CA2667065A1 - Use of block copolymers based on vinyllactams and vinyl acetate as solubilizers - Google Patents

Use of block copolymers based on vinyllactams and vinyl acetate as solubilizers Download PDF

Info

Publication number
CA2667065A1
CA2667065A1 CA002667065A CA2667065A CA2667065A1 CA 2667065 A1 CA2667065 A1 CA 2667065A1 CA 002667065 A CA002667065 A CA 002667065A CA 2667065 A CA2667065 A CA 2667065A CA 2667065 A1 CA2667065 A1 CA 2667065A1
Authority
CA
Canada
Prior art keywords
active ingredients
water
spp
block copolymers
agrochemical active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002667065A
Other languages
French (fr)
Inventor
Yvonne Dieckmann
Murat Mertoglu
Rainer Dobrawa
Szilard Csihony
Cedric Dieleman
Torsten Knieriem
Sebastian Koltzenburg
Holger Tuerk
Ulrike Troppmann
Christian Michael Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2667065A1 publication Critical patent/CA2667065A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers

Abstract

The invention relates to the application of polyvinyl lactam-polyvinyl acetate block copolymers as solubilizers for agents which are minimally soluble in water.

Description

Use of block copolymers based on vinyllactams and vinyl acetate as solubilizers Description The present invention relates to the use of block copolymers based on vinyllactams and vinyl acetate as solubilizers and crystallization inhibitors for active ingredients that are sparingly soluble in water, in particular of pesticides (agrochemical active ingredients).

In the production of homogenous preparations in particular of biologically active substances, the solubilization of hydrophobic substances, i.e. substances that are sparingly soluble in water, has gained very great practical importance.

Solubilization is to be understood as meaning making substances that are insoluble or sparingly soluble in a certain solvent, in particular water, soluble through interface-active compounds, the solubilizers. Such solubilizers are able to convert sparingly water-soluble or water-insoluble substances into clear, at most opalescent, aqueous solutions without the chemical structure of these substances undergoing a change as a result (cf. Rompp Chemie Lexikon, 9th edition, vol. 5, p. 4203, Thieme Veriag, Stuttgart, 1992).

The solubilisates produced are characterized in that the sparingly water-soluble or water-insoluble substance is present in colloidally dissolved form in the molecular associations of the surface-active compounds which form in aqueous solution, such as, for example, hydrophobic domains or micelles. The resulting solutions are stable or metastable single-phase systems which appear optically clear to opalescent.
Solubilizers can, for example, improve the appearance of cosmetic formulations and of food preparations by making the formulations transparent. Furthermore, in the case of pharmaceutical preparations, the bioavailability and thus the effect of drugs can also be increased through the use of solubilizers.

The solubilizers used for pharmaceutical drugs and cosmetic active ingredients are preliminary surfactants such as ethoxylated ricinus oil or ethoxylated hydrogenated ricinus oil, ethoxylated sorbitan fatty acid esters or ethoxylated hydroxystearic acid.
The above-described solubilizers used hitherto, however, have a number of application-related disadvantages.

The known solubilizers have only a slight solubilizing effect for some sparingly soluble drugs, such as, for example, clotrimazole.
EP-A 876 819 describes the use of copolymers of at least 60% by weight of N-vinyl-pyrrolidone and amides or esters with long-chain alkyl groups.

EP-A 948 957 describes the use of copolymers of monoethylenically unsaturated carboxylic acids, such as, for example, acrylic acid, and hydrophobically modified comonomers, such as, for example, N-alkyl- or N,N-dialkylamides of unsaturated carboxylic acids with C8-C30-alkyl radicals.

DE-A 199 350 63 discloses graft polymers containing polyalkylene oxide on the basis of vinyllactams and vinyl acetate, and their use as gas hydrate inhibitors.

EP-A 953 347 discloses the use of graft polymers containing polyalkylene oxide as solubilizers. The graft polymers of vinyl acetate and poiyalkylene oxides described therein often do not constitute powders, but viscous-sticky liquids, which is disadvantageous from the point of view of application.

EP 0781 550 discloses the use of random copolymers of vinylpyrrolidone and vinyl acetate as bioadhesion agents in pharmacy.

DE 1245542 discioses the use of random copolymers of polyvinylpyrrolidone with vinyl acetate as solvent for peptide antibiotics. The block copolymer specified is the block copolymer of polyoxyethylene and polyoxypropylene.

Numerous types of block polymers are prepared by ionic polymerization.
However, this method is not suitable for all monomers. A polymerization via free-radically initiated methods is open to a large number of monomers, but a normal free-radical polymerization cannot be used for producing block copoiymers.

For this reason, the method of controlled free-radical polymerization, which is also referred to as "living" polymerization, was developed.

One variant of living free-radical polymerization is the so-called "RAFT"
method (RAFT:
Reversible Addition-Fragmentation chain Transfer). Here, suitable chain transfer agents, which are also referred to as RAFT reagents, are certain sulfur compounds, for example dithiocarbamates or xanthates.

EP-B 991 683 describes the production of block copolymers from polyvinyl acetate and polyalkyl acrylate blocks via living polymerization with xanthates.

WO 98/01478 discloses the production of block polymers of polyalkyl acrylates and polystyrenes via living polymerization with thiocarbonylthio compounds as chain transfer agents.
EP-A 1510533 describes the production of block copolymers comprising polyvinyllactam blocks by living polymerization. The polyvinyllactarn block here may also be a copolymer of vinyllactam and up to 45% by weight of vinyl acetate.
The coblocks described are polyhydrocarbons or poly(meth)acrylates.

P. Bilalis et al., Journal of Polymer Science: Part A, Vol. 44, 659-665 (2006) discloses the production of polyvinylpyrrolidone block copolymers by means of RAFT
polymerization.
T.L. Uyen Nguyen et al. describe in Journal of Polymer Science: Part A, Vol.
44, 4372-4383 (2006) the production of block copolymers of polyvinylpyrrolidone and polyvinyl acetate biocks by controlled polymerization, and the use of such block copolymers as stabilizers in the suspension polymerization of special crosslinked polymer microspheres.

A further desirable requirement of solubilizers is the ability to form so-called "solid solutions" with sparingly soluble substances. The term "solid solution" refers to a state in which a substance is distributed in microdisperse form or, in the ideal case, in molecularly disperse form, in a solid matrix, for example a polymer matrix.
Such solid solutions lead, for example when used in solid pharmaceutical administration forms of a sparingly soluble active ingredient, to improved release of the active ingredient. An important requirement of such solid solutions is that they are also stable upon storage over an extended period, i.e. that the active ingredient does not crystallize out.
Furthermore, the capacity of the solid solution, in other words the ability to form stable solid solutions with the highest possible active ingredient contents, is also of importance.

Solid solution here refers to a state in which the active ingredient is present in molecularly disperse distribution in a matrix of auxiliaries. In this state, crystalline fractions of the active ingredient can no longer be established by means of X-ray diffractometry. Since the detection limit for crystalline fractions in X-ray diffractometry is 3% by weight, the expression "no crystalline fractions" means that less than 3% by weight of crystalline fractions are present. The state of the molecularly disperse distribution can be ascertained with the help of the differential scanning calorimetry (DSC) method. In the case of a molecularly disperse distribution, a melting peak can no longer be observed in the region of the melting point of the active ingredient. The detection limit of this method is 1 % by weight. WO 05/046328 gives examples of solid solutions.
For the formation of solid solutions, besides the fundamental ability of the solubilizers to form solid solutions, the hygroscopicity of the solubilizers also plays an important role. Solubilizers which absorb too much water from the ambient air lead to deliquescence of the solid solution and the undesired crystallization of the active ingredients. An extensively great hygroscopicity can also present problems during processing to give administration forms or solid agrochemical preparations.
Particularly in the case of agrochemical preparations, this can lead to problems during storage as a result of so-called agglutination.

The hitherto known polymeric solubilizers have the disadvantages that they do not form stable solid solutions. Furthermore, they still leave room for improvements regarding solubilization in aqueous systems. Some of the known solubilizers also have disadvantages with regard to processability on account of their tendency toward stickiness since they do not constitute adequately flowable powders.

Furthermore, particularly in the case of agrochemical preparations, it is of importance to achieve high storage stability of the preparation through selection of suitable solubilizers (e.g. by avoiding crystallization formation) and/or, through selection of a suitable solubilizer, to increase the bioavailability of the pesticide and/or have the lowest possible phytotoxicity. There is a constant need here to find suitable solubilizers.
In the case of the formulation of active ingredients that are sparingly soluble in water, there is the problem that the sparingly soluble active ingredient in the aqueous formulation has a tendency toward crystallization during storage. For sparingly soluble active ingredients, this problem is naturally closely related to the problem of lack of solubilization.

It was therefore the object to provide novel and improved solubilizers for pharmaceutical, cosmetic, food or agrochemical applications which do not have the described disadvantages. Moreover, it is an object of the present invention to provide solubilizers in particular for sparingly soluble pesticides which permit high storage stability of the agrochemical preparations and/or increase the bioavailability of the pesticide and/or have the lowest possible phytotoxicity.

As already explained, it was an object of the present invention to provide improved copolymers as solubilizers and as crystallization inhibitors.

Accordingly, the use of block copolymers consisting of at least one polyvinyllactam block and at least one polyvinyl acetate block as solubilizers for active ingredients that are sparingly soluble in water has been found. Furthermore, accordingly, the use of block copolymers consisting of at least one polyvinyllactam block and at least one polyvinyl acetate block as crystallization inhibitors for active ingredients that are sparingly soluble in water, preferably pesticides, has been found.
Furthermore, it has been found that the block copolymers according to the invention can simultaneously solve the abovementioned problems of solubilization and of crystallization inhibition.
For the purposes of the present invention, active ingredients are understood as meaning biologically active substances which are used in pharmaceutical preparations 5 or cosmetic preparations, food supplements or foods. They are also understood as meaning biologically active substances for agrochemical applications (also called pesticides or agrochemical active ingredients).

In particular, these block copolymers are suitable as solubilizers arid/or crystallization inhibitors for pesticides that are sparingly soluble in water.

The block copolymers may be of the AB, ABA or BAB type.

Suitable as polyvinyllactam are N-vinylpyrrolidone, N-vinylpiperidone or N-vinylcapro-lactam, preferably polyvinylpyrrolidone.

The molar ratio of polyvinyllactam to polyvinyl acetate (PVAc) can be 10 to 90 to 90 to 10, preferably 30 to 70 to 70 to 30, particularly preferably 60:40 to 40:60.

Hereinafter, the polyvinyllactam block is also referred to as A block, and the polyvinyl acetate block is referred to as B block.

In principle, the block copolymers can be prepared by any method suitable for this purpose.
Thus, for example, coupling of the PVP and the PVAc blocks can take place via diisocyanates.

In order to make it possible for the polyvinyl acetate block to couple onto the polyvinyllactam block, the polymer blocks are functionalized at the chain start and/or at the chain end with hydroxyl groups. The OH functionalization can be achieved either via the radical starter or via a regulator. Functionalization via the radical starter takes place at the chain start, functionalization via the regulator at the chain end. In order to achieve a functionalization, at least one radical starter carrying hydroxyl groups or one regulator carrying hydroxyl groups must therefore be used in the polymerization of the prepolymers. If B-A-B or A-B-A block copolymers are to be produced, radical starters and regulators must carry hydroxyl groups.

General methods of producing the vinyllactam prepolymers and the polyvinyl acetate prepolymers are known per se.

The production takes place by free-radically initiated polymerization in suitable solvents.

Suitable N-vinyllactams are N-vinylpyrrolidone, N-vinylcaproiactam or N-vinylpiperidone or mixtures thereof. Preference is given to using N-vinylpyrrolidone.
Suitable nonaqueous solvents are, for example, alcohols, such as methanol, ethanol, n-propanol, and isopropanol, and also giycols, such as ethylene glycol and glycerol.
Also suitable as solvents are acetic acid esters, such as, for example, ethyl acetate or butyl acetate.

Preference is given to using those solvents which do not act as regulator.
These are known to the person skilled in the art.

For the solvents for producing the polyvinyl acetate, that stated above is applicable.
The polymerization is preferably carried out at temperatures from 60 to 100 C.

To initiate the polymerization, free-radical initiators are used as radical starters. The amounts of initiator or initiator mixtures used, based on monomer used, are between 0.01 and 10% by weight, preferably between 0.3 and 5% by weight.

Depending on the type of solvent used, both organic and inorganic peroxides are suitable, such as sodium persulfate or azo starters such as azobisisobutyronitrile, azobis(2-amidopropane) dihydrochioride or 2,2'-azobis(2-methylbutyronitrile).

Peroxidic initiators are, for example, dibenzoyl peroxide, diacetyl peroxide, succinyl peroxide, tert-butyl perpivalate, tert-butyl 2-ethylhexanoate, tert-butyl permaleinate, bis(tert-butylperoxy)cyclohexane, tert-butyl peroxyisopropylcarbonate, tert-butyl peracetate, 2,2-bis(tert-butylperoxy)butane, dicumyl peroxide, di-tert-amyl peroxide, di-tert-butyl peroxide, p-menthane hydroperoxide, pinane hydroperoxide, cumene hydroperoxide, tert-butyl hydroperoxide, hydrogen peroxide, and mixtures of the specified initiators. The specified initiators can also be used in combination with redox components such as ascorbic acid.
If the OH functionalization is to take place via the radical starter, OH-functionalized starters in particular are suitable, such as, for example, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis{2-methyl-N-[2-(1-hydroxybutyl)]propionamide}
or 2,2'-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane}
dihydrochloride.
The free-radical polymerization can, if appropriate, take place in the presence of emulsifiers, if appropriate further protective colloids, if appropriate buffer systems and if appropriate subsequent pH adjustment by means of bases or acids.

Suitable molecular weight regulators are hydrogen sulfide compounds, such as alkyl mercaptans, e.g. n-dodecyimercaptan, tert-dodecyl mercaptan, thioglycolic acid and esters thereof, mercaptoalkanofs such as mercaptoethanol. Further suitable regulators are specified, for example, in DE 197 12 247 Al, page 4. The required amount of molecular weight regulator is in the range from 0 to 5% by weight, based on the amount of monomers to be polymerized, in particular 0.05 to 2% by weight, particulariy preferably 0.1 to 1.5% by weight. Preference is given to mercaptoethanol.
The monomers or a monomer mixture or the monomer(s) emulsiori are initially introduced together with the initiator, which is usually in the form of a solution, in a stirred reactor at the polymerization temperature (batch process), or metered into the polymerization reactor if appropriate continuously or in a plurality of successive stages (feed method). In the case of the feed method, it is customary, before the start of the actual polymerization, for the reactor to already contain, besides water (in order to permit stirring of the reactor) part amounts, rarely the total amount intended for the polymerization, of the feed materials such as emulsifiers, protective colloids, monomers, regulators etc. or part amounts of the feeds (including monomer feed or emulsion feed and initiator feed).

The polyvinyl acetates are reacted in equimolar amounts, based on the hydroxyl groups in the polyvinyl acetate and in the vinyllactam prepolymer. The amount of OH
groups present can, if required, be ascertained in a manner known per se to the person skilled in the art. To ascertain the hydroxyl number, see, for example, Rompp Chemie Lexikon, 9th edition, 1990.

The coupling of vinyllactam polymers and polyvinyl acetates takes place through reaction with diisocyanates, the reaction with the hydroxyl groups of the polymer resulting in coupling via urethane groups. In this connection, either the vinyllactam polymer or the polyvinyl acetate can firstly be reacted with the diisocyanate.

According to a preferred embodiment of the invention, the coupling takes place via polyvinyl acetates functionalized with isocyanate groups as end groups. For this, the polyvinyl acetate is firstly reacted with the diisocyanate and then the polyvinyl acetate functionalized in this way is reacted with the vinyllactam polymer.

Irrespective of which embodiment is selected, the reaction can take place as follows:
Suitable diisocyanates are compounds of the general formula OCN-R-NCO, where R
may be aliphatic, alicyclic or aromatic radicals, which can also be substituted by alkyl radicals.
Suitable diisocyanates are preferably compounds whose isocyanate groups have varying reactivity, on account of the molecular structure, toward nucleophiles, for example isophorone diisocyanate or toluylene diisocyanate.
Also suitable in principle are symmetrical diisocyanates, such as, for example, hexamethylene diisocyanate or 4,4'-methylenedi(phenyl isocyanate).
Preference is given to using isophorone diisocyanate.
The reaction with the diisocyanate preferably takes place in an organic solvent, such as ketones, for example acetone, furthermore dimethyl sulfoxide, dimethylformamide, or generally aprotic-polar organic solvents or mixtures of such solvents. The reaction usually takes place at elevated temperatures, the temperature also being governed by the boiling temperature of the selected solvent. The reaction of the diisocyanate with the first component can take place at 20 to 50 C, but also if desired up to 100 C. The reaction of the second isocyanate group can take place at temperatures from 50 to 100 C.

The reaction preferably takes place in equimolar amounts, which means that the quantitative ratio is selected such that, per mole of hydroxyl group to be reacted, 1 mol of diisocyanate is used. If the vinyllactam polymer is OH-functionalized via a regulator, the diisocyanate is reacted in equimolar amounts relative to the regulator. If the vinyllactam polymer is OH-functionalized via a radical starter, then 2 mol of diisocyanate are used per mole of radical starter.

In the case of symmetrical diisocyanates, it may also be advisable to use an excess of diisocyanate and then to remove the excess by distillation.

The reaction is preferably carried out in the presence of a catalyst. Suitable catalysts are, for example, organometallic compounds such as organotitanium compounds or zinc compounds, such as dibutyltin dilaurate or tin octoate, furthermore bases such as 1,4-diaza(2,2,2)bicyclooctane or tetramethylbutanediamine. The catalyst can be used in amounts of from 0.05 to 0.2 mol, preferably 0.1 to 0.14 mol, per mole of diisocyanate.

The reaction is usually carried out at elevated temperatures in the range from 50 to 100 C. Whicti temperature is selected specifically depends on the nature of the organic solvent used. The solvent can then be removed by distillation.
Usually, the reaction is carried out in such a way that firstly the component, which should be isocyanate-group-functionalized, is reacted with the diisocyanate in the presence of the catalyst and a solvent until the isocyanate value in the reaction mixture has dropped to half. This can be ascertained in a known manner, for example titrimetrically. The other component is then added, the amounts of isocyanate groups and OH or amino groups again being selected to be equimolar. The reaction is continued until the isocyanate value has dropped to zero.

The block copolymers are preferably prepared by a method, known per se, of controlled free-radical polymerization, which is also referred to as RAFT
polymerization (Reversible Addition-Fragmentation chain Transfer). The mechanism of this method is described in detail in WO 98/01478 and EP-A 991 683, to the disclosure of which reference is hereby expressly made.

The RAFT polymerization takes place in the presence of specific chain transfer agents, also referred to as RAFT reagents, from the group of thiocarbonylthio compounds, in particular the dithiobenzoates, the trithiocarbonates, the dithiocarbamates and the dithiocarbonic acid esters, which are also referred to as xanthates. Such reagents are known to the person skilled in the art from the prior art. Thus, of suitability are, for example, the compounds described in WO 98/01478 or EP-A 991 683.

Preferred RAFT reagents are diphenyl dithiocarbamate of diethyl malonate and 2-(ethoxycarbonothioyl)thiopropionic acid.

To produce the block copolymer, the PVP block is firstly prepared by free-radically initiated solution polymerization by mixing N-vinyllactam, RAFT reagent and radical starter in a solvent and reacting them at elevated temperature.

Suitable radical starters are azo starters, such as 2,2'-azobis(2,4-dimethylvaleronitrile), dimethyl, azobisisobutyronitrile, dimethyl 2,2'-azobisisobutyrate, 1,1'-azobis(1-cyclo-hexanecarbonitrile), 2,2'-azobis(2-methylbutyronitrile) or 4,4'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], preferably azobisisobutyronitrile (AIBN). The radical starter can be used in amounts of from 5 to 50 mol%, preferably 5 to 15 mol%, based on RAFT reagent.

The vinyllactam monomers, RAFT reagents and radical starters can be used in molar ratios of from 350:2:1 (monomer: RAFT: starter) to 3500:10:1, preferably 1000:10:1 to 2000:10:1.

Suitable solvents are organic solvents which do not act as regulators, for example methanol, n-propanol, tert-butanol, dimethylformamide, ethyl acetate, butyl acetate or dioxane, preferably dioxane or tert-butanol.

The reaction can take place at temperatures of from 50 to 120 C, preferably 60 to 80 C.

When the polymerization is complete, it is advisable to treat the polyvinyllactam functionalized with RAFT reagent in such a way that any unreacted vinyllactam is 5 removed. This can take place, for example, by precipitating the polymer out of the reaction mixture and removing it by filtration. The precipitation can take place, for example, by adding a nonsolvent. A suitable nonsolvent is primarily diethyl ether.
Furthermore, the polymer can also be purified by acidic hydrolysis of the monomeric vinyllactam with subsequent removal of the resulting lactam by distillation.
The PVP block functionalized with the RAFT reagent is then reacted with vinyl acetate in the presence of a radical starter.

Suitable radical starters are the compounds described for the production of the polyvinyllactam block. The reaction can otherwise take place under the conditions described for the formation of the polyvinyllactam block.

When the polymerization is complete, the resulting block polymer can be worked-up in a manner customary per se, for example by separating off the solvent by distillation.
The block copolymers are preferably water-solubie, but may also be water-dispersible.
The molecular weights Mn may be 5000 to 50 000, preferably 10 000 to 30 000.

Applications:

The copolymers to be used according to the invention can in principle be used in all fields where active ingredients that are insoluble or only sparingly soluble in water are to be used for certain applications on people and animals or in the agrochemical sector either in aqueous preparations, or their effect is to develop in an aqueous medium.
According to the invention, the term "sparingly soiuble in water" also comprises virtually insoluble substances and means that for a solution of the substance in water at 20 C, at least 30 to 100 g of water per g of substance is required. This means, for example, that at least 30 g, but in many cases also at least 100 g, of water is required per g of substance. In the case of virtually insoluble substances, at least 10 000 g of water are required per g of substance.

For the purposes of the present invention, pharmaceutical active ingredients that are sparingly soluble in water are to be understood as meaning those active ingredients which are used for producing drugs for humans and animals, for cosmetic preparations or as food supplements such as vitamins or provitamins or dietetic active ingredients.

Also suitable as sparingly soluble active ingredients to be solubilized are dyes for use in compositions for human or animal nutrition.

Likewise under consideration according to the invention are agroctiemical active ingredients for treatment against harmful organisms, such as, for example, insecticides, herbicides or fungicides, and plant growth substances or agents for seed treatment.
Through the present invention are provided, in particular, amphiphilic compounds for use as solubility promoters for pharmaceutical and cosmetic preparations and also for food preparations. They have the property of solubilizing sparingly soluble active ingredients in the field of pharmacy and cosmetics, sparingly soluble food supplements, for example vitamins and carotenoids, but also sparingly soluble active ingredients for use in crop protection compositions (also called pesticides or agrochemical active ingredients), and also veterinary medicine active ingredients.

Further provided by the present invention are, in particular, amphiphilic compounds for use as crystallization inhibitor for pharmaceutical, cosmetic or agrochemical preparations, and for food preparations. Preferably, amphiphilic compounds for use as crystallization inhibitor for agrochemical preparations are provided. They have the property of inhibiting the crystallization of sparingly soluble active ingredients in the field of pharmacy and cosmetics, sparingly soluble food supplements, for example vitamins and carotenoids, but also sparingly soluble active ingredients for use in crop protection compositions (also called pesticides or agrochemical active ingredients), and also veterinary medicine active ingredients Solubilizers for cosmetics:

According to the invention, the copolymers can be used as solubilizers in cosmetic formulations. For example, they are suitable as solubilizers for cosnietic oils. They have good solubilization ability for fats and oils, such as peanut oil, jojoba oil, coconut oil, almond oil, olive oil, palm oil, ricinus oil, soy oil or wheatgerm oil, or for essential oils, such as dwarf-pine oil, lavender oil, rosemary oil, fir needle oil, pine needle oil, eucalyptus oil, peppermint oil, sage oil, bergamot oil, turpentine oil, Melissa oil, juniper oil, lemon oil, anise oil, cardamom oil, peppermint oil, camphor oil, etc. or for mixtures of these oils.

Furthermore, the polymers according to the invention can be used as solubilizers for UV absorbers that are insoluble or sparingly soluble in water, such as, for example, 2-hydroxy-4-methoxybenzophenone (Uvinul0 M 40, BASF), 2,2',4,4'-tetrahydroxy-benzophenone (Uvinul(D D 50), 2,2'-dihydroxy-4,4'-dimethoxybenzophenone (UvinulOD49), 2,4-dihydroxybenzophenone (Uvinul0 400), 2'-ethylhexyl 2-cyano-3,3-diphenylacrylate (Uvinul N 539), 2,4,6-trianilino-p-(carbo-2'-ethylhexyl-1'-oxy)-1,3,5-triazine (Uvinul T 150), 3-(4-methoxybenzylidene)camphor (Eusolex 6300, Merck), 2-ethylhexyl N,N-dimethyl-4-aminobenzoate (Eusolex 6007), 3,3,5-trimethyl-cyclohexyl salicylate, 4-isopropyldibenzoylmethane (Eusolex 8020), 2-ethylhexyl p-methoxycinnamate and 2-isoamyl p-methoxycinnamate, and mixtures thereof.

The present invention therefore also provides cosmetic preparations which comprise at least one of the copolymers according to the invention of the composition specified at the start as solubilizers. Preference is given to those preparations which, besides the solubilizer, comprise one or more sparingly soluble cosmetic active ingredients, for example the abovementioned oils or UV absorbers.

These formulations are solubilisates based on water or water/alcohol. The solubilizers according to the invention are used in the ratio from 0.2:1 to 20:1, preferably 1:1 to 15:1, particularly preferably 2:1 to 12:1, relative to the sparingly soluble cosmetic active ingredient.

The content of solubilizer according to the invention in the cosmetic preparation is, depending on the active ingredient, in the range from 1 to 50% by weight, preferably 3 to 40% by weight, particularly preferably 5 to 30% by weight.

In addition, further auxiliaries can be added to this formulation, for example nonionic, cationic or ariionic surfactants, such as alkyl polyglycosides, fatty alcohol sulfates, fatty alcohol ether sulfates, alkanesulfonates, fatty alcohol ethoxylates, fatty alcohol phosphates, alkylbetaines, sorbitan esters, POE sorbitan esters, sugar fatty acid esters, fatty acid polyglycerol esters, fatty acid partial glycerides, fatty acid carboxylates, fatty alcohol sulfosuccinates, fatty acid sarcosinates, fatty acid isethionates, fatty acid taurates, citric acid esters, silicone copolymers, fatty acid polyglycol esters, fatty acid amides, fatty acid alkanolamides, quaternary ammonium compounds, alkylphenol oxethylates, fatty amine oxethylates, cosolvents such as ethylene glycol, propylene glycol, glycerol etc.

Other constituents which can be added are natural or synthetic compounds, e.g.
lanolin derivatives, cholesterol derivatives, isopropyl myristate, isopropyl palmitate, electrolytes, dyes, preservatives, acids (e.g. lactic acid, citric acid).

These formulations are used, for example, in bath additive preparations such as bath oils, aftershaves, face toners, hair tonics, eau de cologne, eau de toilette, and in sunscreen compositions. A further field of use is the oral care sector, for example in mouthwashes, toothpastes, adhesive creams for dentures and the like.
Description of the solubilization method:

In the production of the solubilisates for cosmetic formulations, the copolymers according to the invention can be used as 100% strength substance or preferably as aqueous solution.
Usually, the solubilizer is dissolved in water and intensively mixed with the sparingly soluble cosmetic active ingredient to be used in each case.

However, it is also possible to intensively mix the solubilizer with the sparingly soluble cosmetic active ingredient to be used in each case and then to add demineralized water with continuous stirring.

Solubilizers for pharmaceutical applications:

The claimed copolymers are likewise suitable for use as solubilizer in pharmaceutical preparations of all types which are characterized in that they can comprise one or more drugs that are insoluble or sparingly soluble in water, as well as vitamins and/or carotenoids. These are in particular aqueous solutions or solubilisates for oral application.
Thus, the claimed copolymers are suitable for use in oral administration forms, such as tablets, capsules, powders, solutions. Here, they can provide the sparingly soluble drug with increased bioavailability. In particular, solid solutions of active ingredient and solubilizer are used.

In the case of parenteral application, besides solubilizates, it is also possible to use emulsions, for example fatty emulsions. For this purpose too, the claimed copolymers are suitable for processing a sparingly soluble drug.

Pharmaceutical formulations of the type specified above can be obtained by processing the claimed copolymers with pharmaceutical active ingredients by conventional methods and using known and new active ingredients.

The use according to the invention can additionally comprise pharmaceutical auxiliaries and/or diluents. Cosolvents, stabilizers, preservatives in particular are listed as auxiliaries.

The pharmaceutical active ingredients used are substances that are slightly soluble or insoluble in water. According to DAB 9 (German pharmacopoeia), the grading of the solubility of pharmaceutical active ingredients is as follows: slightly soluble (soluble in from 30 to 100 parts of solvent); sparingly soluble (soluble in from 100 to 1000 parts of solvent); virtually insoluble (soluble in more than 10 000 parts of solvent).
The active ingredients here may be from any indication field.

Examples which may be specified here are benzodiazepines, antihypertensives, vitamins, cytostatics - in particular taxol, anesthetics, neuroleptics, antidepressants, antiviral agents, such as, for example, anti-HIV agents, antibiotics, antimycotics, antidementia drugs, fungicides, chemotherapeutics, urologics, platelet aggregation inhibitors, sulfonamides, spasmolytics, hormones, immunoglobulins, sera, thyroid therapeutic agents, psychopharmacological agents, agents for treating Parkinson's disease and other antihyperkinetic agents, ophthalmics, neuropathy preparations, calcium metabolism regulators, muscle relaxants, anesthetics, lipid-lowering agents, hepatic therapeutic agents, coronary agents, cardiacs, immunotherapeutics, regulatory peptides and their inhibitors, hypnotics, sedatives, gynecological agents, gout remedies, fibrinolytic agents, enzyme preparations and transport proteins, enzyme inhibitors, emetics, circulation-promoting agents, diuretics, diagnostics, corticoids, cholinegenics, bile duct therapeutics, antiasthmatics, broncholytics, beta receptor blockers, calcium antagonists, ACE inhibitors, arterioscierotics, antiphlogistics, anticoagulants, antihypotonics, antihypoglycemics, antihypertensives, antifibrinolytics, antiepileptics, antiemetics, antidotes, antidiabetics, antiarrhythmics, antianemics, antiallergics, anthelmintics, analgesics, analeptics, aldosterone antagonists, slimming agents.
One possible production variant is the dissolution of the solubilizer in the aqueous phase, if appropriate with gentle heating, and the subsequent dissolution of the active ingredient in the aqueous solubilizer solution. The simultaneous dissolution of solubilizer and active ingredient in the aqueous phase is likewise possible.
The copolymers according to the invention can also be used as solubilizers in a manner which, for example, involves dispersing the active ingredient in the solubilizer, if appropriate with heating, and mixing it with water with stirring.

Furthermore, the solubilizers can also be processed in the melt with the active ingredients. In particular, solid solutions can be obtained in this way. Of suitability for this is, inter alia, also the method of melt extrusion. A further way of producing solid solutions is also to prepare solutions of solubilizer and active ingredient in suitable organic solvents and then to remove the solvent by customary methods.
The invention therefore also generally provides pharmaceutical preparations which comprise at least one of the copolymers according to the invention as solubilizer.
Preference is given to those preparations which, besides the solubilizer, comprise pharmaceutical active ingredient that is insoluble or sparingly soluble in water, for example from the abovementioned indication fields.

Of the abovementioned pharmaceutical preparations, particular preference is given to those which are orally applicable formulations.

The content of solubilizer according to the invention in the pharmaceutical preparation is, depending on the active ingredient, in the range from 1 to 75% by weight, preferably 5 5 to 60% by weight, particularly preferably 5 to 50% by weight.

A further particularly preferred embodiment relates to pharmaceutical preparations in which the active ingredients and the solubilizer are present as solid solution. Here, the weight ratio of solubilizer to active ingredient is preferably from 1:1 to 4:1, but can be 10 up to 100:1, in particular up to 15:1. What matters is only that, when used in the finished drug form, firstly an effective amount of active ingredient is comprised in the drug form, and secondly in the case of oral drug forms, the forms do not become too large.

15 Solubilizers for food preparations:

Besides use in cosmetics and pharmacy, the copolymers according to the invention are also suitable as solubilizers in the food sector for sparingly water-soluble or water-insoluble nutrients, auxiliaries or additives, such as, for example, fat-soluble vitamins or carotenoids. Examples which may be mentioned are beverages colored with carotenoids.

Solubilizers for agrochemical active ingredients (pesticides):

In a preferred embodiment of the present invention, the copolymers can be used as solubilizers in agrochemical preparations.

The present invention therefore also provides agrochemical preparations which comprise at least one of the copolymers according to the invention as solubilizers and at least one sparingly soluble pesticide.

In a further preferred embodiment of the present invention, the copolymers can be used as crystallization inhibitors in agrochemical preparations.

The present invention therefore also provides agrochemical preparations which comprise at least one of the copolymers according to the invention as crystallization inhibitors and at least one sparingly soluble pesticide.

The term "sparingly soluble pesticide" refers here to a pesticide that is sparingly soluble in water. According to the invention, as already mentioned above, the term "sparingly soluble in water" here aiso comprises virtually insoluble substances and means that for a solution of the pesticide in water at 20 C, at least 30 to 100 g of water is required per g of pesticide, preferably at least 100 g of water per 1 g of pesticide. In the case of virtually insoluble pesticides, at least 10 000 g of water per g of substance are required.
Pesticides and agrochemical active ingredients are known to the person skilled in the art from the literature. The term "pesticide" means here at least one active ingredient selected from the group of insecticides, fungicides, herbicides and/or safeners (see Pesticide Manual, 13th Ed. (2003)).

Examples of sparingly soluble pesticides are insecticides, fungicides, herbicides and/or safeners are listed below:

The following list of sparingly soluble insecticides indicates possible active ingredients, but should not be restricted to these:

A. 1. organo(thio)phosphates: azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methidathion, methyl-parathion, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetrachlorvinphos, terbufos, triazophos, trichlorfon;
A.2. carbamates: alanycarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, thiodicarb, triazamate;

A.3. pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cypermethrin, alpha-cyperrnethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda-cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin;
A.4. growth regulators: a) chitin synthesis inhibitors: benzoylureas:
chlorfluazuron, cyramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, a tetronic acid derivative of formula I'', CHzCH3\

o H 3 c (r') A.5. nicotin receptor agonists/antagonists: clothianidin, dinotefuran, thiacloprid;
A.6. GABA antagonists: acetoprole, endosulfan, ethiprole, fipronil, vaniliproie;

A.7. macrolid insecticides: abamectin, emamectin, milbemectin, lepimectin, spinosad;
A.8. METI I acaricides: fenazaquin, pyridaben, tebufenpyrad, tolfenpyrad;

A.9. METI II and III compound: acequinocyl, fluacyprim, hydramethylnon;
A.10. uncoupler compounds: chtorfenapyr;
A. 11. inhibitors of oxidative phosphorylation: cyhexatin, diafenthiuron, fenbutatin oxide, propargite;

A.12. molting disruptor compounds: cryomazine;
A. 13. inhibitors of mixed function oxidase: piperonyl butoxide;
A.14. sodium channel blockers: indoxacarb, metaflumizone;

A. 15. various: benclothiaz, bifenazate, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam and aminoisothiazole compounds of formula F2, CI R
N N
N-S p ~> -R " fr~~
O

where Ri is -CH20CH2CH3 or H and Rii is CF2CF2CF3 or CH2CH(CH3)3, anthranilamide compounds of formula F3 /
Y
i B H N N-(r3) , RB N
H
where B1 is hydrogen or chlorine, B2 is bromine or CF3, and RB is CH3 or CH(CH3)2, and malononitrile compounds as described in JP 2002 284608, WO 02/89579, WO 02/90320, WO 02/90321, WO 04/06677, WO 04/20399, or JP 2004 99597, N-R'-2,2-dihalo-l-R"cyclopropanecarboxamide-2-(2,6-dichloro- a,a,a,a -tri-fluoro-p-tolyl)hydrazone or N-R'-2,2-di(R"')propionamide-2-(2,6-dichloro- a,(X,a,a -trifluoro-p-tolyl)hydrazone, in which R' is methyl or ethyl, halo is chlorine or bromine, R" is hydrogen or methyl and R"' is methyl or ethyl.
The following list of sparingly soluble fungicides indicates possible active ingredients, but should not be limited to these:

1. Strobilurins azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, picoxystrobin, pyraclostrobin, trifloxystrobin, orysastrobin, methyl (2-chloro-5-[1-(3-methylbenzyloxyimino)ethyl]benzyl)carbamate, methyl (2-chloro-5-[1-(6-methylpyridin-2-ylmethoxyimino)ethyl]benzyl)carbamate, methyl 2-(ortho((2,5-dimethyl-phenyloxymethylene)phenyl)-3-methoxyacrylate;
2. Carboxamides - carboxanilides: benalaxyl, benodanil, boscalid, carboxin, mepronil, fenfuram, fenhex-amid, flutolanil, furametpyr, metalaxyl, ofurace, oxadixyl, oxycarboxin, penthiopyrad, thifluzamide, tiadinil, N-(4'-bromobiphenyl-2-yl)-4-difluoromethyl-2-methylthiazole-5-carboxamide, N-(4'-trifluoromethylbiphenyl-2-yl)-4-difluoromethyl-2-methylthiazole-5-carboxamide, N-(4'-chloro-3'-fluorobiphenyl-2-yl)-4-difluoromethyl-2-methylthiazole-5-carboxamide, N-(3',4'-dichloro-4-fluorobiphenyl-2-yl)-3-difluoromethyl-l-methyl-pyrazole-4-carboxamide, N-(2-cyanophenyl)-3,4-dichloroisothiazole-5-carboxamide;
N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-difluoromethyl-1-methylpyrazole-4-carboxamide, N-(2-bicyclopropyl-2-ylphenyl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxamide;
in a further embodiment, examples of carboxanilides are benalaxyl-M, bixafen, isotianil, kiralaxyl, tecloftalam, 2-amino-4-methylthiazole-5-carboxanilide, 2-chloro-N-(1,1,3-tri-methylindan-4-yl)nicotinamide, N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-[2-(1,3-dimethylbutyl)phenyl]-5-fluoro-1,3-dimethyl-1 H-pyrazole-4-carboxamide, N-(4'-chloro-3',5-difluorobiphenyl-2-yl)-difluoromethyl-l-methyl-1 H-pyrazole-4-carboxamide, N-(4'-chloro-3',5-difluorobiphenyl-2-yl)-3-trifluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(3',4'-dichloro-fluorobiphenyl-2-yl)-3-trifluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(3',5-difluoro-4'-methylbiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(3',5-difluoro-4'-methylbiphenyl-2-yl)-3-trifluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide, N-(2-bicyclopropyl-2-yl-phenyl)-3-difluoromethyl-l-methyl-1 H-pyrazole-4-carboxamide, N-(cis-2-bicyclopropyl-2-ylphenyl)-3-difluoromethyl-l-methyl-1 H-pyrazole-4-carboxamide, N-(trans-2-bicyclopropyl-2-ylphenyl)-3-difluoromethyl-methyl-1 H-pyrazole-4-carboxamide;
- carboxylic acid morpholides: dimethomorph, flumorph;
- benzoamides: flumetover, fluopicolide (picobenzamid), zoxamide; in a further embodiment, one example of benzoamide is N-(3-ethyl-3,5,5-trimethylcyclohexyl)-formylamino-2-hydroxybenzamide;
- other carboxamides: carpropamid, diclocymet, mandipropamid, N-(2-(4-[3-(4-chloro-phenyl)prop-2-ynyloxy]-3-methoxyphenyl)ethyl)-2-methanesulfonylamino-3-methyl-butyramide, N-(2-(4-[3-(4-chlorophenyl)prop-2-ynyloxy]-3-methoxyphenyl)ethyl)-ethanesulfonylamino-3-methylbutyramide, N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxamide and N-(2-bicyclopropyl-2-yl-phenyl)-3-difluoromethyl-l-methyl-lH-pyrazole-4-carboxamide; in a further embodiment examples of other carboxamides are oxytetracyclin, silthiofam, N-(6-methoxypyridin-3-yl)cyclopropanecarboxamide.
3. Azoles - triazoles: bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, enilconazole, epoxiconazole, fenbuconazole, flusilazole, fluquinconazole, flutriafol, hexaconazol, imibenconazole, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimenol, triadimefon, triticonazole;
- imidazoles: cyazofamid, imazalil, pefurazoate, prochloraz, triflumizole;
- benzimidazoles: benomyl, carbendazim, fuberidazole, thiabendazole;
- others: ethaboxam, etridiazole, hymexazole;

4. Nitrogen-containing heterocyclyl compounds:
- pyridines: fluazinam, pyrifenox, 3-[5-(4-chlorophenyl)-2,3-dimethylisoxazolidin-3-yl]pyridine;
- pyrimidines: bupirimate, cyprodinil, ferimzone, fenarimol, mepanipyrim, nuarimol, pyrimethanil;
- piperazines: triforine;
- pyrroles: fludioxonil, fenpiclonil;
- morpholines: aldimorph, dodemorph, fenpropimorph, tridemorph;
- dicarboximides: iprodione, procymidone, vinclozolin;
- others: acibenzolar-S-methyl, anilazin, captan, captafol, dazomet, diclomezine, fenoxanil, folpet, fenpropidin, famoxadone, fenamidone, octhilinone, probenazole, proquinazid, quinoxyfen, tricyclazole, 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine, 2-butoxy-6-iodo-3-propylchromen-4-one, N-dimethyl-3-(3-bromo-6-fluoro-2-methylindole-1-sulfonyl)[1,2,4]triazole-1-sulfonam ide;
5 5. Carbamates and dithiocarbamates - carbamates: diethofencarb, flubenthiavalicarb, iprovalicarb, propamocarb, methyl 3-(4-chlorophenyl)-3-(2-isopropoxycarbonylamino-3-methylbutyrylamino)propionate, 4-fluorophenyl N-(1-(1-(4-cyanophenyl)ethanesulfonyl)but-2-yl)carbamate;

10 6. Other fungicides - organometallic compounds: fentin salts;
- sulfur-containing heterocyclyl compounds: isoprothiolane, dithianon;
- organophosphorus compounds: edifenphos, fosetyl, fosetyl-aluminum, iprobenfos, 15 pyrazophos, tolclofos-methyl, phosphorous acid and its salts;
- organochlorine compounds: thiophanate methyl, chlorothalonil, dichlofluanid, tolylfluanid, flusulfamide, phthalide, hexachlorbenzene, pencycuron, quintozene;
- nitrophenyl derivatives: binapacryl, dinocap, dinobuton;
- others: spiroxamine, cyflufenamid, cymoxanil, metrafenone.
The following list of sparingly soluble herbicides indicates possible active ingredients, but should not be limited to these:

Compounds which inhibit the biosynthesis of lipids, for example chlorazifop, clodinafop, clofop, cyhalofop, ciclofop, fenoxaprop, fenoxaprop-p, fenthiaprop, fluazifop, fluazifop-P, haloxyfop, haloxyfop-P, isoxapyrifop, metamifop, propaquizafop, quizalofop, quizalofop-P, trifop, and their esters, butroxydim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim, butylate, cycloat, diallat, dimepiperat, EPTC, esprocarb, ethiolate, isopolinate, methiobencarb, molinate, orbencarb, pebulate, prosulfocarb, sulfallat, thiobencarb, thiocarbazil, triallat, vernolat, benfuresat, ethofumesat und bensulid;

ALS inhibitors, such as amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethoxysulfuron, flazasulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metsulfuron, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac, pyriminobac, propoxycarbazone, flucarbazone, pyribenzoxim, pyriftalid and pyrithiobac; if the pH is < 8;

Compounds which inhibit the photosynthesis, such as atraton, atrazine, ametryne, aziprotryne, cyanazine, cyanatryn, chlorazine, cyprazine, desmetryne, dimethametryne, dipropetryn, eglinazine, ipazine, mesoprazine, methometon, methoprotryne, procyazine, proglinazine, prometon, prometryne, propazine, sebuthylazine, secbumeton, simazine, simeton, simetryne, terbumeton, terbuthylazine and terbutryne;
Protoporphyrinogen-IX oxidase inhibitors, such as acifluorfen, bifenox, cchlomethoxyfen, chlornitrofen, ethoxyfen, fluorodifen, fluoroglycofen, fluoronitrofen, fomesafen, furyloxyfen, halosafen, lactofen, nitrofen, nitrofluorfen, oxyfluorfen, fluazolate, pyraflufen, cinidon-ethyl, flumiclorac, flumioxazin, flumipropyn, fluthiacet, thidiazimin, oxadiazon, oxadiargyl, azafenidin, carfentrazone, sulfentrazone, pentoxazone, benzfendizone, butafenacil, pyraclonil, profluazol, flufenpyr, flupropacil, nipyraclofen and etnipromid;

Herbicides such as metflurazon, norflurazon, flufenican, diflufenican, picolinafen, beflubutamid, fluridone, flurochloridone, flurtamone, mesotrione, sulcotrione, isoxachlortole, isoxaflutole, benzofenap, pyrazolynate, pyrazoxyfen, benzobicyclon, amitrole, clomazone, aclonifen, 4-(3-trifluoromethylphenoxy)-2-(4-trifluoromethyl-phenyl)pyrimidine, and 3-heterocyclyl-substituted benzoyl derivatives of the formula (cf. WO-A-96/26202, WO-A-97/41116, WO-A-97/41117 and WO-A-97/41118) R' 3 O R8 N% I I

R
in which the substituents R8 to R13 have the following meanings:
R8, R10 are hydrogen, halogen, C,-C6-alkyl, C,-C6-haloalkyl, C,-C6-alkoxy, C,-C6-halo-alkoxy, C,-C6-alkylthio, C,-C6-alkylsulfinyl or C,-C6-alkylsulfonyl;

R9 is a heterocyclic radical from the group consisting of thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and 4,5-dihydroisoxazol-5-yl, in which the specified radicals can carry one or more substituents, for example may be mono-, di-, tri- or tetra-substituted by halogen, C,-C4-alkyl, C,-Ca-alkoxy, C,-Ca-haloalkyl, C,-C4-haloalkoxy or C,-Ca-alkylthio;
R" = hydrogen, halogen or C,-C6-alkyl;
R12 = C,-C6-alkyl;

R13 = hydrogen or C,-Cc,-alkyl.

If the pH is < 8.
Mitosis inhibitors such as benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, isopropalin, methalpropalin, nitralin, oryzalin, pendimethalin, prodiamine, profluralin, trifluralin, amiprofos-methyl, butamifos, dithiopyr, thiazopyr, propyzamide, chlorthal, carbetamide, chlorpropham and propham;
VLCFA inhibitors such as acetochlor, alachlor, butachlor, butenachlor, delachlor, diethatyl, diniethachlor, dimethenamid, dimethenamid-p, metazachlor, metolachlor, S-metolachlor, pretilachlor, propisochlor, prynachlor, terbuchlor, thenylchlor, xylachlor, CDEA, epronaz, diphenamid, napropamide, naproanilide, pethoxamid, flufenacet, mefenacet, fentrazamide, anilofos, piperophos, cafenstrole, indanofan and tridiphan;
Inhibitors for the biosynthesis of cellulose, such as dichlobenil, chlorthiamid, isoxaben and flupoxam;

Herbicides such as dinofenat, dinoprop, dinosam, dinoseb, dinoterb, DNOC, etinofen and medinoterb;

Furthermore: benzoylprop, flamprop, flamprop-M, bromobutide, chlorflurenol, cinmethylin, methyldymron, etobenzanid, pyributicarb, oxaziclomefone, triaziflam and methyl bromide.

The following list indicates possible sparingly soluble safeners, but should not be restricted to these:

benoxacor, cloquintocet, cyometrinil, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148), 4-(dichloro-acetyl)-1-oxa-4-azaspiro[4.5]decane (AD-67; MON 4660) and oxabetrinil.

Preferred fungicides are triazoles such as bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, enilconazole, epoxyconazole, fenbuconazole, flusilazole, fluquinconazole, flutriafol, hexaconazol, imibenconazole, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimenol, triadimefon, triticonazole, strobilurine such as azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, picoxystrobin, pyraclostrobin, trifloxystrobin, orysastrobin, methyl (2-chloro-5-[1-(3-methylbenzyloxyimino)ethyl]benzyl)carbamate, methyl (2-chloro-5-[1-(6-methylpyridin-2-ylmethoxyimino)ethyl]benzyl)carbamate, methyl 2-(ortho((2,5-dimethylphenyloxymethylene)phenyl)-3-methoxyacrylate, and 5-chloro-7-(4-methyl-piperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine and boscalid.

Very particularly preferred fungicides are epoxyconazole, metconazole, pyraclostrobin, kresoxim-methyl and 5-chloro-7-(4-methylpiperidin-l-yl)-6-(2,4,6-trifluoro-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine and boscalid.

Preferred insecticides are metaflumizon, fipronil and alpha-cypermethrin.
In a further preferred embodiment, mixtures comprising at least two different triazoles are preferred, in particular mixtures comprising metconazole and epoxyconazole, metconazole and prothioconazole, or epoxyconazole and prothioconazole.

In a further preferred embodiment, mixtures comprising at least one triazole and at least one strobilurin are preferred. Specifically, mixtures comprising pyraclostrobin and epoxyconazole, and mixtures comprising pyraclostrobin and metconazole are preferred.
In a further preferred embodiment, mixtures comprising at least one triazole and at least one carboxamide are preferred. In particular, preference is given to mixtures which comprise at least one triazole, at least one carboxamide and at least one strobilurin.

In the agrochemical preparations, the mass ratio of polymer:active ingredient is 1:10 (w/w) to 100:1 (w/w), preferably 1:2 (w/w) to 50:1 (w/w), particularly preferably 1:1 (w/w) to 10:1 (w/w), particularly preferably 2:1 (w/w) to 10:1 (w/w).

The agrochemical preparations can furthermore also comprise auxiliaries customary for the formulation of pesticides, the choice of auxiliaries being governed by the particular application form and the active ingredient.

As a rule, the amount of auxiliaries used is between 0 and 60% by weight, preferably 0.1 and 30% by weight.

Examples of auxiliaries suitable for the formulation of pesticides are solvents, solid carriers, surface-active substances (such as further solubilizers, protective colloids, wetting agents and adhesives), organic and inorganic thickeners, bactericides, antifreezes, antifoams.

Examples of thickeners (i.e. compounds which impart a modified flow behavior to the formulation, i.e. high viscosity in the resting state and low viscosity in the moving state) are polysaccharides, and also organic and inorganic layered minerals such as xanthan gum (Kelzan from Kelco), Rhodopol 23 (Rhone Poulenc) or Veegum (R.T.
Vanderbilt) or Attaclay (Engelhardt).

Examples of antifoams are silicone emulsions (such as, for example, Silikon SRE, Wacker or Rhodorsil from Rhodia ), long-chain alcohols, fatty acids, salts of fatty acids, organofluorine compounds and mixtures thereof.

Examples of bactericides are bactericides based on dichlorophen and benzyl alcohol hemiformal (Proxel(D from ICI or Acticide RS from Thor Chemie and Kathon MK
from Rohm & Haas), and isothiazolinone derivatives, such as alkylisothiazolinones and benzisothiazolinones (Acticide MBS from Thor Chemie).

Examples of antifreezes are ethylene glycol, propylene glycol, urea or glycerol.
Suitable solvents are organic solvents such as mineral oil fractions of medium to high boiling point, such as kerosene and diesel oil, also coal tar oils, and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffins, tetrahydronaphthalene, alkylated naphthalenes and derivatives thereof, alkylated benzenes and derivatives thereof, alcohols, such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones, such as cyclohexanone, strongly polar solvents, for example amines such as N-methylpyrrolidone, and mixtures of the abovementioned solvents and water, and also mixtures of water and organic solvents.

Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium sulfate and magnesium sulfate, magnesium oxide, ground plastics, fertilizers, such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as cornmeal, bark dust, sawdust, nutshell meal, cellulose powder or other solid carriers.

Suitable surface-active substances (adjuvants, wetting agents, adhesives, dispersants or emulsifiers) are the alkali metal salts, alkaline earth metal salts, ammonium salts of aromatic sulfonic acids, e.g. lignin (Borresperse grades Borregaard), phenol, naphthalene (Morwet grades, Akzo Nobel) and dibutylnaphthalenesulfonic acid (Nekal grades BASF), and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta-and octadecanols, and of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives with formaldehyde, condensation products of naphthalene or of naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octyl phenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl, tributylphenyl polyglycol ethers, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol ethylene oxide condensates, ethoxylated ricinus oil, polyoxyethylene or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether = 25 acetate, sorbitol esters, lignin sulfite spent liquors, and proteins, denatured proteins, polysaccharides (e.g. methylcellulose), hydrophobically modified starches, polyvinyl alcohol (Mowiol grades Clariant), polycarboxylate (BASF Sokalan grades), polyalkoxylates, polyvinylamine (BASF Lupamin grades), polyethyleneimine (BASF
Lupasol grades), polyvinylpyrrolidone and copolymers thereof.

Examples of various types of agrochemical preparations in which the copolymers according to the invention can be used are pastes, pastilles, wettable powders, dusts (WP, SP, SS, WS, DP, DS) or granules (WG, GR, FG, GG, MG) or tablet preparations (TB, WT), which may either be soluble or dispersible (wettable) in water.

The agrochemical preparations (e.g. OD, FS, WG, SG, WP, SP, SS, WS, G~Ã)) are generally used in diluted form. Formulation types such as DP, DS, GR, FG, GG, MG
are usually used neat.
Preference is given to the above defined types of agrochemical preparations WG, WP, GR, WT and TB.

The production of agrochemical formulations and the technology required for this is known to the person skilled in the art (see US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp. 8-57 and ff. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701, US 5,208,030, GB 2,095,558, US 3,299,566, Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, '1961, Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989 and Mollet, H., Grubemann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Federal Republic of Germany), 2001).

All of the embodiments of the abovementioned agrochemical preparations are referred to below as "agrochemical preparations according to the invention".

The present invention also claims methods of controlling undesired plant growth wherein the undesired plants, the ground on which the undesired plants grow, or their seeds are treated with an agrochemical preparation according to the invention.

Furthermore, the present invention claims methods of controlling undesired insect or mite attack on plants and/or for controlling phytopathogenic fungi, wherein the fungi/insects, their habitat or the plants or ground to be protected against fungal or insect attack and the plants, the ground on which the plants grow, or seeds thereof are treated with an agrochemical preparation according to the invention.

