007-11-07 艾克泽吉公司 用于实现热循环的方法和装置

Also Published As

Publication number Publication date
IS3736A7 (is) 1992-02-16
DE69112155D1 (de) 1995-09-21
IS1714B (is) 1999-04-23
MX9100666A (es) 1992-04-01
US5029444A (en) 1991-07-09
ES2078396T3 (es) 1995-12-16
GR3017789T3 (en) 1996-01-31
JPH0626441A (ja) 1994-02-01
DE69112155T2 (de) 1996-01-04
ATE126566T1 (de) 1995-09-15
NZ239143A (en) 1993-12-23
EP0472020A1 (en) 1992-02-26
CN1059014A (zh) 1992-02-26
EP0472020B1 (en) 1995-08-16
JP2716606B2 (ja) 1998-02-18
DK0472020T3 (da) 1995-12-27

Similar Documents

Publication Publication Date Title
CN1032324C (zh) 将低温热量变换成电能的方法和设备
EP0180295B1 (en) Method of generating energy
US4982568A (en) Method and apparatus for converting heat from geothermal fluid to electric power
CN100347417C (zh) 用于实现热循环的方法和装置
EP0652368B1 (en) Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US8695344B2 (en) Systems, methods and apparatuses for converting thermal energy into mechanical and electrical power
CN1067138C (zh) 一种进行热力循环的方法及其循环装置
US8561406B2 (en) Process and power system utilizing potential of ocean thermal energy conversion
CN1031728C (zh) 将热能转化成电能的方法和装置
KR930004517B1 (ko) 에너지 발생방법
US6923000B2 (en) Dual pressure geothermal system
US4763480A (en) Method and apparatus for implementing a thermodynamic cycle with recuperative preheating
US7021060B1 (en) Power cycle and system for utilizing moderate temperature heat sources
US20030167769A1 (en) Mixed working fluid power system with incremental vapor generation
CN1447016A (zh) 利用液化天然气冷分离二氧化碳的燃气轮机发电系统及流程
CN1891981A (zh) 热力循环和装置
JPS61229905A (ja) 機械的動力発生方法
CN107939548A (zh) 新型内燃机余热利用冷热电联供系统及其工作方法
US8584462B2 (en) Process and power system utilizing potential of ocean thermal energy conversion
US8534070B2 (en) Power systems designed for the utilization of heat generated by solar-thermal collectors and methods for making and using same
WO1991007573A2 (en) Heat conversion into mechanical work through absorption-desorption
Xiao et al. Simulation Analysis of Double-effect Seawater Desalination System Using Compression Heat Pump
CN1806095A (zh) 从多个热源获取热量的方法和设备
CN116928026A (zh) 一种船用多功能储能装置系统及方法
CN115478924A (zh) 一种燃气与非水工质联合循环方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee