CA2533538A1 - Method and system for identifying an optimal image within a series of images that depict a moving organ - Google Patents

Method and system for identifying an optimal image within a series of images that depict a moving organ Download PDF

Info

Publication number
CA2533538A1
CA2533538A1 CA002533538A CA2533538A CA2533538A1 CA 2533538 A1 CA2533538 A1 CA 2533538A1 CA 002533538 A CA002533538 A CA 002533538A CA 2533538 A CA2533538 A CA 2533538A CA 2533538 A1 CA2533538 A1 CA 2533538A1
Authority
CA
Canada
Prior art keywords
motion
cyclic
images
image
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002533538A
Other languages
French (fr)
Inventor
Michael Zarkh
Moshe Klaiman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paieon Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2533538A1 publication Critical patent/CA2533538A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/404Angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Abstract

A method and system for quantifying a cyclic motion within a series of images depicting a moving object subject to composite motion containing a cyclic component and a non-cyclic component of lower frequency than the cyclic component. Composite motion is computed. The non-cyclic component is computed as the integral of motion over a motion cycle. The non-cyclic component is subtracted from the composite motion so as to obtain the cyclic component.

Description

Method and system for identifying optimal image within a series of images that depict a moving organ FIELD OF THE INVENTION
This invention relates to medical image processing devices.
BACKGROUND OF THE INVENTION
Medical imaging devices are often used to image moving organs. Cardiac image processing devices, in particular, are always used to image moving organs, either the heart (via ultrasound imaging for example), or the coronaries (via angiography for example).
Many of these imaging processing devices are used to quantify the motion either as an indication by itself or as part of an image-processing algorithm.
An image processing device for Left Ventricle Analysis is used to evaluate to Ejection Fraction, which is the percentage of the blood pumped out durlllg each heartbeat.
Left Ventricle Analysis involves computing the Left Ventricle volume fiom an angiogram (taken from a tale-angio sequence of images). The Left Ventricle volume is computed once for the heart in its systolic phase and once for the heart in its diastolic phase. Ejection Fraction is estimated from the ratio of these volumes. Identifying the systolic and diastolic images is part of the LVA procedure.
Myocardium thickness and Heart Wall Motion are evaluated fiom Ultrasound Images to indicate heart failure conditions. Eoth procedures, again, involve the identification of systolic and diastolic instances. Furthermore, quantifying the object's motion could be directly used for Wall Motion evaluation.
Infra-Vascular Ultrasound (IVUS) is a method of evaluating and analyzing coronary defects by means of inserting an infra-vascular ultrasound device and imaging the vessel. IVUS measurements include measurements of the luminal vessel area.
Estimation of the luminal area very much depends on the heart phase and results vary for different images depicting different stages within the cardiac cycle. Again, it is useful to identify the diastolic - or the minimal movement instance - in order to perform measurements on the optimal image.
-2-CT, MRI and PET are also used to image the heart as well as the coronary arteries. These methods use ECG triggering that synchronize image acquisition to ECG
events (for example end diastole) in order to decrease motion artifacts that decrease image resolution and image quality, thus impairing the image result and consequently clinical assessments.
In the field of medical imagiilg, angiography is a gold standard for cardio-vascular diagnostics. Conventional (2D) angiography, produced by C-Ann X-ray equipment, applied during a catheterization procedure, provides a most accurate modality for evaluating vessel disease. Quantitative Coronary analysis is often applied to measure to vessel disease. Analysis is applied to a certain angiogram to measure vessel dimensions;
the results are different, when derived from different angiograms, depicting the vessel in different instances of the heart cycle; QCA procedure recommends the use of the end-diastole image.
Three-Dimensional reconstruction of coronary vessels is also a method of evaluating vessel disease from a procedure of conventional angiography. While it is well known and widely covered in the literature that 2D angiography has some inherent drawbacl~s, mainly presenting and measuring projected objects, which result in inaccurate measurements, methods are available for performing three-dimensional reconstruction of the arteries from the series of the two-dimensional images obtained. In order to reconstruct 2o a three-dimensional image of the arteries, it is necessary to obtain at least two two-dimensional images of the arteries in the same phase of the heartbeat, for example at diastole. Therefore, image acquisition is usually synchronized to an E.C.G
signal. This procedure involves simultaneous recordings of the video signal from the X-ray camera and the patient's E.C.G signal. This procedure of ECG gating suffers from many drawbaclcs.
For example, the ECG signal, in many cases, is hard to correlate to a desired state of the coronaries. Fuuthermore, when reviewing recorded angiographic films, often the E.C.G
signal is unavailable.
There are many additional cardiac and other medical procedures and measurements that involve identifying instances within the object's movement cycle and also involve quantifying this movement.
Thus, it is desirable to quantify the organ movements. It is desirable to identify instances within the movement cycle. It is also evident that imaging a moving organ poses great difficulties for all modalities, impairing quantitative results and clinical assessment.
3 PCT/IL2004/000632 SUMMARY OF THE INVENTION
It is an object of the invention to provide a method and system for imaging moving organs and to quantify the organ movements.
The present invention provides several methods and systems that relate to the evaluation of an organ motion.
According to the invention, there is provided a method for quantifying a cyclic motion within a series of images depicting a moving object subject to composite motion containing a cyclic component and a non-cyclic component of lower frequency than the cyclic component, the method comprising:
(a) computing the composite motion;
(b) computing the non-cyclic component as the integral of motion over a motion cycle; and (c) subtracting the non-cyclic component from the composite motion so as to obtain the cyclic component.
The invention provides a novel method of evaluating the cyclic motion of am organ from a series of images of any source and provides implementations of such a method that decrease or eliminate motion artifacts. Specifically, we present a novel method and system for selecting optimal images for the process of 3D
reconstruction of the coronaries. We further provide a method and system for replacing the need for ECG
2o Gating by an analysis of the heart movement.
A method for estimating the motion of an organ of a series of images comprises the following operations. A medical imaging device acquires a series of images presenting an organ that is in motion. The motion is either of the organ changing shape (eventually, in a cyclic manner, regaining its original shape) or additionally of the organ changing location within the image (in angiography, for example, it is very common to move the patient's bed while imaging; as a result shifting the coronaries' location within the image).
If a non-cyclic component is superimposed on the cyclic motion, the series of images are analyzed to separate the cyclic motion from the non-cyclic motion. Once these two types of motion are separated, the cyclic motion can be quantified. The quantified motion can 3o now be used for direct measurements or can be investigated to identify different events within the motion cycle. In some implementations9 this investigation will point to an image that is optimal in the sense that it represents minimal motion and thus yields
-4-minimal or no motion artifacts. In other implementations, the cyclic motion investigation will point to several images, on which it is desired to perform an additional procedure or computation. We will specifically present two methods for quantifying the organ's motion.
A preferred embodiment of this invention will include the following. We will present a method and system for identifying the optimal image - (an image depicting minimal coronary movement) from a series of coronary cine-angiograms. We will present a method that separates the heart movement from other movements apparent in the series of angiograms. As a better alternative to the ECG Gating procedure, we suggest to search, using search algorithms such as are known in the art, the graph of the heart motion for the l0 end-diastole position, being the position that represents minimal movement.
We correlate this end-diastole position to the appropriate angiogram. This selected angiogram is the optimal image to participate as an input to the procedure of three-dimensional reconstruction of the coronaries. It is optimal in the sense that the 3D model is most representative of the vessels that are imaged. Thus, vessel measurements derived from the model axe most accurate.
BRIEF DESCRIPTI~N ~F THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, relating to determination of an optimal image within a series of images depicting heart motion, and with reference to the accompanying drawings, in which:
Fig. 1 provides an example that simply demonstrates that the integral of a cyclic motion, being a motion of an object that starts and ends in the same position, is ~ero~
Fig. 2 is a flow chart showing the principal operations carried out in accordance with a general method according to the invention for identifying an optimal image from a series of images depicting a moving obj ect; and Fig. 3 is a flow chart showing the principal operations carried out in accordance with a specific implementation of the method shown in Fig. 2.
-5-DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
General principles The invention will be described with particular reference to the determination of an optimal image within a series of images depicting heart motion possibly containing "noise" caused, for example, by shifting of the operating table on wluch a patient is disposed. Before doing so, some general algorithms will first be described.
Fig. 2 is a flow chart showing the principal operations carried out by a method according to the invention for identifying an optimal image from a series of images that depict a moving obj ect.
to Fig. 3 is a flow chart showing a preferred embodiment of such a method for identifying optimal image from a series of coronary cine-angiography images;
this image being the input for a three-dimensional reconstruction of a the coronaries.
A series of images is received as input to from any imaging source. These images depict a moving organ subj ected to two types of motions. The first is a cyclic motion of the object itself, meanng that, within a certain time frame, the object restores its original shape and position. The second is the motion of the object within the scene (image), meaning that the object changes position due to change in the imaging position. In the preferred embodiment of this method shown in Fig. 3, the images are a series of coronary angiographic images, obtained during a catheterization procedure. The cyclic motion is the heartbeat and the second motion could be, for example, movement of the C-ARM
table, causing a shift of the imaged coronary vessels in the image.
First, the overall motion is computed for all sequence of images, using aaiy method, for example optical flow or phase correlation.
If the cyclic period is unknown, then the cycle period is computed from the overall motion data. ~ne method of doing so is by spectral analysis. The non-cyclic motion is computed, using overall motion and known or computed cycle period. A
preferred embodiment of a known cycle period is the period of a cardiac cycle extracted from analysis of the ECG signal.
The non-cyclic motion is subtracted from the overall motion to obtain the cyclic motion. In the preferred embodiment shown in Fig. 3, the heartbeat motion is obtained by subtractiizg the non-cyclic motion (mainly attributed to movement of the patient's bed) from the overall motion.
-6-The motion values, especially those describing the cyclic motion, can now be used for direct measurements, for example, for cardiac wall motion analysis.
To this end, there is defined an event related to the motion function. For example, in the preferred embodiment shown in Fig. 3, this event could be the miumum instance, identifying the image with least coronary motion, thus being the optimal image for three-dimensional reconstruction.
If the event is unique, then the instance (image) that matches this event is found.
Otherwise, all matches for the event are found, and from this list of candidates the one instance that matches a heuristic rule is selected. In the preferred embodiment, the event of l0 least arteries motion could be unique if an approximation to the instance is extracted by analysis of the ECG signal (R peak is an approximation to the end-diastole instance).
Otherwise, if such an approximation is not available, the event of least-motion is not unique, since it is matched by both end-systole and end-diastole. Thus, both instances of the least-motion event are found, and the end-diastole motion is identified by the rule that it depicts the arteries most relaxed, as opposed to least relaxed for end-systole motion.
The image that correlates to the identified instance is the optimal image. For example, as in the preferred embodiment, the image that correlates to the event of least-motion, most relaxed state of the arteries is optimal for three-dimensional reconstruction.
Method for estimating the organ's motion In the above embodiments, motion of the organ is computed from a series of images (frames). Although the manner in wluch is this is done is not itself a feature of the invention, for the sake of completeness there vrill now be described ways in which this can be done.
First, we suggest an algorithm, where the number of images (frames) per cyclic motion of the organ is lmown. This parameter is usually knov~m (for example, the cardiac cycle length is easily acquired via interfacing to the ECG unit in the catheterization room).
Nevertheless, we will later obviate the need for knowing this parameter.
Let IMI, IM2... IM,t be n images that include, each, an organ that is in cyclic motion. Let rn be the number of images per cycle.
Any m+1 images, Il~II, IIeiIz... Il~m, IMm+i, f~rm a full cycle (for the sake of simplicity it will be assumed that m is an even number). Differences between frames in
-7-this sequence are attributed to the organ's cyclic motion, but are also attributed to other factors.
If ouy cyclic motion is present, the first and the last images in this sequence must be identical, IMl=IMm+i.
Difference between images representing composite motion can be computed, as known in the art, by, for example, optical flow or by applying phase correlation computation to pairs of successive images IM; and IM;+i, iE f 1..m}. The result of this computation (for example the result of phase correlation) is described dX;
,dY; and p;, where dX; and dY; are the shift between images (assuming a substantial part of the same to pattern is present in both images) in X and Y axes respectively and p; is the correlation grade. p; may be used to enhance the further described algorithms.
Let us define and compute the motion integration as:
C Yl ~ = Co~
X ~+i X t + ~t CYf+~ ~=CY~ ~ CdY ~
meaning that in the first image, the motion integral is equal to zero. The motion integral for image i+1 is equal to the motion integral for image i plus sluft between images i and i+1 , as computed by the phase correlation.
It is mathematically understandable that the integration of a cyclic motion, from image IMl to IMm+i, is zero - if an object starts and ends in the same position, then the 2o integration of the object movements (on X and Y axis) is zero (as shown in Fig. 1). Thus, if only cyclic motion is present, (Xm+i,Y",+i)=(Xi,Y;)=(~,~).
Let (XNC,YNC) be ~e integral of the non-cyclic motion, ~NC9YNC) _ ~m+l9Ym+1)s This means that, given that the integral of cyclic motion is 0, (Xm+uYm+i) represent the residual motion that is attributed to non-cyclic movement.
Assuming non-cyclic motion is consistent, or at the least that its frequency is lower than the cyclic motion frequency, we can subtract this motion from the overall motion:
(X;*,Y;*)=(X,,Y,)-(XNC,YNC)*(i-1)/m, i=1,2,. ..,m+1.

-g-Thus, we obtain the following motion values. (XNC,YNC) are the values of the non-cyclic motion, and (X;*,Y;*), i=1,2,...,nZ+l, are the values, per frame i, of the cyclic motion.
These values can now be used for direct measurements (such as cardiac wall motion, for example), and can be used as input to further processing, as further detailed below.
We can obviate the requirement of knowing in advance the length of the cyclic motion by means of direct computation. The most common method of doing so is l0 performing spectral investigation, based on Fast Fourier Transform, applied to a motion graph for the entire sequence, to identify the frequency of the cyclic motion.
Method for obtaining the least motion image In many applications, it is desirable to identify the image with least motion (for example, least heart motion or least coronaries motion). In cases where the event of least motion, within the motion cycle is unique, then the least motion image is pointed to by the minimum point on the motion differences graph.
Let:
D~>j (Xi 'I'j~z'+'Y ~jIZ
2o D;~ is motion differences graph. Least motion instance is the minimal instance of D;,~ function.
In other cases, where the least motion event is not unique within the motion cycle (for example, the cardiac cycle has two least motion instances - end-systole and end-diastole), we suggest the following method.
If an initial approximation for the least motion image is known (for example, the vicinity of the end-diastole image, within the cardiac cycle, is easily identified by the R
peals, talcen from the ECG signal), then we will find the first extreme point, which is most distant to the approximated least motion image, meaning:
If IMF is the approximation for the least motion image, then the first extreme point is DE>F = max {D;>F} for all i=l..na+1.
Least motion image - IMLM - is determined as most distant from image IME, DLM,E = m~ f Da,E} for all i=l..m+1.
We can relieve the requirement for knowing in advance an approximation for the least motion image by means of direct computation. If indeed the least motion instance is not unique, we can use heuristic criteria for distinction. For example, within a sequence of angiograms, depicting a cardiac cycle, it is easy to distinguish between the end-systole instance and the end-diastole instance, both representing least motion, since the end-diastole instance is identified by presenting the coronaries in maximal spreading, while the end-systole instance is identified by presenting the coronaries in minimal spreading.
to Preferred Embodiment.
We suggest a preferred embodiment for an application of three-dimensional reconstruction of coronary vessels from a procedure of conventional angiography. In order to reconstruct a three-dimensional image of the arteries, it is necessary to obtain at least two two-dimensional images of the arteries in the same phase of the heartbeat, for example at end-diastole. Therefore, image acquisition is usually synchronized to an ECG
signal. This procedure involves simultaneous recordings of the video signal from the X
ray camera and the patient's ECG signal. We present here a novel method for identifying the end-diastole instance, equivalent to ECG-gating, without relying solely, if at all, on the 2o ECG signal.
Let IMI, IMz... IM" be fZ images of a catheterization-acquired run.
Let na be the number of frames per cardiac cycle, either hnovyxi in advance or computed as detailed in the above-described method for estimating the organ's motion.
Let IM,~ be the approximate location of end-diastolic frame within the cycle, either lcnown in advance or heuristically identified as detailed in the above-described method for obtaining the least motion image.
IMk_",i2, IMk_,"iz+i, IM k-m/2+1.. . IMk_",i2+m form a full cardiac cycle (for the salve of 3o simplicity, let us presume that m is an even number). Differences between frames in this sequence are attributed to heart motion, but are also attributed to bed motion, iodine propagation and several other reasons. If only heart motion were present, the first and the last images in this sequence - IMk_m,2 and IMk_mi2+m - must be identical, since the motion of the heart is cyclic.
For the sane of simplicity, let us renumber the sequence as IMI, IMZ... IMm, IMm+1.
As noted above, if only heart motion is considered then IMl=IMm+i. Also, the end-diastolic renumbered frame is IM"~Z+u which is an approximation for the least motion frame.
to Apply Phase correlation computation to pairs of successive images IM; and IM;+1, iE ~ 1..m}. The result of the Phase correlation is described dX; ,dY; and p;, where dX; and dY; are the shift between images (assuming most of the same pattern - coronary tree or part of the coronary tree - is present in both images) in X and Y axis respectively and p; is the correlation grade. p; may be used to enhance the further described algorithms.
Now, of all the reasons that attribute to the difFerences between successive images, the most significant contributory factor to such differences -sometimes more than heart motion itself- is bed motion.
W tegration of cardiac motion, from image IMl to IMm+i, is zero -(~m+~,Ym+~)=(X1,Y1)=(0,0).
Let (XB,YB) be the integral of the bed movement, ~B~YB) _ (~m+l~Ym+1), meaning that, given that the integral of cardiac motion is zero, (gym+l,~m+i) represents the residual motion that is attributed to bed movement.
Assuming the bed movement is consistent (meaning the physician is moving the bed in a general constant direction), or that, as a weaker constraint, the bed movement is slower than heartbeat, we can subtract this movement from the overall movement:
(xt*,Y;*)=(XaYy-(XB,YB)*(i-1)~m, i=1,2,...,m+l.
3o The frame with minimum arterial motion is pointed by the extreme point on , Curdle.

Let:
Dl>i - lx 1 'YJ ~Z + y We can determine the end-systole point S, which is the one most distant from the approximated end-diastole point, meaiung:
Ds>"~2+i=max {D;>I,,i2+i}
Minimum motion point - end-diastole, ED - is determined as most distant from systole point:
Ds>ED = max {Ds>J~.
Selecting the IMEO image per sequence of cine-angio images for the process of three-dimensional reconstruction will provide the optimal result, in terms of accuracy and precision, for the reconstruction and for vessel analysis.
In the method claims that follow, alphabetic characters and Roman numerals used to designate claim steps axe provided for convenience ouy and do not imply any particular order of performing the steps.
It will also be understood that the system according to the invention may be a suitably programmed computer. Likewise, the invention contemplates a computer program being readable by a computer for executing the method of the invention. The invention further contemplates a machine-readable memory tangibly embodying a program of instructions executable by the machine for executing the method of the invention.

Claims (30)

CLAIMS:
1 A method for obtaining a cyclic motion with a series of images depicting a moving object subject to composite motion containing a cyclic component having a motion cycle and a non-cyclic consistent component of a lower frequency than the cyclic component, the method comprising:

(a) computing the composite motion between at least one pair of successive images, the composite motion represented by at least one vector;

(b) compute the non-cyclic component as the integral of the composite motion over a motion cycle;

(c) computing a proportional part of the non cyclic component for each of the at least one pair of successive images; and (d) subtracting the proportional part of the non-cyclic component from the composite motion so as to obtain the cyclic component.
2 The method according to claim 1, wherein a cyclic period of the cyclic motions component is computed using spectral analysis.
3 The method according to claim 1 or 2, wherein the composite motion is determined by optical flow.
4 The method according to claim 1 to 4, where cyclic motion is determined using phase correlation of said images.
The method according to any of claims 1 to 4, where cyclic motion values are used for evaluating performance of a body organ.
6 The method according to claim 4, when used in a cardiac application to evaluate heart performance.
7 The method according to claim 6, when used for Ejection Fraction analysis.
8 The method according to claim 6, when used for Left ventricular analysis.
9 The method according to claim 6, when used for Wall Motion analysis.
A method for identifying an image depicting an event associated with cyclic motion, the method comprising:

(a) computing one cyclic motion according to the method of any one of claims 1 to 4;

(b) using a graphical representation of the cyclic motion to identify all images matching said event; and event; and (c) selecting one of said images.
11 The method according to claim 10, wherein the selected image is closest to a predetermined approximation.
12 The method according to claim 10 or 11, wherein the event is least motion.
13 The method according to claim 12, for selecting angiographic images to participate in three-dimensional reconstruction of coronary vessels.
14 The method according to claim 13, including deriving cycle period and approximation for least-motion image from an analysis of an ECG signal.
15 The method according to claim 13 or 14, including distinguishing the end-diastole instance from the end-systole instance by the state of coronary vessel - maximal spreading versus minimal spreading, respectively.
16 The method according to any one of claims 5 to 15 when used for selecting optimal image or images for QCA analysis.
17 The method according to any one of claims 5 to 15 when used for selecting optimal image or images for IVUS analysis.
18 The method according to any one of claims 5 to 15 when used for selecting optimal image or images for LVA analysis.
19 The method according to any one of claims 5 to 15 when used for selecting optimal image or images for Wall Motion analysis.
20 The method according to any one of claims 5 to 15 when used for CT
reconstruction.
21 The method according to any one of claims 5 to 15 when used for MRI
reconstruction.
22 The method according to any one of claims 5 to 15 when used for PET
reconstruction.
23 The method according to claim 1 wherein the series of images comprises an at least one series of N images acquired during a motion cycle, each frame having an index i within the motion cycle, i=1...N, and wherein the proportional part of the non cyclic component for each of the at least one pair of successive images i-I and i is determined by dividing the non cyclic component by N and multiplying by i-~.
24 A system for obtaining a cyclic motion within a series of images depicting a moving object subject to composite motion containing a cyclic component having a motion cycle and a non-cyclic consistent component of a lower frequency than the cyclic component, the system comprising:

a composite motion unit for computing the composite motion between at least one pair of successive images, the composite motion represented by at least one vector;

a non-cyclic motion unit for computing the non-cyclic component as the integral of the composite motion over a motion cycle;

a proportional part unit for computing a proportional part of the non cyclic component for each of the at least one pair of successive images; and a subtraction unit for subtracting the proportional part of the non-cyclic component from the composite motion so as to obtain the cyclic component.
25 The system according to claim 24 wherein the series of images comprises an at least one series of N images acquired during a motion cycle, each frame having an index i within the motion cycle, i=l...N, and wherein the proportional part of the non cyclic component for each of the at least one pair of successive images i-l and i is determined by dividing the non cyclic component by N and multiplying by i-l.
26 A system for identifying an image depicting an event associated with cyclic motion, the system comprising:

a cyclic motion unit for computing the cyclic motion and deriving data representative of a graphical representation thereof, an image identification unit responsive to said data representative of a graphical representation of the cyclic motion for identifying all images matching said event, and an image selection unit for selecting one of said images.
27 The system according to claim 26, wherein the image identification unit is adapted to identify minimal cyclic motion.
28 The system according to claim 27, wherein the image selection unit is adapted to select angiographic images to participate is three-dimensional reconstruction of coronary vessels.
29 The system according to claim 28, including an ECG analyzer for deriving cycle period and approximation for least-motion image from an analysis of an ECG signal,
30 The system according to claim 28 or 29, including an image processing unit coupled to the image selection unit for distinguishing the end-diastole instance from the end-systole instance by the state of coronary vessel- maximal spreading versus minimal spreading, respectively.
CA002533538A 2003-07-21 2004-07-14 Method and system for identifying an optimal image within a series of images that depict a moving organ Abandoned CA2533538A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48838203P 2003-07-21 2003-07-21
US60/488,382 2003-07-21
PCT/IL2004/000632 WO2005008583A2 (en) 2003-07-21 2004-07-14 Method and system for identifying an optimal image within a series of images that depict a moving organ

Publications (1)

Publication Number Publication Date
CA2533538A1 true CA2533538A1 (en) 2005-01-27

Family

ID=34079421

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002533538A Abandoned CA2533538A1 (en) 2003-07-21 2004-07-14 Method and system for identifying an optimal image within a series of images that depict a moving organ

Country Status (6)