The term phytopathogenic fungi describes, but is not restricted to, the following species: A/ternaria spp. on rice, vegetables, soybeans, rapeseed, sugar beet and fruits, Aphanomyces spp. on sugar beet and vegetables, Bipo/aris and Drechs/era spp.
corn, cereals, rice and cultivated lawns, B/umeria graminis (powdery mildew) on cereals, Botrytis cinerea (gray mold) on strawberries, vegetables, cultivated flowers, grapes, Bremia /actucae on lettuce, Cercospora spp. on corn, soybeans and sugar beet, Cochliobo/us spp. on corn, cereals, rice (e.g. Cochliobo/us sativus on cereals, Cochliobo/us miyabeanus on corn), Colletotrichum spp. on soybeans and cotton, Drechs/era spp. on cereals and corn, Exserohilum spp. on corn, Erysiphe cichoracearum and Sphaerotheca fuliginea on cucumbers, Erysiphe necatoron grapes, Fusarium and l/erticillium spp. on various plants, Gaeumannomyces graminis on cereals, Gibberella spp. on cereals and rice (e.g. Gibberella fujikuroi on rice, Gibberella zeae on cereals), grainstaining complex on rice, Microdochium nivale on cereals, Mycosphaerella spp. on cereals, bananas and peanuts, Phakopsora pachyrhizi and Phakopsora meibomiae on soybeans, Phomopsis spp. on soybeans and sunflowers, Phytophthora infestans on potatoes and tomatoes, P/asmopara vitico/a on grapes, Podosphaera /eucotricha on apples, Pseudocercosporella herpotrichoides on wheat and barley, Pseudoperonospora spp. on hops and cucumbers, Puccinia spp. on cereals and corn, Pyrenophora spp. on cereals, Pyricu/aria oryzae on rice, Cochliobolus miyabeanus and Corticium sasakii (Rhizoctonia so/ani), Fusarium semitectum (and/or moniliforme), Cercospora oryzae, Saroc/adium oryzae, S
attenuatum, Entyloma oryzae, Gibbere/la fujikuroi (bakanae), Grainstainingcomplex (various pathogens), Bipo/aris spp., Drechslera spp. snd Pythium and Rhizoctonia spp.
on rice, corn, cotton, sunflowers, rapeseed (canola, oilseed rape), vegetables, lawns, nuts and other plants, Rhizoctonia solani on potatoes, Sc%rotinia spp. on types of rapeseed (canola/oilseed rape) and sunflowers, Septoria tritici and Stagonospora nodorum on wheat, Uncinu/a necatoron grapes, Sphace%theca reiliana on corn, Thievaliopsis spp. on soybeans and cotton, Tilletia spp. on cereals, Ustilago spp. on cereals, corn, sugar beet and Venturia spp. (scab) on apples and pears;
The term undesired insects or mites describes, but is not restricted to, the following genera:

Millipedes (Diplopoda), for example B/aniulus spp Ants (Hymenoptera), for example Atta capiguara, Atta cepha/otes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Monomorium pharaonis, So%nopsis geminata, So%nopsis invicta, Pogonomyrmex spp and Pheido% megacephala, Beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus and other Agriotes spp, Amphimallus so/stitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aracanthus morei, Atomaria linearis, Blapstinus spp, B/astophagus piniperda, Blitophaga undata, Bothynoderes punciventris, Bruchus rufimanus, Bruchus pisorum, Bruchus /entis, Byctiscus betulae, Cassida nebu/osa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus and other Conoderus spp, Conorhynchus mendicus, Crioceris asparagi, Cylindrocopturus adspersus, Diabrotica (longicornis) barberi, Diabrotica semi punctata, Diabrotica speciosa, Diabrotica undecimpunctata, Diabrotica virgifera and other Diabrotica spp, Eleodes spp, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hy/obius abietis, Hypera brunneipennis, Hypera postica, lps typographus, Lema bilineata, Lema me/anopus, Leptinotarsa decemlineata, Limonius californicus and other Limonius spp, Lissorhoptrus oryzophilus, Listronotus bonariensis, Me/anotus communis and other Me/anotus spp, Meligethes aeneus, Me%lontha hippocastani, Me%lontha me%lontha, Ou/ema oryzae, Ortiorrhynchus sulcatus, Oryzophagus oryzae, Otiorrhynchus o vatus, Ou/ema oryzae, Phaedon coch/eariae, Phyllotreta chrysocepha/a, Phyllophaga cuyabana and other Phyllophaga spp, Phyllopertha hortico/a, Phyllotreta nemorum, Phyllotreta striolata, and other Phyllotreta spp, Popillia japonica, Promecops carinicollis, Premnotrypes voraz, Psylliodes spp, Sitona lineatus, Sitophilus granaria, Sternechus pinguis, Sternechus subsignatus, and Tanymechus palliatus and other Tanymechus spp, Flies (Diptera), for example Agromyza oryzea, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghico/a, Cordylobia anthropophaga, Dacus cucurbitae, Dacus o%ae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Fannia canicularis, Gasterophilus intestinalis, Geomyza Tripunctata, G/ossina morsitans, Haematobia irritans, Haplodip/osis equestris, Hypoderma lineata, Liriomyza sativae, Liriomyza trifoli% Lucilia caprina, Lucilia cuprina, Luci/ia sericata, Lycoria pectoralis, Mayetiola destructor, Muscina stabu/ans, Oestrus ovis, Opomyza f/orum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Progonya /eyoscianii, Psila rosae, Rhago%tis cerasi, Rhago%tis pomonella, Tabanus bovinus, Tetanops myopaeformis, Tipu/a oleracea and Tipu/a pa/udosa, Heteroptera (Heteroptera), for example Acrosternum hilare, Blissus /eucopterus, Cicadellidae for example Empoasca fabae, Chrysomelidae, Cyrtopeltis notatus, Delpahcidae, Dysdercus cingu/atus, Dysdercus intermedius, Eurygasterintegriceps, Euschistus impictiventris, L eptoglossus phyllopus, Lygus /ineolaris, Lygus pratensis, Nephotettixspp, Nezara viridula, Pentatomidae, Piesma quadrata, So/ubea insu/aris and Thyanta perditor, Aphids and other homoptera, for example Acyrthosiphon onobrychis, Adelges /aricis, Aphidu/a nasturtii, Aphis fabae, Aphis forbesi, Aphis g/ycines, Aphis gossypii, Aphis grossu/ariae, Aphis pomi, Aphis schneideri, Aphis spiraeco/a, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solarn; Brachycaudus cardul, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunico/a, Bre vicor yne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefoli% Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysau/acorthum pseudoso/ani, Dysaphis p/antaginea, Dysaphis pyr/, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Me/anaphis pyrarius, Metopo%phium dirhodum, Myzodes (Myzus) persicae, Myzus asca/onicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Pemphigus populivenae, and other Pemphigus spp, Perkinsiel/a saccharicida, Phorodon humuli;
Psyllidae, for example Psylla ma/i, Psylla piri and other Psylla spp, Rhopa/omyzus ascalonicus, Rhopa/osiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis ma/a, Sappaphis mali, Schizaphis graminum, Schizoneura /anuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, und l/iteus vitifolir Lepidoptera, for example Agrotis ypsilon, Agrotis segetum and other Agrotis spp, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupa/us piniarius, Cacoecia murinana, Capua reticu/ana, Cheimatobia brumata, Chilo suppresalis and other Chilo spp, Choristoneura fumiferana, Choristoneura occidenta/is, Cirphis unipuncta, Cnaphlocroc/s medinalis, Cydia pomonella, Dendrolirnus pini Diaphania nitidalis, Diatraea grandiosella, Earias insulana, E/asmopa/pus lignosellus, Eupoecilia ambiguel/a, Euxoa spp, Evetria bouliana, Fe/tia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellu/a undalls, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta ma/inel/us, Keiferia lycopersice/la, Lambdina fisce//aria, Laphygma exigua, L erodea eufala, L eucoptera coffee//a, L eucoptera scitel/a, L ithocol%tis b/ancardella, L obesia botrana, L oxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Ma/acosoma neustria, Mamestra brassicae, Momphidae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis f/amrnea, Pectinophora gossypie//a, Peridroma saucia, Pha/era bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusla includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sesamia nonagrioides and other Sesamia spp, Sitotroga cerealella, Sparganothis pil/eriana, Spodoptera frugiperda, Spodoptera /ittoralis, Spodoptera /itura, Thaumatopoea pityocampa, Tortrix viridana, Trichop/usia ni a n d Zeiraphera canadensis, Orthoptera, for example, Acrididae, Acheta domestica, Blatta orientalis, B/attella germanica, Forfi=cu/a auricularia, Gryllotalpa gryllota/pa, L ocusta migratoria, Me/anoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Me/anop/us sanguinipes, Me/anoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus;

Termites (Isoptera), for example Calotermes flavicollis, Coptotermes spp, Dalbulus maidis, Leucotermes flavipes, Macrotermes gilvus, Reticulitermes lucifugus and Termes nata/ensis, Thrips (Thysanoptera) for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici a n d oth e r Frankliniella s p p, Scirtothrips citri, Thrips oryzae, Thrips pa/mi, Thrips simp/ex and Thrips tabaci, Arachnoidea, for example arachnids (Acarina), for example of the families Argasidae, lxodidae and Sarcoptidae, for example Amb/yomma americanum, Amb/yomma variegatum, Argas persicus, Boophilus annulatus, Boophilus deco%ratus, Boophilus microp/us, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicepha/us appendicu/atus, Rhipicepha/us evertsi, Sarcoptes scabiei, und Eriophyidae spp e.g. Aculus sch/echtendali, Phyllocoptrata o%ivora und Eriophyes she/donr, Tarsonemidae spp e.g. Phytonemus pallidus und Polyphagotarsonemus latus, Tenuipalpidae spp e.g. Brevipalpus phoenicis; Tetranychidae spp e.g.
Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus te/arius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis;

Nematodes, in particular plant parasitic nematodes, for example "root knot"
nematodes, Me%idogyne hap/a, Me%idogyne incognita, Me%idogyne javanica, and other Meloidogyne spp; cyst-forming nematodes, Globodera rostochiensis and other Globodera spp; Heterodera avenae, Heterodera g/ycines, Heterodera schachtii, Heterodera trifoli% and other Heterodera spp; seed gall nematodes, Anguina spp; stem and foliar nematodes, Aphelenchoides spp; sting nematodes, Be%nolaimus longicaudatus and other Belonolaimus spp; pine nematodes, Bursaphe%nchus xy/ophilus and other Bursaphelenchus spp; ring nematodes, Criconema spp, Criconemella spp, Criconemoides spp, Mesocriconema spp; stem and bulb nematodes, Dity/enchus destructor, Ditylenchus dipsaci and other Ditylenchus spp; Awl nematodes, Dolichodorus spp; spiral nematodes, Heliocoty/enchus mu/ticinctus and other Helicotylenchus spp; sheath and sheathoid nematodes, Hemicycliophora spp and Hemicriconemoides spp; Hirshmanniella spp; lance nematodes, Hoploaimus spp;
false rootknot nematodes, Nacobbus spp; needle nematodes, Longidorus e%ngatus and other Longidorus spp; lesion nematodes, Praty/enchus neg/ectus, Pratylenchus penetrans, Praty/enchus curvitatus, Pratylenchus goodeyi and other Pratylenchus spp;
Burrowing nematodes, Radopholus similis und andere Radopholus spp; Reniform nematodes, Rotylenchus robustus and other Rotylenchus spp; Scutellonema spp;
Stubby root nematodes, Trichodorus primitivus and other Trichodorus spp, Paratrichodorus spp; Stunt nematodes, Tylenchorhynchus c/aytoni, Tylenchorhynchus dubius and other Tylenchorhynchus spp; Citrus nematodes, Tylenchulus spp;
Dagger nematodes, Xiphinema spp; and other plant parasitic nematodes.

Control of undesired plant growth means the control/destruction of plants which grow in 5 places where they are undesired, for example Dicotyledonous plants of the species: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, lpomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, 10 Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Monocotyledonous plants of the species: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, 15 Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera The copolymers according to the invention are characterized by a particularly good solubilizing effect. They are also able to form so-called solid solutions with sparingly 20 soluble substances. According to the invention, solid solutions is the term used to refer to systems iri which, upon visual inspection, no crystalline fractions of the sparingly soluble substance are to be seen. Furthermore, upon visual inspection of the stable solid solutions, no amorphous constituents are to be seen either. Visual inspection takes place using a light microscope at 40 times magnification.
Furthermore, the copolymers according to the invention are characterized in that they increase the bioavailability of active ingredients. In addition, it is advantageous that the copolymers according to the invention in agrochemical preparations have extremely low phytotoxicity. Furthermore, the copolymers according to the invention are characterized by a particularly good crystallization-inhibiting effect for active ingredients that are sparingly soluble in water.

Hitherto, attempts have been made to solve the problems of solubilization and crystal inhibition using various compounds. However, a compound which can solve both problems is desirable. A particular advantage of the copolymers according to the invention is that preparations of active ingredients that are sparingly soluble in water can now make do with just one additive which acts both as solubilizer and as crystallization inhibitor.

In the examples below, the preparation and use of the copolymers according to the invention is explained in more detail.

Examples Abbreviations:
VP (N-vinylpyrrolidone) VAc (vinyl acetate) PVP (polyvinylpyrrolidone) PVAc (polyvinyl acetate) AIBN (azobisisobutyronitrile) PVP-b-PVAc (block copolymer of PVP and PVAc) DMF (dimethylformamide) A) Preparation of the block copolymers General procedure Firstly, 200 g of N-vinylpyrrolidone, 1.76 g of 2-(ethoxycarbonothioyl)thiopropionic acid and 0.15 g of AIBN in 200 g of dioxane were mixed and this mixture was heated to 70 C. The mixture was held at this temperature for 8 h, then cooled to room temperature and the resulting polymer was precipitated out by adding 100 ml of diethyl ether.
The resulting polymer was then mixed with 50 g of vinyl acetate and 0.05 g of AIBN in 75 g of dioxane and the mixture is heated to 70 C. After 8 h, the solvent was removed in vacuo and the polymer was dried at 70 C in a vacuum drying cabinet.

Ex. PVP-PVAc PDI* Mn Solubility in No [mol%] water use amounts 1 90-10 1.6 14800 soluble 2 80-20 1.8 13200 soluble 3 70-30 2 12900 soluble 4 60-40 1.9 13900 soluble 5 50-50 2 17600 soluble 5 40-60 2.3 19200 micellarly dispersible 6 30-70 2.2 16300 7 20-80 2.5 16900 8 10-90 2.4 17800 * Polydispersity index determined by means of gel permeation chromatography calculated as PDI= M,:M,.

B) Solubilization of dyes from solid solution B1) A dye (Dianix Luminous Red, Dystar) and the polymer as in Ex. 4 were mixed in the weight ratio dye:polymer 33:67 and dissolved in DMF, and the solvent was then removed in a drying cabinet. The solid solution obtained in this way was taken up with sufficient water to give a 3% strength by weight solution, based on the polymer content, and filtered over a 0.45 pm Millipore filter, and the dye content was determined by means of HPLC/UV. Result: 10 mg/kg of dye dissolved in water.

For comparison, the polymer used was copovidone, a random copolymer of 60% by weight of VP and 40% by weight of VAc. Result: 2 mg/kg dye dissolved in water.
The comparison shows that, in the presence of the block copolymer, five times more dye is solubilized than in the presence of a comparable random copolymer not in accordance with the invention.

B2) Furthermore, solid solutions as described above were prepared with the dye, block copolymer and, for comparison, with PVP homopolymers (PVP K90, K30, K17) and VP-VAc copolymer 60/40 (copovidone) and dissolved in water, and the solutions were assessed visually for color intensity. The greater the color intensity, the greater the solubilization. The table shows that the PVP homopolymers not according to the invention and the random copolymer dissolve the dye less well than comparable block copolymers according to the invention.

PVP K90 PVP K30 PVP K17 Copovidone PVP-b- PVP-b-PVAc 80-20 PVAc 50-50 pale yellow pale pink pale pink pink bright red intense red C) Solubilization of active ingredient from solid solution Furthermore, the solubilization in water of pharmaceutical active ingredients from the solid solutiori was investigated at 37 C (*50-50 based on use amounts). The comparison shows that, in the presence of the block copolymer, six times more active ingredient is solubilized than in the presence of a comparable random copolymer copovidone not according to the invention.
Solubilization of Solubilization of clotrimazol estradiol [mg/kg] [mg/kg]
PVP-b-PVAc 50-50* 0.06 0.06 Copovidone 0.01 0.01 D) Solubilization of agrochemical active ingredients from solid solution Solubility in water of the agrochemical active ingredients used:
Epoxyconazole: 6.63 * 10-4 g/100 ml (201C).
Metconazole: 30.4 mg/I (20 C).
Pyraclostrobin: 1.9 mg/I (20 C).
The fungicidal effect of various formulations of the agrochemical active ingredients epoxyconazole, metconazole and pyraclostrobin as a function of the concentration of applied active ingredient was assessed in comparison with block copolymers and random polymer.
For this, one or more agrochemical active ingredient and the block copolymer as in Ex. 4 was mixed in the weight ratio active ingredient:polymer 1:2 and dissolved in DMF, and the solvent was then removed in a drying cabinet. The solid solution obtained in this way was taken up with sufficient water to give a 15% strength by weight polymer concentration, based on the aqueous solution (corresponds to 30% by weight of active ingredient or active ingredient mixture, based on the aqueous solution). For the application, the aqueous solution was further diluted with water so that a concentration of the aqueous solution of 0, 8, 16, 32, 64 or 100 ppm, based on the applied aqueous formulation, were obtained. The determination of the damage picture was carried out on wheat of the Kanzler variety which had been infected beforehand with the fungal species Puccinia recondita (experiments F-0 to F-4).

For comparison, the process was repeated with the comparable VP-VAc copolymer 60/40 (copovidone, random copolymer of 60% by weight VP and 40% by weight of VAc) (comparative experiments C-0 to C-4). The control experiments K-1 to K-3 were carried out without active ingredient.

The column "composition" shows the qualitative and quantitative composition of the particular copolymer with which the active ingredient is present in the aqueous solution.
For all of the formulations, the weight ratio of polymer to active ingredient was 2 to 1.
The column "applied concentration" indicates in which concentration the active ingredient formulations was applied. The column "plant appraisal" indicates, on a scale from 0 to 100, the remaining fungal attack following treatment, where 100 means complete attack. The stated value is a mean from three individual values.
"n.a" means not applicable.
The control experiments without active ingredient have shown that the block copolymers exhibit low phytotoxicity, which is the same as or lower than in the case of comparable random copolymers.

These comparative experiments show that, at the same active ingredient concentration, with the polyvinyllactam-polyvinyl acetate block copolymers used according to the invention as solubilizers, considerably better agrochemical effects are to be achieved than in the presence of comparable random polyvinyllactam-polyvinyl acetate copolymers. This demonstrates the better bioavailability of the agrochemical active ingredients by using the block copolymers as solubilizers.

No. Composition Applied Plant concentration appraisal [ppm) K-1 Without active ingredient, 0 85 without polymer K-2 VP-VAc (60:40), 100 80 without active ingredient K-3 Random VP-VAc (60:40), 100 80 without active ingredient F-0 VP-VAc (60:40) 16 0 + epoxyconazole 8 0 F-1 VP-VAc (60:40) 32 0 + metconazole 16 4 F-2 VP-VAc (60:40) 32 0 + metconazole/epoxyconazole (3:2) 16 0 F-3 VP-VAc (60:40) 64 0 + metconazole/pyraclostrobin (2:3) 32 0 F-4 VP-VAc (60:40) 64 0 + epoxyconazole/pyraclostrobin 32 0 (5:7) 16 6 C-0 Random VP-VAc (60:40) 16 9 + epoxyconazole 8 19 C-1 Random VP-VAc (60:40) 32 17 + metconazole 16 50 C-2 Random VP-VAc (60:40) 32 1 + metconazole/epoxyconazole (3:2) 16 10 C-3 Random VP-VAc (60:40) 64 15 + metconazole/pyraclostrobin (2:3) 32 52 C-4 Random. VP-VAc (60:40) 64 12 + epoxyconazole/pyraclostrobin 32 43 (5:7) 16 83 E) Crystallization inhibitory effect One or more agrochemical active ingredients (epoxyconazole, metconazole and/or 5 pyraclostrobin) and the block copolymer as in Ex. 4 were mixed in the weight ratio active ingredient:polymer 1:2 and dissolved in DMF, and the solvent was then removed in a drying cabinet. The solid solution obtained in this way was taken up with sufficient water to produce a 2% strength by weight solution, based on the polymer content.
Using a light microscope, the aqueous solution was assessed after 1 hour with stirring 10 with regard to the formation of active ingredient crystals. For comparison, the process was repeated with the comparable random VP-VAc copolymer 60/40.
The following table (column "crystals observed") shows that, in the presence of the block copolymer, the active ingredients do not crystallize out (experiments F-0 to F4), whereas in the case of the corresponding active ingredient formulations with random 15 copolymer (experiments C-0 to C-4), crystals were observed.