Country Link
US (1) US7587074B2 (en)
EP (1) EP1654704A2 (en)
JP (1) JP4489770B2 (en)
CN (1) CN1846231A (en)
CA (1) CA2533538A1 (en)
WO (1) WO2005008583A2 (en)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60143764D1 (en) 2000-10-18 2011-02-10 Paieon Inc SYSTEM FOR POSITIONING A DEVICE IN A TUBULAR ORGAN
CN1846231A (en) 2003-07-21 2006-10-11 派昂公司 Method and system for identifying optimal image within a series of images that depict a moving organ
JP5129480B2 (en) 2003-09-25 2013-01-30 パイエオン インコーポレイテッド System for performing three-dimensional reconstruction of tubular organ and method for operating blood vessel imaging device
DE102004048209B3 (en) * 2004-09-30 2005-09-01 Siemens Ag Generating three-dimensional image data record of moving object with x-ray tomography involves generating at least two preliminary 3D image data sets from corresponding raw images, deriving movement matrix, applying to target data record
JP2008534109A (en) 2005-03-31 2008-08-28 パイエオン インコーポレイテッド Apparatus and method for positioning a device within a tubular organ
US8295577B2 (en) 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
WO2006117773A1 (en) * 2005-05-03 2006-11-09 Paieon Inc. Method and apparatus for positioning a biventrivular pacemaker lead and electrode
DE102005027951A1 (en) * 2005-06-16 2007-01-04 Siemens Ag Medical system for introducing a catheter into a vessel
US8175356B2 (en) 2006-11-03 2012-05-08 Koninklijke Philips Electronics N.V. Cardiac phase determination
JP5639764B2 (en) 2007-03-08 2014-12-10 シンク−アールエックス,リミティド Imaging and tools for use with moving organs
US8781193B2 (en) 2007-03-08 2014-07-15 Sync-Rx, Ltd. Automatic quantitative vessel analysis
US11197651B2 (en) 2007-03-08 2021-12-14 Sync-Rx, Ltd. Identification and presentation of device-to-vessel relative motion
WO2012176191A1 (en) 2011-06-23 2012-12-27 Sync-Rx, Ltd. Luminal background cleaning
US9968256B2 (en) 2007-03-08 2018-05-15 Sync-Rx Ltd. Automatic identification of a tool
US10716528B2 (en) 2007-03-08 2020-07-21 Sync-Rx, Ltd. Automatic display of previously-acquired endoluminal images
WO2014002095A2 (en) 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US8355928B2 (en) * 2007-12-05 2013-01-15 Siemens Medical Solutions Usa, Inc. Medical user interface and workflow management system
EP2288291B1 (en) * 2008-06-13 2018-11-14 Koninklijke Philips N.V. Reverse data reconstruction for optimal time sampling of counts in physiological list-mode nuclear imaging
ES2450391T3 (en) 2008-06-19 2014-03-24 Sync-Rx, Ltd. Progressive progress of a medical instrument
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US10362962B2 (en) 2008-11-18 2019-07-30 Synx-Rx, Ltd. Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
US11064903B2 (en) 2008-11-18 2021-07-20 Sync-Rx, Ltd Apparatus and methods for mapping a sequence of images to a roadmap image
US9974509B2 (en) 2008-11-18 2018-05-22 Sync-Rx Ltd. Image super enhancement
BR112012001042A2 (en) 2009-07-14 2016-11-22 Gen Hospital Corp fluid flow measurement equipment and method within anatomical structure.
US8605976B2 (en) * 2009-12-10 2013-12-10 General Electric Corporation System and method of detection of optimal angiography frames for quantitative coronary analysis using wavelet-based motion analysis
CN102858405B (en) 2010-02-12 2015-08-19 布里格姆女子医院有限公司 The system and method that cardiac resynchronization therapy controling parameters regulates automatically
JP5960163B2 (en) 2010-12-22 2016-08-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Parallel MRI method for rigid body motion compensation using calibration scan, coil sensitivity map and navigator
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
JP2013040829A (en) * 2011-08-12 2013-02-28 Tokyo Metropolitan Univ Volume data processor and method
EP2765916B1 (en) 2011-10-12 2019-02-13 The Johns Hopkins University System for evaluating regional cardiac function and dyssynchrony from a dynamic imaging modality using endocardial motion
JP5386001B2 (en) 2012-03-26 2014-01-15 雅彦 中田 Ultrasonic diagnostic equipment
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9572505B2 (en) 2012-10-11 2017-02-21 Medtronic, Inc. Determining onsets and offsets of cardiac depolarization and repolarization waves
US9576357B2 (en) * 2013-01-17 2017-02-21 Koninklijke Philips N.V. Eliminating motion effects in medical images caused by physiological function
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9272148B2 (en) 2013-07-23 2016-03-01 Medtronic, Inc. Combination of feedback on mechanical and electrical resynchronization to select therapy parameters
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9132274B2 (en) 2013-07-26 2015-09-15 Medtronic, Inc. Determining onsets and offsets of cardiac depolarization and repolarization waves
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9406129B2 (en) 2013-10-10 2016-08-02 Medtronic, Inc. Method and system for ranking instruments
US9986928B2 (en) 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US10004467B2 (en) 2014-04-25 2018-06-26 Medtronic, Inc. Guidance system for localization and cannulation of the coronary sinus
WO2015175469A1 (en) * 2014-05-12 2015-11-19 The Johns Hopkins University An imaging toolbox for guiding cardiac resynchronization therapy implantation from patient-specific imaging and body surface potential mapping data
US9633431B2 (en) 2014-07-02 2017-04-25 Covidien Lp Fluoroscopic pose estimation
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
US9668818B2 (en) 2014-10-15 2017-06-06 Medtronic, Inc. Method and system to select an instrument for lead stabilization
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9737223B2 (en) 2015-05-13 2017-08-22 Medtronic, Inc. Determining onset of cardiac depolarization and repolarization waves for signal processing
US9782094B2 (en) 2015-07-31 2017-10-10 Medtronic, Inc. Identifying ambiguous cardiac signals for electrophysiologic mapping
US9610045B2 (en) 2015-07-31 2017-04-04 Medtronic, Inc. Detection of valid signals versus artifacts in a multichannel mapping system
US11172895B2 (en) 2015-12-07 2021-11-16 Covidien Lp Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated
US11219769B2 (en) 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
US10780279B2 (en) 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
CN111050841B (en) 2017-07-28 2023-09-26 美敦力公司 Cardiac cycle selection
WO2019023472A1 (en) 2017-07-28 2019-01-31 Medtronic, Inc. Generating activation times
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
CN111886046A (en) 2018-03-23 2020-11-03 美敦力公司 AV-synchronized VFA cardiac therapy
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
CN111902082A (en) 2018-03-29 2020-11-06 美敦力公司 Left ventricular assist device adjustment and evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US11304641B2 (en) 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
CN112601577A (en) 2018-08-31 2021-04-02 美敦力公司 Adaptive VFA cardiac therapy
CN112770807A (en) 2018-09-26 2021-05-07 美敦力公司 Capture in atrial-to-ventricular cardiac therapy
JP2022504590A (en) 2018-11-17 2022-01-13 メドトロニック,インコーポレイテッド VFA delivery system
US20200196892A1 (en) 2018-12-20 2020-06-25 Medtronic, Inc. Propagation patterns method and related systems and devices
US20200197705A1 (en) 2018-12-20 2020-06-25 Medtronic, Inc. Implantable medical device delivery for cardiac therapy
EP3897816B1 (en) 2018-12-21 2024-03-27 Medtronic, Inc. Delivery systems for left ventricular pacing
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11701517B2 (en) 2019-03-11 2023-07-18 Medtronic, Inc. Cardiac resynchronization therapy using accelerometer
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11071500B2 (en) 2019-05-02 2021-07-27 Medtronic, Inc. Identification of false asystole detection
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11633607B2 (en) 2019-07-24 2023-04-25 Medtronic, Inc. AV synchronous septal pacing
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US20210106227A1 (en) 2019-10-09 2021-04-15 Medtronic, Inc. Systems, methods, and devices for determining cardiac condition
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US20210106832A1 (en) 2019-10-09 2021-04-15 Medtronic, Inc. Synchronizing external electrical activity
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US11944461B2 (en) 2019-12-02 2024-04-02 Medtronic, Inc. Generating representative cardiac information
US11642032B2 (en) 2019-12-31 2023-05-09 Medtronic, Inc. Model-based therapy parameters for heart failure
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US20210236038A1 (en) 2020-01-30 2021-08-05 Medtronic, Inc. Disturbance detection and removal in cardiac signals
US20210298658A1 (en) 2020-03-30 2021-09-30 Medtronic, Inc. Pacing efficacy determination using a representative morphology of external cardiac signals
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US20210308458A1 (en) 2020-04-03 2021-10-07 Medtronic, Inc. Cardiac conduction system engagement
US20210361219A1 (en) 2020-05-21 2021-11-25 Medtronic, Inc. Qrs detection and bracketing
US20220032069A1 (en) 2020-07-30 2022-02-03 Medtronic, Inc. Ecg belt systems to interoperate with imds
US20220031221A1 (en) 2020-07-30 2022-02-03 Medtronic, Inc. Patient screening and ecg belt for brady therapy tuning
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US20220031222A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Stable cardiac signal identification
GB202017502D0 (en) * 2020-11-05 2020-12-23 Univ London Queen Mary Image processing of intravenous ultrasound images
WO2023021367A1 (en) 2021-08-19 2023-02-23 Medtronic, Inc. Pacing artifact mitigation
WO2023105316A1 (en) 2021-12-07 2023-06-15 Medtronic, Inc. Determination of cardiac conduction system therapy benefit

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357550A (en) * 1966-06-23 1967-12-12 American Cyanamid Co Combination reel and label for surgical sutures
US4263916A (en) 1978-03-27 1981-04-28 University Of Southern California Image averaging for angiography by registration and combination of serial images
US4889128A (en) 1985-09-13 1989-12-26 Pfizer Hospital Products Doppler catheter
FR2636451A1 (en) 1988-09-13 1990-03-16 Gen Electric Cgr METHOD FOR RECONSTRUCTION OF THREE-DIMENSIONAL TREE BY LABELING
US5207226A (en) * 1991-01-25 1993-05-04 Regents Of The University Of Minnesota Device and method for measurement of blood flow
US5734384A (en) 1991-11-29 1998-03-31 Picker International, Inc. Cross-referenced sectioning and reprojection of diagnostic image volumes
US5203777A (en) 1992-03-19 1993-04-20 Lee Peter Y Radiopaque marker system for a tubular device
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
WO1995029705A1 (en) 1994-05-03 1995-11-09 Molecular Biosystems, Inc. Composition for ultrasonically quantitating myocardial perfusion
US5446800A (en) 1994-06-13 1995-08-29 Diasonics Ultrasound, Inc. Method and apparatus for displaying angiographic data in a topographic format
WO1996025882A1 (en) 1995-02-22 1996-08-29 Groenningsaeter Aage Method for ultrasound guidance during clinical procedures
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US6027460A (en) 1995-09-14 2000-02-22 Shturman Cardiology Systems, Inc. Rotatable intravascular apparatus
US5583902A (en) 1995-10-06 1996-12-10 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement
ATE275880T1 (en) 1995-10-13 2004-10-15 Transvascular Inc DEVICE FOR BYPASSING ARTERIAL Narrowings AND/OR FOR PERFORMING OTHER TRANSVASCULAR PROCEDURES
US6709444B1 (en) 1996-02-02 2004-03-23 Transvascular, Inc. Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits
US5699799A (en) 1996-03-26 1997-12-23 Siemens Corporate Research, Inc. Automatic determination of the curved axis of a 3-D tube-shaped object in image volume
US6047080A (en) 1996-06-19 2000-04-04 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
DE19705599A1 (en) * 1997-02-14 1998-08-20 Philips Patentverwaltung X-ray imaging process with a series of exposures from different perspectives
US6095976A (en) * 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US5912945A (en) 1997-06-23 1999-06-15 Regents Of The University Of California X-ray compass for determining device orientation
US6148095A (en) 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US6249695B1 (en) 1997-11-21 2001-06-19 Fonar Corporation Patient movement during image guided surgery
FR2776798A1 (en) 1998-03-24 1999-10-01 Philips Electronics Nv IMAGE PROCESSING METHOD INCLUDING STEPS OF SEGMENTATION OF A MULTIDIMENSIONAL IMAGE AND MEDICAL IMAGING APPARATUS USING THE SAME
AU768005B2 (en) 1998-03-31 2003-11-27 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers
US6094591A (en) 1998-04-10 2000-07-25 Sunnybrook Health Science Centre Measurement of coronary flow reserve with MR oximetry
US6301498B1 (en) 1998-04-17 2001-10-09 Cornell Research Foundation, Inc. Method of determining carotid artery stenosis using X-ray imagery
US6195577B1 (en) 1998-10-08 2001-02-27 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US6352508B1 (en) * 1998-11-20 2002-03-05 Acuson Corporation Transducer motion compensation in medical diagnostic ultrasound extended field of view imaging
SE9804147D0 (en) 1998-12-01 1998-12-01 Siemens Elema Ab System for three-dimensional imaging of an internal organ or body structure
US6385332B1 (en) 1999-02-19 2002-05-07 The John P. Roberts Research Institute Automated segmentation method for 3-dimensional ultrasound
US20030032886A1 (en) 1999-03-09 2003-02-13 Elhanan Dgany System for determining coronary flow reserve (CFR) value for a stenosed blood vessel, CFR processor therefor, and method therefor
US6144875A (en) * 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
US6501981B1 (en) * 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
DE19914455B4 (en) * 1999-03-30 2005-07-14 Siemens Ag Method for determining the movement of an organ or therapeutic area of a patient and a system suitable for this purpose
DE19919907C2 (en) * 1999-04-30 2003-10-16 Siemens Ag Method and device for catheter navigation in three-dimensional vascular tree images
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6381350B1 (en) 1999-07-02 2002-04-30 The Cleveland Clinic Foundation Intravascular ultrasonic analysis using active contour method and system
US6711433B1 (en) 1999-09-30 2004-03-23 Siemens Corporate Research, Inc. Method for providing a virtual contrast agent for augmented angioscopy
US7027650B2 (en) * 1999-12-10 2006-04-11 Christian Williame Dynamic computing imagery, especially for visceral osteopathy and for articular kinetics
US6402693B1 (en) * 2000-01-13 2002-06-11 Siemens Medical Solutions Usa, Inc. Ultrasonic transducer aligning system to replicate a previously obtained image
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6535756B1 (en) * 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
WO2001085030A1 (en) 2000-05-09 2001-11-15 Paieon Inc. System and method for three-dimensional reconstruction of an artery
US6463309B1 (en) 2000-05-11 2002-10-08 Hanna Ilia Apparatus and method for locating vessels in a living body
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6748259B1 (en) 2000-06-15 2004-06-08 Spectros Corporation Optical imaging of induced signals in vivo under ambient light conditions
US6389104B1 (en) * 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6505064B1 (en) 2000-08-22 2003-01-07 Koninklijke Philips Electronics, N.V. Diagnostic imaging systems and methods employing temporally resolved intensity tracing
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
DE60143764D1 (en) 2000-10-18 2011-02-10 Paieon Inc SYSTEM FOR POSITIONING A DEVICE IN A TUBULAR ORGAN
US6503203B1 (en) 2001-01-16 2003-01-07 Koninklijke Philips Electronics N.V. Automated ultrasound system for performing imaging studies utilizing ultrasound contrast agents
JP4758578B2 (en) * 2001-09-14 2011-08-31 日立アロカメディカル株式会社 Heart wall motion evaluation device
US6669481B2 (en) * 2001-11-08 2003-12-30 The United States Of America As Represented By The Secretary Of The Army Neurocognitive assessment apparatus and method
US7024025B2 (en) * 2002-02-05 2006-04-04 Scimed Life Systems, Inc. Nonuniform Rotational Distortion (NURD) reduction
US7092571B2 (en) * 2002-03-29 2006-08-15 Sun Microsystems, Inc. Method and apparatus for regional image quantification verification
US7092572B2 (en) * 2002-03-29 2006-08-15 Sun Microsystems, Inc. Method and apparatus for global image quantification verification
US6990368B2 (en) 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US20030199759A1 (en) * 2002-04-18 2003-10-23 Richard Merwin F. Coronary catheter with radiopaque length markers
WO2003096884A2 (en) 2002-05-17 2003-11-27 Case Western Reserve University Systems and methods for assessing blood flow in a target tissue
CN100536774C (en) 2002-07-23 2009-09-09 Ge医药系统环球科技公司 Methods and systems for detecting components of plaque
US7074188B2 (en) * 2002-08-26 2006-07-11 The Cleveland Clinic Foundation System and method of characterizing vascular tissue
US7359554B2 (en) * 2002-08-26 2008-04-15 Cleveland Clinic Foundation System and method for identifying a vascular border
US7359535B2 (en) * 2003-06-20 2008-04-15 Ge Medical Systems Global Technology Company, Llc Systems and methods for retrospective internal gating
CN1846231A (en) 2003-07-21 2006-10-11 派昂公司 Method and system for identifying optimal image within a series of images that depict a moving organ
EP1658588A1 (en) 2003-08-21 2006-05-24 Philips Intellectual Property & Standards GmbH Device and method for combined display of angiograms and current x-ray images
JP5129480B2 (en) 2003-09-25 2013-01-30 パイエオン インコーポレイテッド System for performing three-dimensional reconstruction of tubular organ and method for operating blood vessel imaging device
US8014849B2 (en) 2003-11-21 2011-09-06 Stryker Corporation Rotational markers
US7367953B2 (en) * 2003-11-26 2008-05-06 Ge Medical Systems Global Technology Company Method and system for determining a period of interest using multiple inputs
US7215802B2 (en) * 2004-03-04 2007-05-08 The Cleveland Clinic Foundation System and method for vascular border detection
US7397935B2 (en) * 2004-05-10 2008-07-08 Mediguide Ltd. Method for segmentation of IVUS image sequences
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
EP1830701A1 (en) 2004-12-08 2007-09-12 Paieon Inc. Method and apparatus for blood vessel parameter determinations