No. Composition Crystals observed K-1 Without active ingredient, n.a.
without polymer K-2 VP-VAc (60:40), n.a.
without active ingredient K-3 Random VP-VAc (60:40), n.a.
without active ingredient F-0 VP-VAc (60:40) No + epoxyconazole F-1 VP-VAc (60:40) No + metconazole F-2 VP-VAc (60:40) No + metconazole/epoxyconazole (3:2) F-3 VP-VAc (60:40) No + metconazole/pyraclostrobin (2:3) F-4 VP-VAc (60:40) No + epoxyconazole/pyraclostrobin (5:7) C-0 Random VP-VAc (60:40) Yes + epoxyconazole C-1 Random VP-VAc (60:40) Yes + metconazole C-2 Random VP-VAc (60:40) Yes + metconazole/epoxyconazole (3:2) =

C-3 Random VP-VAc (60:40) Yes + metconazole/pyraclostrobin (2:3) C-4 Random. VP-VAc (60:40) Yes + epoxyconazole/pyraclostrobin (5:7)

Claims (17)

1. The use of polyvinyllactam-polyvinyl acetate block copolymers as solubilizers for agrochemical active ingredients that are sparingly soluble in water.
2. The use of polyvinyllactam-polyvinyl acetate block copolymers as crystallization inhibitor for agrochemical active ingredients that are sparingly soluble in water.
3. The use according to claim 1 or 2, where the polyvinyllactam block is polyvinylpyrrolidone.
4. The use according to any of claims 1 to 3, where the block copolymers have average molecular weights Mn of from 5000 to 50 000.
5. The use according to any of claims 1 to 4, where the block copolymers have average molecular weights Mn of from 10 000 to 30 000.
6. The use according to any of claims 1 to 5, where the polyvinyllactam-polyvinyl acetate block copolymers have a A-B, A-B-A or B-A-B structure.
7. The use according to any of claims 1 to 6, where the block copolymers are water-soluble or water-dispersible.
8. The use according to any of claims 1 to 7, where, for a solution of the active ingredient in water at 20°C, at least 30 g of water is required per g of active ingredient.
9. The use according to any of claims 1 to 8, where the agrochemical active ingredients are epoxiconazole, metconazole, pyraclostrobin, kresoxim-methyl and 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine and/or boscalid.
10. The use according to any of claims 1 to 8, where the agrochemical active ingredients are a mixture of agrochemical active ingredients comprising at least two different triazoles.
11. The use according to claim 10, where the mixture of agrochemical active ingredients comprises at least one triazole and at least one strobilurin.
12. A preparation of agrochemical active ingredients that are sparingly soluble in water, obtainable using polyvinyllactam-polyvinyl acetate block copolymers according to any of claims 1 to 7.
13. The preparation according to claim 12, where the agrochemical active ingredients are epoxiconazole, metconazole, pyraclostrobin, kresoxim-methyl and 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine and/or boscalid.
14. The preparation according to claim 12, where the agrochemical active ingredients are a mixture of agrochemical active ingredients comprising at least one triazole.
15. The preparation according to claim 14, where the mixture of agrochemical active ingredients comprises at least one triazole and at least one strobilurin.
16. A method of controlling undesired insect or mite attack on plants and/or for controlling phytopathogenic fungi, wherein the fungi/insects, their habitat or the plants or ground to be protected against fungal or insect attack, or the plants, the ground on which the plants grow, or seeds thereof are treated with a preparation according to any of claims 12 to 15.
17. A method of controlling undesired plant growth, wherein the undesired plants, the ground on which the undesired plants grow, or seeds thereof are treated with a preparation according to any of claims 12 to 15.
CA002667065A 2006-11-13 2007-10-31 Use of block copolymers based on vinyllactams and vinyl acetate as solubilizers Abandoned CA2667065A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP06123959 2006-11-13
EP06123959.6 2006-11-13
EP06125423.1 2006-12-05
EP06125423 2006-12-05
PCT/EP2007/061759 WO2008058848A1 (en) 2006-11-13 2007-10-31 Application of block copolymers based on vinyl lactams and vinyl acetate as solubilizers

Publications (1)

Publication Number Publication Date
CA2667065A1 true CA2667065A1 (en) 2008-05-22

Family

ID=38952086

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002667065A Abandoned CA2667065A1 (en) 2006-11-13 2007-10-31 Use of block copolymers based on vinyllactams and vinyl acetate as solubilizers

Country Status (21)

Country Link
US (1) US8211469B2 (en)
EP (1) EP2094080B1 (en)
JP (1) JP5260534B2 (en)
KR (1) KR20090082280A (en)
CN (1) CN101541170B (en)
AP (1) AP2009004897A0 (en)
AR (1) AR063792A1 (en)
AU (1) AU2007321357B2 (en)
BR (1) BRPI0718637B8 (en)
CA (1) CA2667065A1 (en)
CL (1) CL2007003253A1 (en)
CR (1) CR10747A (en)
EA (1) EA019366B1 (en)
EC (1) ECSP099399A (en)
IL (1) IL198297A0 (en)
MA (1) MA30874B1 (en)
MX (1) MX2009004016A (en)
PE (1) PE20081057A1 (en)
TW (1) TW200845893A (en)
UY (1) UY30713A1 (en)
WO (1) WO2008058848A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164583B (en) * 2008-09-25 2013-11-06 巴斯夫欧洲公司 Use of polyether-based and vinyl monomer-based copolymers as binders for dosing forms comprising solid active ingredients
BRPI1009060B1 (en) * 2009-05-11 2017-05-02 Basf Se use of a polymeric solubilizer, method for improving soil mobility of moderately soluble insecticides, method for controlling invertebrate pests and formulation
US20120168987A1 (en) * 2009-09-18 2012-07-05 Basf Se Method For Producing Preparations Of Substances With Low Solubility In Water
AR081806A1 (en) 2010-03-08 2012-10-24 Basf Se COMPOSITION THAT INCLUDES AN ACTIVE SUBSTANCE AND A POLYCHYLENE OXIDE VINYLESTER GRAINED POLYMER
AU2011234110B2 (en) * 2010-03-30 2013-11-07 Basf Se Use of copolymer for increasing activity of pesticide
EP2693873B1 (en) * 2011-04-08 2015-06-10 Basf Se Composition containing a pesticide and a vinylimidazol terpolymer
AR093942A1 (en) * 2012-12-19 2015-07-01 Akzo Nobel Chemicals Int Bv COMPOSITIONS AND METHODS TO IMPROVE THE COMPATIBILITY OF HERBICIDE SALTS SOLUBLE IN WATER AND CONCENTRATED FERTILIZER
JP2016505594A (en) * 2012-12-20 2016-02-25 ダウ アグロサイエンシィズ エルエルシー Herbicidal composition comprising oxyfluorfen and haloxyhop
FR3004458A1 (en) * 2013-04-11 2014-10-17 Rhodia Operations FRACTURING FLUIDS BASED ON ASSOCIATIVE POLYMERS AND SURFACTANTS LABILES

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1245542B (en) * 1963-02-21 1967-07-27 Baxter Laboratories Inc Process for the production of water-soluble preparations of polypeptide antibiotics
DE4422881A1 (en) * 1993-10-25 1995-04-27 Bayer Ag Colloidally dispersible drug formulations
US5502136A (en) * 1994-12-28 1996-03-26 Isp Investments Inc. Process for making substantially homogeneous copolymers of vinyl pyrrolidone and vinyl acetate which form clear aqueous solutions
FR2742989B1 (en) * 1995-12-29 1998-01-23 Adir BIOADHESIVE PHARMACEUTICAL COMPOSITION FOR THE CONTROLLED RELEASE OF ACTIVE INGREDIENTS
CN100473646C (en) 1996-07-10 2009-04-01 联邦科学及工业研究组织 Polymerization with living characteristics
AU749607B2 (en) * 1997-04-14 2002-06-27 Dow Agrosciences Llc Pesticide compositions
DE19719187A1 (en) 1997-05-07 1998-11-12 Basf Ag Use of copolymers of N-vinyl-pyrrolidone in preparations of water-insoluble substances
FR2764892B1 (en) 1997-06-23 2000-03-03 Rhodia Chimie Sa PROCESS FOR THE SYNTHESIS OF BLOCK POLYMERS
DE19811919A1 (en) 1998-03-18 1999-09-23 Basf Ag New copolymer of unsaturated carboxylic acid with ester or amide, used as solubilizer, especially for pharmaceutical or cosmetic preparations
DE19814739A1 (en) * 1998-04-02 1999-10-07 Basf Ag Solubilizing agents useful in pharmaceutical, cosmetic and food compositions
EP1027886B1 (en) * 1999-02-10 2008-07-09 Pfizer Products Inc. Pharmaceutical solid dispersions
US6267989B1 (en) * 1999-03-08 2001-07-31 Klan Pharma International Ltd. Methods for preventing crystal growth and particle aggregation in nanoparticulate compositions
DE19935063A1 (en) 1999-07-28 2001-02-01 Basf Ag Graft polymers as gas hydrate inhibitors
ATE313949T1 (en) * 2000-05-26 2006-01-15 Ici Plc AGROCHEMICAL SUSPENSION FORMULATIONS
US20030157170A1 (en) * 2001-03-13 2003-08-21 Richard Liggins Micellar drug delivery vehicles and precursors thereto and uses thereof
WO2002082900A1 (en) * 2001-03-30 2002-10-24 Rhodia Inc. Aqeuous suspension of nanoparticles comprising an agrochemical active ingredient
EP1269994A3 (en) 2001-06-22 2003-02-12 Pfizer Products Inc. Pharmaceutical compositions comprising drug and concentration-enhancing polymers
WO2004019901A2 (en) * 2002-08-30 2004-03-11 Orchid Chemicals & Pharmaceuticals Ltd. Sustained release pharmaceutical composition
AU2003282100A1 (en) * 2002-10-21 2004-05-04 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
FR2859210B1 (en) 2003-09-01 2008-05-09 Oreal ETHYLENIC COPOLYMER SEQUENCES COMPRISING A VINYLLACTAM SEQUENCE, COSMETIC COMPOSITIONS CONTAINING THEM, AND THE USE OF THESE COPOLYMERS IN COSMETICS
DE10351004A1 (en) 2003-10-30 2005-05-25 Basf Ag Aqueous nanodispersion-forming formulations of active agents, especially plant protectants such as fungicides, comprise random copolymer of unsaturated sulfonic acid(s)
DE102005008949A1 (en) * 2005-02-26 2006-09-14 Bayer Cropscience Ag Agrochemical formulation for improving the effect and plant tolerance of crop protection active ingredients

Also Published As

Publication number Publication date
BRPI0718637B1 (en) 2016-03-01
US8211469B2 (en) 2012-07-03
BRPI0718637A2 (en) 2013-11-19
WO2008058848A1 (en) 2008-05-22
TW200845893A (en) 2008-12-01
JP5260534B2 (en) 2013-08-14
JP2010509263A (en) 2010-03-25
AP2009004897A0 (en) 2009-06-30
MA30874B1 (en) 2009-11-02
CR10747A (en) 2009-05-25
AU2007321357B2 (en) 2012-06-14
KR20090082280A (en) 2009-07-29
EP2094080A1 (en) 2009-09-02
EA200900634A1 (en) 2009-12-30
CN101541170B (en) 2013-07-17
CL2007003253A1 (en) 2008-07-04
UY30713A1 (en) 2008-05-31
ECSP099399A (en) 2009-07-31
AR063792A1 (en) 2009-02-18
IL198297A0 (en) 2010-02-17
PE20081057A1 (en) 2008-10-03
US20100047203A1 (en) 2010-02-25
EA019366B1 (en) 2014-03-31
BRPI0718637B8 (en) 2016-06-07
MX2009004016A (en) 2009-04-27
EP2094080B1 (en) 2017-06-07
CN101541170A (en) 2009-09-23
AU2007321357A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
AU2007321357B2 (en) Application of block copolymers based on vinyl lactams and vinyl acetate as solubilizers
EP1763300B1 (en) Use of ether group-containing polymers as solubilizers
EP1858320B1 (en) Method for producing agrochemical aqueous polymer dispersions and use thereof
US20080227646A1 (en) Nanoparticulate Active Ingredient Formulations
US20080220970A1 (en) Agrochemical Nanoparticulate Active Ingredient Formulations
ES2334832T3 (en) NEW AGROCHEMICAL FORMULATIONS.
US20100227761A1 (en) Agrochemical Formulations Based on Molecularly Imprinted Acrylates
EP2120553B1 (en) Production of solid solutions of pesticides by short term superheating and rapid drying
WO2007036494A2 (en) Agrochemical formulation comprising polymer particles containing active substances

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20141031