Also Published As

Publication number Publication date
WO2005008583A3 (en) 2005-03-17
WO2005008583A2 (en) 2005-01-27
JP2007533336A (en) 2007-11-22
US7587074B2 (en) 2009-09-08
US20060188135A1 (en) 2006-08-24
JP4489770B2 (en) 2010-06-23
EP1654704A2 (en) 2006-05-10
CN1846231A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US7587074B2 (en) Method and system for identifying optimal image within a series of images that depict a moving organ
US11694339B2 (en) Method and apparatus for determining blood velocity in X-ray angiography images
US7426256B2 (en) Motion-corrected three-dimensional volume imaging method
US7646900B2 (en) Device and method for generating a three dimensional vascular model
US8233688B2 (en) Method of detection and compensation for respiratory motion in radiography cardiac images synchronized with an electrocardiogram signal
JP6043187B2 (en) Visualization of motion in angiographic images
US8488910B2 (en) Image provision for registration
JP2007167656A (en) Method for analysis of motion of subject, and tomographic device
US9367904B2 (en) Spatial-temporal warping of different pre-captured medical images
JP5543976B2 (en) Visualization of the coronary tree
US20120306862A1 (en) Image processing device, method and program
JP2001148005A (en) Method for reconstructing three-dimensional image of moving object
WO2011031134A1 (en) Image processing method and system
KR20180008134A (en) A method for predicting a fractional flow reserve
EP1800265A2 (en) Device, method, computer-readable medium and program element for processing image data of a movable object, and rotational x-ray angiography apparatus
JP2004188196A (en) Method and apparatus for detecting heart cycle
CN115689956A (en) Optimal weighting of mask images for digital subtraction angiography
US20240104728A1 (en) Providing a result dataset
EP4042924A1 (en) Position estimation of an interventional device
EP3866111A1 (en) Latency compensation for image processing devices
EP4042946A1 (en) Displacement estimation of interventional devices
CA3192793A1 (en) Blood flow imaging
CN111202539A (en) Tomographic image processing apparatus and method, and non-transitory recording medium
Goszczyńska Movement Tracking of Coronary Artery Segment in Angiographic Images Sequences by Template Matching Method

Legal Events

Date Code Title Description
FZDE Discontinued